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An evaluation of the replicability 
of analyses using synthetic health 
data
Khaled El Emam 1,2,3*, Lucy Mosquera 2,3, Xi Fang 2 & Alaa El‑Hussuna 4

Synthetic data generation is being increasingly used as a privacy preserving approach for sharing 
health data. In addition to protecting privacy, it is important to ensure that generated data has high 
utility. A common way to assess utility is the ability of synthetic data to replicate results from the real 
data. Replicability has been defined using two criteria: (a) replicate the results of the analyses on real 
data, and (b) ensure valid population inferences from the synthetic data. A simulation study using 
three heterogeneous real‑world datasets evaluated the replicability of logistic regression workloads. 
Eight replicability metrics were evaluated: decision agreement, estimate agreement, standardized 
difference, confidence interval overlap, bias, confidence interval coverage, statistical power, 
and precision (empirical SE). The analysis of synthetic data used a multiple imputation approach 
whereby up to 20 datasets were generated and the fitted logistic regression models were combined 
using combining rules for fully synthetic datasets. The effects of synthetic data amplification were 
evaluated, and two types of generative models were used: sequential synthesis using boosted decision 
trees and a generative adversarial network (GAN). Privacy risk was evaluated using a membership 
disclosure metric. For sequential synthesis, adjusted model parameters after combining at least ten 
synthetic datasets gave high decision and estimate agreement, low standardized difference, as well as 
high confidence interval overlap, low bias, the confidence interval had nominal coverage, and power 
close to the nominal level. Amplification had only a marginal benefit. Confidence interval coverage 
from a single synthetic dataset without applying combining rules were erroneous, and statistical 
power, as expected, was artificially inflated when amplification was used. Sequential synthesis 
performed considerably better than the GAN across multiple datasets. Membership disclosure risk was 
low for all datasets and models. For replicable results, the statistical analysis of fully synthetic data 
should be based on at least ten generated datasets of the same size as the original whose analyses 
results are combined. Analysis results from synthetic data without applying combining rules can be 
misleading. Replicability results are dependent on the type of generative model used, with our study 
suggesting that sequential synthesis has good replicability characteristics for common health research 
workloads.

There has been growing interest in using synthetic data generation (SDG) techniques to enable broader sharing 
of health data for research and  analysis1–11, and SDG has been highlighted as a key privacy enhancing technology 
for data access in the coming  decade12. Furthermore, there are recent examples of health research studies using 
synthetic data not requiring ethics approval because they are considered to contain no patient  information13, 
which can greatly accelerate research projects.

There are multiple synthetic health datasets that are being made available to a broad research community 
such as: the NIH National COVID Cohort Collaborative (N3C)14, the CMS Data Entrepreneur’s Synthetic Pub-
lic Use  files15, synthetic cardiovascular and COVID-19 datasets available from the CPRD in the  UK16,17, A&E 
data from NHS  England18, a synthetic dataset from the Dutch cancer  registry19, cancer data from Public Health 
 England20, synthetic variants of the French public health system claims and hospital dataset (SNDS)21, and the 
South Korean data from the Health Insurance Review and Assessment service (the national health insurer)22. 
Furthermore, recently authors have been making synthetic variants of data used in their research papers publicly 
 available23, to enable open science.
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An important criterion for evaluating synthetic data is its utility. Utility is assessed by the data custodian 
before sharing the synthetic data with the eventual data users. The eventual data users would only have access to 
the synthetic data and not to the real datasets that were used to train the generative models.

Utility metrics can be defined as broad or  narrow24. Broad metrics are generic and do not take into account the 
specific analytic workloads that the synthetic dataset will be used  for25. Most of these metrics focus on the fidelity 
of the synthetic data to the real data by assessing the similarity of the joint distributions of both datasets. They 
are useful, for example, to compare and improve SDG  methods26–28. Narrow metrics are specific to an analysis 
that is performed with synthetic data. They are also sometimes referred to as workload-aware utility metrics. The 
data custodian would often not have a precise knowledge of individual user workloads in advance, and therefore 
utility is evaluated on commonly used workloads instead. Our focus in this study is on these narrow metrics.

One definition of narrow utility is replicability. Replicability is the reliability of findings when an existing study 
is repeated using the same analytical methods but different  data29. There are two interpretations of replicability 
in the context of SDG.

Under one interpretation, replicability is assessed by comparing the analysis results using the real datasets 
with the results of the same analysis performed on the synthetic data, and is illustrated in Fig. 1. Here the effect 
size from a specific real dataset, which is a sample from some population, is computed and denoted by ers , then 
ers is compared to the parameter estimate from the synthetic data, esdg , for example, by evaluating the confidence 
interval  overlap24. It is quite common to evaluate the utility of SDG techniques using this  approach1–11. In the 
current study we define objective criteria for such an evaluation.

Another interpretation of replicability is whether population inferences made using synthetic data are  valid30. 
In this case the comparison is between esdg and the population value of the parameter, ep . For this type of utility 
evaluation, standard metrics such as bias, coverage, precision, and statistical power become more  relevant31.

The original proposal for SDG treated it as a form of multiple  imputation32. Under the multiple imputation 
model, multiple datasets, say m , are synthesized and combining rules are used to compute the parameter esti-
mates and variances across the m synthetic  datasets33,34. Additional variance adjustment and combining rules 
were introduced for singly imputed synthetic data (i.e., m = 1)35. Such corrections ensured that variability intro-
duced by the synthesis process are accounted for when computing parameter estimates, their standard errors, 
and making population inferences from synthetic datasets.

Disclosing m synthetic datasets to the data analysts could also increase the privacy risks. While synthetic 
data is deemed to have low identity disclosure risks in practice because there is not a one-to-one mapping 
between synthetic records and real  people36–43, it still has other types of disclosure risks, such as membership 
 disclosure44–47. Therefore, it is important to evaluate the privacy implications when generating and sharing m 
synthetic datasets.

Previous studies evaluating the effect of the combining rules on analysis results from synthetic data used simu-
lated datasets that were not specific to health  data35, performed more qualitative evaluations of study  results48,49, 
or focused primarily on disclosure  risks39. These studies did not provide a set of specific recommendations for 
the application of the multiple imputation combining rules for health data, and did not consider both types 
of replicability  criteria30: (a) the similarity of analysis findings to those from real data, and (b) the validity of 
population inferences.

In this paper we therefore perform a simulation study to evaluate the two types of replicability criteria, and 
also answer the following questions:

Figure 1.  Different approaches for evaluating the “narrow” utility of synthetic data in terms of replicability.
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Q1
How many synthetic datasets should be generated and combined (i.e., what is the appropriate value of m) to maximize the replica-
bility of results using SDG ? The values of m varied from 1 to 500 in previous  work35,43,48,50–52. There has not been a comprehensive 
assessment of the appropriate number of synthetic datasets to be generated

Q2 What are the privacy risks from sharing m synthetic datasets? There has been limited research on the privacy risks when multiple 
synthetic datasets from the same real dataset are released

Q3
Would the amplification of the synthetic datasets improve the replicability of SDG results ? A naïve amplification whereby syn-
thetic data is larger than the real data will result in an inflation of statistical power, however, how will this amplification affect both 
replicability criteria with the application of combining rules ?

Q4 What are the differences in the performance of two of the more common SDG methods, sequential synthesis and generative adver-
sarial networks, with respect to the replicability of analysis results using the generated datasets ?

Our results addressing these questions can inform how well common SDG methods enable replication of 
analyses using synthetic data, and the overall evaluation approach can be used in future utility benchmarking 
studies.

Methods
We present the simulation design in the ADEMP format as recommended for simulation studies by Morris et al.31.

Aim
The aim of this simulation study was to evaluate the replicability of common statistical analyses performed 
on synthetic data, and answer the four questions in the introduction about various factors that may impact 
replicability.

Data generating mechanisms
Simulating a population
To perform the Monte Carlo simulations, we need to have a population of patients, which we then sample from. 
There are multiple approaches to simulating a population. One can define distributions of convenience (e.g., 
Gaussian) for a number of variables and sample from those, define a regression model with arbitrary effect 
sizes, and use the latter to generate outcome  variables50. This general approach produces a population that is not 
grounded in realistic health data, and typically treats the predictor variables as independent, which is an assump-
tion that is unlikely to be true in practice. We instead use an approach that is common in health data simulations, 
whereby we start from real datasets and then we sample with replacement to generate simulated  samples31,53.

Datasets
The three health datasets evaluated in this simulation study covered multiple conditions, jurisdictions, and data 
collection approaches, as summarized in Table 1. More details about these datasets are included in the supple-
mentary materials.

The first was the control arm from a colon cancer clinical trial (N0147 trial)54,55. The second dataset was the 
2014 Canadian Community Health Survey (CCHS), which is conducted by Statistics Canada and represents 
the population of Canada. The third dataset was a prospectively maintained Danish Colorectal Cancer Group 
(DCCG) database including all Danish patients with a first-time diagnosis of right-sided colonic cancer between 
2001 and  201856.

The analytic workload was logistic regression (LR). For each dataset a specific parameter was of interest and 
that was the focus of our simulations. More details on the parameter of interest and the LR model covariates for 
each dataset are provided in the supplementary materials.

According to a classification of odds ratio effect  sizes57, the effect sizes for the parameter of interest in N0147, 
CCHS, and DCCG are all small (defined as OR between 1.28 and 1.8) with the largest OR at 1.8 for the N0147 
dataset. This is slightly smaller than the median OR in epidemiological studies of 2.16. However, published studies 
tend to have effect sizes biased upwards compared to all analyses that are  conducted58,59. Therefore, the effect sizes 
we simulate are arguably quite close to the median ones in health research and representative of current research.

Dataset sample size
The sample size for the datasets used in the simulations was that deemed sufficient to achieve an 80% power 
for the LR parameter of interest using the true effect size, correlations, and event rate based on standard power 
 equations60,61. Because real data do not satisfy all of the assumptions, this calculated value was used as a floor. 
We then performed a Monte Carlo simulation with 1000 iterations using that calculated sample size as the start-
ing point to determine the empirical 80% power sample size, which was used in our studies. For example, if the 

Table 1.  The three datasets and their characteristics. a At 80% power. b For parameter of interest.

Dataset Population Sample  sizea Model Event rate True effect size (odds ratio)b

N0147 1,365,135 1420 Impact of bowel obstruction at presentation on 5 year 
survival 0.12 1.8

CCHS 35.44 m 903 Impact of sex on cardiovascular health 0.63 1.47

DCCG 30,000 2625 Impact of sex on medical complications after right colon 
resection surgery 0.16 1.58



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6978  | https://doi.org/10.1038/s41598-024-57207-7

www.nature.com/scientificreports/

calculated sample size using the power equations was 100 observations, we then sampled 1000 datasets from the 
population we created of 100 observations each and computed the empirical power. If that was below 80% then 
the simulation was re-run with 110 observations, and so on, incrementing the sample size until the 80% power 
was reached. The sample size that achieves 80% power is the one shown in Table 1.

Study design
We followed a fully factorial design with the following factors considered: generative model (two types of gen-
erative models), whether to adjust for multiple synthetic datasets (Y/N), number of synthetic datasets that are 
generated ( m , the number of datasets, varied from 1 to 20), and number of different data amplifications (4 levels). 
This provides 320 different scenarios for each of the three datasets considered.

Target of analysis
Analytic workload
We used LR models because they are common in health research for diagnostic and prognostic  modeling62. A 
recent systematic review has shown that LR performance is comparable to the use of machine learning models 
for clinical prediction  workloads63. Furthermore, an evaluation of the relative accuracy of LR models compared 
to other machine learning techniques, such as random forests and SVM, on synthetic versus real datasets across 
multiple types of SDG methods showed that LR models are only very slightly  different64. Therefore, evaluating 
LR model parameters would have broad applicability for health research.

Estimand
A different model was fit for each dataset. The specific estimand of interest is described below in the context of 
the LR model. For our analysis the Wald confidence interval was computed.

For the N0147 dataset, we evaluated the impact of bowel obstruction on 5 year survival as a binary  outcome65. 
The CCHS model we constructed evaluated cardiovascular health using the CANHEART  index66, which was 
dichotomized at the “poor” to “intermediate” health boundary, and the covariate of interest was  sex67. The DCCG 
model we constructed examines the relationship between sex and medical  complications68,69.

Adjustment using multiple imputation combining rules
Assume that we are estimating a particular model parameter of interest qi with variance vi using synthetic data-
set i where i = 1 … m. The adjustment for the model parameters and variances are as  follows35. The combined 
model parameter qm   is the mean across the m model parameters from the synthetic datasets qm = 1/m

∑

i qi  
, and vm is the mean variance across the m model parameters from the synthetic datasets vm = 1/m

∑

i vi . The 
adjusted variance is computed as Tf = vm(k/n+ 1/m) where k is the size of the synthetic dataset and n is the size 
of the real dataset, and the adjusted large sample 95% confidence interval of the model parameter is computed 
as qm ± 1.96 

√

Tf .
This means that as the value of k increases above n the adjusted variance will also increase. This will have an 

impact on inferential validity, and imposes a cost to data amplification through synthesis.
Note that even with a single synthetic dataset with no amplification, 1/m = 1 in the combining rules, there-

fore the parameter CI width is still increased by 
√
2 under the multiple imputation approach. This means that 

the CI for a model from a single synthetic dataset and from a single synthetic dataset with the combining rules 
applied are not the same.

Methods (generative models evaluated)
We used two types of generative models: a sequential synthesis model and a generative adversarial network 
(GAN). These two types of generative models are representative of those used in practice. Sequential synthesis 
using decision trees was one of the first machine learning approaches proposed in the  literature70,71 and has since 
been used extensively to synthesize health and social sciences  data35,71–78, and applied in research studies on 
synthetic  data48,71,79. More recently GANs have been one of the more used types of generative models in research 
and  practice80–82, and have been applied often for the synthesis of health  data37,44,46,83–85.

Overview of sequential synthesis
The first type of generative models was a sequential decision tree-based  synthesizer28. Each model in the sequence 
was trained using a gradient-boosted decision tree  algorithm86,87, with Bayesian optimization and fivefold cross-
validation for hyperparameter  tuning88. The variable sequence is optimized using a particle swarm  algorithm28.

The process of sequential synthesis is illustrated in Fig. 2 for a four-variable dataset: V1 to V4. In the fitting 
phase, three models are constructed: M1 to M3. As shown, the first model takes as input V1 and produces V2 as 
the outcome. The nature of the variables, whether categorical or continuous, does not affect the process, as the 
model adjusts to become either a classification tree or a regression tree accordingly. The second model in the 
sequence takes V1 and V2 as input with V3 as the outcome, and so on.

The synthesis step is initiated by sampling from the actual or fitted distribution of the first variable, V1. This 
creates the synthetic version of that variable sV1. Sampled values are then entered into the first model to generate 
the distribution of sV2. The synthetic value of sV2 is either sampled according to the predicted probabilities (for 
categorical variables) or smoothed using a kernel density estimator with boundary correction (for continuous 
variables)89, with bandwidth computed from the original data.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6978  | https://doi.org/10.1038/s41598-024-57207-7

www.nature.com/scientificreports/

Having generated two synthetic values, sV1 and sV2, these form the input for model M2 to produce the 
distribution of sV3. Again, the generated synthetic value is either sampled from that predicted distribution or 
smoothed. The process proceeds in that manner until all variables are synthesized.

Overview of GAN
The second type of generative model is  CTGAN90, which is a conditional GAN architecture.

In its basic form, a vanilla GAN consists of two multi-layer-perceptron neural networks, viz., a generator 
and a discriminator. The generator and the discriminator play a min–max game. The input to the generator is 
noise while its output is synthetic data. The discriminator has two inputs: the real training data and the synthetic 
data generated by the generator. The output of the discriminator indicates whether its input is real or synthetic. 
The generator is trained to ‘trick’ the discriminator by generating samples that look real. On the other hand, the 
discriminator is trained to maximize its discriminatory capability.

There are many variations of the vanilla GAN that are widely used for different applications. For instance, 
 Bourou91 provides a review of GANs used in tabular data synthesis. Conditional GAN was first introduced by 
 Mirza92. Of special interest is the CTGAN proposed by  Xu93. CTGAN was developed to tackle several challenges 
when modelling tabular data. Among these are the multimodal distributions of continuous variables and highly 
imbalanced categorical variables. CTGAN, solves the first problem by proposing a per-mode normalization 
technique. The second problem is solved by a conditional GAN where each category of a categorical variable 
serves as the condition passed to the GAN.

Performance measures
Replicability metrics
The performance measures that were used to evaluate replicability are summarized in Table 2 (to evaluate repli-
cability defined as the ability to draw the same conclusions as the analysis on the real  dataset94) and Table 3 (to 
evaluate replicability defined as the validity of population inferences from the synthetic  datasets31).

Privacy metric—membership disclosure
Privacy risks were computed using a membership disclosure  metric95. Membership disclosure evaluates the abil-
ity of an adversary to correctly determine if a target individual is in the original data that was used to train the 
generative model. The metric is a relative F1 score that evaluates the accuracy of such adversary attacks compared 
to a naïve attack which does not use the information in the synthetic data. Previous work has used a threshold 
of 0.2 to determine if the relative F1 score was low  enough67,94,95.

Membership disclosure was evaluated by pooling all of the m synthetic datasets. Although in practice we did 
not observe a difference in the membership disclosure risk between the m pooled datasets or when evaluating a 
single dataset. The results shown consider the m pooled datasets.

To compute the membership disclosure risk we need to have a measure of the population size. For the colon 
cancer dataset there were 1,365,135 people living with colorectal cancer in the US in  201896, which we set as our 
population size. For the CCHS dataset we used the population of Canada in 2014 since that was a population 

Figure 2.  Illustration of the sequential synthesis process for a four-variable dataset.
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survey. The prevalence of colon cancer in Denmark is approximately 30,00097. These values are summarized in 
Table 1.

Membership disclosure is different from identity disclosure (commonly referred to as re-identification risk), 
in that a dataset can have a low re-identification risk but still have a high membership disclosure risk. Although 
the original datasets that were used in this study were deemed to be de-identified already, it is still necessary to 
assess membership disclosure risk.

Number of simulations
The number of simulation iterations was set to 1000 for each simulated scenario. This is the most common value 
for the number of simulation iterations used in the medical statistics  literature31,98. This is also consistent with 
assuming a Monte Carlo standard error of 0.7% for a 95% CI coverage  evaluation31, which is a key performance 
parameter in our study.

We drew 1000 datasets with sample sizes shown in Table 1. These sample sizes give us 80% power to detect 
the desired effect for each LR model. A generative model was trained for each real data sample using sequential 
synthesis and CTGAN, which gave us 2000 generative models for each dataset. For each generative model 20 
synthetic datasets were generated and these were used in our analysis. LR models using m = 1 … 20 datasets 
were fitted, and their results combined, and the eight metrics described above computed for each m, as well as 
membership disclosure. When generating synthetic datasets, we also evaluated the impact of data amplification. 
We evaluated four levels of amplification: 1×, 2×, 5×, and 10×. The baseline for the amplification is the 80% power 
sample size in Table 1 (i.e., amplification is equal to k/n).

The failure rate during the simulations was highest with the DCCG dataset using the sequential synthesis 
method at 1.29% of the 1000 simulation runs. This could be due to the failure of the generative model or lack of 
convergence in the LR model. The failure rate for the sequential generative model with the N0147 was 0.03%, 
and for CTGAN with the N0147 dataset was 0.16%. For the other dataset—generative model combinations there 
were not failures. When failures occurred, they were treated as missing observations in the analysis.

Table 2.  The definitions of the metrics that were used to evaluate replicability defined as the ability to draw the 
same conclusions as the analysis on the real  data94.

Metric Interpretation

Decision agreement

A Boolean indicator of whether the same conclusion is drawn from the real and synthetic estimates. This 
means that the synthetic data estimates have the same direction and statistical significance as the real data. The 
decision agreement does not apply if the analysis is descriptive. This is consistent with previous measures of 
 replicability105–107, has been used to compare real world data analysis results against a clinical trial  reference108–112, 
and to assess the replicability of psychological  studies107. Decision agreement is computed as the proportion 
across all 1000 simulation runs. We would expect this to be equal to power, which is 80%108

Estimate agreement

A Boolean indicator of whether the estimate produced by the synthetic data is within the 95% CI produced by 
the real data. This requires that a synthetic data effect estimate be within the range of plausible values for the true 
effect based on evidence from the real data. This is consistent with previous measures of  replicability106,107,113, has 
been used to compare real world data analysis results against a clinical trial  reference108–112, and to assess the rep-
licability of psychological  studies107. Estimate agreement is computed as the proportion across all 1000 simulation 
runs. Under the assumption that the parameter variances are equal between the real and synthetic datasets, the 
expected estimate agreement is 83% under no  bias108

Standardized difference
A Boolean indicator of whether the difference in the parameter estimate is consistent with the null hypothesis of 
no  difference108. The Z value is computed and compared to the standard normal (|Z|< 1.96). The expected value is 
that this would be at least 95% across all 1000 simulation runs

CI overlap The proportion of the real and synthetic CIs  overlap24, which is a commonly used SDG utility metric. This is 
averaged across all 1000 simulation runs. We would want this to be as close to 100% as possible

Table 3.  The definitions of the metrics that were used to evaluate replicability defined as the validity of 
population inferences from the synthetic  datasets31.

Metric Interpretation

Bias The difference between the parameter estimate averaged across all the simulation runs and the true value in the 
population. We would want this to be as close to zero as possible

Bias-eliminated coverage The proportion of 95% confidence intervals that include the average parameter estimate across all simulation 
iterations. We would want this to be at 0.95

Power The proportion of simulation iterations where the parameter estimate is statistically significant. We would want 
this to be as close to 80%, or higher

EmpSE
The empirical standard deviation of the parameter estimate from the empirical average, averaged across all 
simulation runs. It is a measure of the precision of the parameter estimate across runs. We would want this to be 
as small as possible

Privacy The membership disclosure metric computed on the pooled datasets for that value of  m95. The acceptable 
threshold for this relative F1 score metric is 0.267,94,95
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Statistical testing
We do not perform statistical significance tests to compare the different metrics because in the context of a 
simulation these are not informative. The number of simulation runs can be increased to make very small effects 
statistically significant. Therefore, the results are presented descriptively which gives us the information we need 
to evaluate replicability and privacy.

Neutrality of simulation study
This simulation was intended to be a neutral comparison study so as not to favor any particular generative 
 model99. We argue that we meet two of the criteria for a neutral comparative study completely and meet the third 
one partially. First, the purpose of our study was to evaluate the replicability across common generative models 
rather than to evaluate a new proposed generative model. Both of the generative models included in our study 
have been used often in research and practice. Second, the evaluation criteria were selected based on the existing 
literature and we have tried to be more inclusive with respect to the selection of metrics. Therefore, there was 
a rational process to the choice of metrics. For the third criterion, while we are neutral with respect to the two 
methods included in our study in that we have evaluated them both  before25,94,95, we have also performed more 
research and applied work with the sequential synthesis  method9,28.

Ethics
The protocol for this study was approved by the Veritas IRB protocol number 2021-2882-7683-1, and the Chil-
dren’s Hospital of Eastern Ontario Research Institute research ethics board protocol number 23/23X. The use of 
the DCCG dataset was approved by the Danish Data Protection Agency (Datatilsynet) number RN-2018-94. This 
study was performed in accordance with relevant guidelines and regulations. All the datasets used were provided 
to the research team for secondary analysis and they were already deemed to be de-identified/anonymized. 
Therefore, the Children’s Hospital of Eastern Ontario Research Institute Research Ethics Board did not require 
additional consent from the data subjects for this study.

Results
We present the results for the N0147 dataset in the main body of the paper and summarize the findings for the 
other two datasets which are included in the supplementary materials. We generally found that the CTGAN 
replicability results were quite poor, and we include those results in the supplementary materials.

In the results we will refer to the findings for a single dataset without the application of the combining rules 
as “single”. When the parameter estimates and their CI values are adjusted using the combining rules in “Adjust-
ment using multiple imputation combining rules” we will refer to the results as “multiple”. Even for m = 1 , 
when the combining rules are applied the adjusted variance is Tf = 2vm with no amplification. This is different 
from the “single” variance ( v1 ) which would be just the computed value from the fitted model. Therefore, in the 
“multiple” case, even for one synthetic dataset, the parameter variance is adjusted upward to account for the 
generative process.

For multiple dataset results, the decision agreement results for the N0147 dataset are shown in Fig. 3, and are 
high (all above the 0.8 threshold) for all values of m , and decrease slightly as m increases. The estimate agreement 

Figure 3.  Decision and estimate agreement for the N0147 colon cancer dataset using the sequential synthesis 
method. The amplification value indicates the multiple of the sample size shown in Table 1 (1420).
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reaches a plateau at m = 5 and at that plateau is also above the 0.83 threshold. Standardized difference is shown 
in Fig. 4 along with CI overlap. Standardized difference is consistently above the 0.95 value, and the CI overlap 
results are also quite high (mostly above 0.8) and increase with higher values of m , reaching a plateau at m = 5 . 
These observations are consistent with the DCCG and CCHS datasets shown in the supplementary materials.

Data amplification affects the single dataset results for estimate agreement, and this is consistent with the 
pattern that for larger synthetic datasets the parameter estimate will converge to the true mean. CI overlap dete-
riorated for the single results with amplification. Decision agreement is not affected by amplification since the 
results were statistically significant and therefore narrower confidence intervals did not change that conclusion. 
Amplification did not have a material impact on the “multiple” results.

The N0147 and DCCG results using CTGAN provided in the supplementary materials are comparable to 
Figs. 3 and 4 with higher agreement, standardized difference, and CI overlap with higher values of m , reaching 
an acceptable plateau at m = 5 . The CCHS results with CTGAN are quite poor, with low estimate agreement 
and confidence interval overlap results.

The bias and power results across different values of m for the N0147 dataset are shown in Fig. 5 at different 
levels of amplification. The bias is consistently close to zero, and power is close to the nominal 80% level. Bias 
and power tend to plateau with higher values of m = 10 . Amplification does help increase power only slightly for 
the “multiple” datasets. As expected, “single” power increases with amplification because it is a simple increase 
in sample size without adjustment of the variance.

The bias eliminated coverage and empirical SE plots across different values of m for the N0147 dataset are 
shown in Fig. 6 at different levels of amplification. The coverage of the adjusted parameters is consistently close 
to the 95% nominal level. Empirical SE decreases towards zero and plateaus at higher values of m. This is not 
surprising since as m increases the average variance values move closer to the average across simulation runs—
the combined estimates become more consistent. Amplification does not change the general patterns observed. 
The coverage and empirical SE for the “single” results tend to be poor, with coverage far from the nominal 95% 
level, and empirical SE being quite high.

The results for the CCHS and DCCG datasets generated by sequential synthesis are very similar to the N0147 
ones for the population inference results. These results are included in the supplementary materials.

For CTGAN the findings, included in the supplementary materials, are different. Bias is high and power is 
quite poor for the N0147 and CCHS datasets. But CTGAN performs quite well on these metrics for the DCCG 
dataset. Similarly, coverage for N0147 and CCHS exceeds the nominal level, but is at the nominal level for the 
DCCG dataset. Empirical SE performs similarly across all datasets with a gradual convergence to zero as more 
replicates are generated. Amplification did not change these patterns for the adjusted datasets.

The membership disclosure results are shown in Table 4. The value does not vary by the number of synthetic 
datasets that are generated. This is because the risk reaches its maximum with one dataset, and the values in 
Table 4 reflect their average. The risk value is low (below the suggested 0.2 threshold in the literature) suggest-
ing that the privacy risks are acceptable for the synthetic data irrespective of the number of data replicates. The 
conclusions are similar for the CTGAN membership disclosure, also shown in the supplementary materials.

Figure 4.  Standardized difference and confidence interval overlap for the N0147 colon cancer dataset using the 
sequential synthesis method. The amplification value indicates the multiple of the sample size shown in Table 1 
(1420).
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Figure 5.  The bias and power for the N0147 colon cancer dataset using the sequential synthesis method. The 
amplification value indicates the multiple of the sample size shown in Table 1 (1420).

Figure 6.  The coverage and empirical SE for the N0147 colon cancer dataset using the sequential synthesis 
method. The amplification value indicates the multiple of the sample size shown in Table 1 (1420).
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Overall, for sequential synthesis, the “multiple” results are superior than the “single” results. In many cases 
the evaluative metrics plateau at approximately m = 10 . This is the case across all eight criteria that are used. For 
the privacy criterion there is no difference between “single” and “multiple” results.

Note that the Monte Carlo standard  error31 was also computed for the various evaluative metrics. This was 
negligibly low and would not be visible in the plots.

Discussion
Summary
In this study we evaluated the replicability of findings using fully synthetic datasets through a series of simula-
tions. Two sets of evaluative criteria were used to assess replicability: (a) the similarity of analysis findings to 
those from real data, and (b) the validity of population inferences. The simulations were based on three het-
erogeneous datasets covering multiple diseases, conditions, data collection modalities and jurisdictions. Two 
different, but commonly used, types of generative models were evaluated: a sequential synthesis approach using 
decision trees and a conditional generative adversarial network approach. The assumed analytical workload was 
logistic regression.

Generating multiple datasets using sequential synthesis and combining the parameter estimates provides for 
better replication of results than using a single synthetic dataset without any adjustments to the estimates and 
confidence intervals.

The results allow us to respond to the questions we posed at the outset of the study:

Q1
Applying combining rules from 10 synthetic datasets was sufficient to ensure good performance across all of our eight metrics for 
data generated using sequential synthesis. The replicability of results of single synthetic datasets without the use of any combining 
rule adjustments was generally poor, and can be misleading

Q2 Membership disclosure risk is consistently below the threshold across all generative models and is not materially affected by the 
value of m or by amplification

Q3 The generation of amplified datasets only had a marginal impact on replicability in general, and more importantly had a very 
marginal effect on statistical power when the combining rules were applied

Q4
The replicability of analyses when the synthetic data was generated using sequential synthesis was high, but for CTGAN replica-
bility was quite poor in some datasets, with decision and estimate agreement severely impacted, as well as power being far off the 
nominal value and high degrees of bias on some datasets. Therefore, the ability to replicate real data results from synthetic data 
will depend on the type of generative model being used

Our results indicate that sequential synthesis gave better replicability than CTGAN. These results are con-
sistent with previous comparative evidence on oncology data whereby a sequential synthesis generative model 
utilizing decision trees had better utility than a  GAN46,94. There are also implementation differences that may con-
tribute to sequential synthesis performing better. Our sequential synthesis implementation had a more complete 
process for handling missing data compared to the open source Synthetic Data Vault (SDV) implementation of 
CTGAN that we  used90,100. We observed that SDV generative models were not able to reproduce the missingness 
patterns in the synthetic data as well. Furthermore, the SDV implementation had limited hyperparameter tuning.

While GANs have been used extensively for  SDG80,81, there is evidence that performance can vary significantly 
across different GAN  architectures101. This dependence on the type of generative model, even within the same 
class, suggests that the kind of evaluation we presented here should be conducted for each type of generative 
model when applied in practice.

Application in practice
Our results indicate that generating a single dataset and performing analysis on that without any adjustments 
to model parameters and standard errors can result in low replicability. Analytic conclusions should be drawn 
from models fitted on ten synthetic datasets and their parameters combined to ensure replicability of analyses.

This does not necessarily mean that generative models should be provided to data users to allow them to 
generate multiple datasets themselves. In general, machine learning (ML) models are known to be susceptible 
to adversarial attacks that can reveal sensitive information about the individuals in the training  datasets102,103. 
Therefore, it has been argued that sharing ML models may lead to different types of disclosure risks, making 
(unprotected) ML models equivalent to personally identifiable  information104. Hence, there may be additional 
privacy risk from sharing generative models. Instead, we propose that data custodians should share ten instances 
of synthetic datasets rather than single synthetic datasets to ensure the replicability of findings.

There is equivocal value to amplification of synthetic data for statistical analyses. Because of the relatively 
low computational burden of amplification, a 5× (or even 10×) amplification for the ten generated datasets can 

Table 4.  Averaged membership disclosure values for the three datasets using the sequential synthesis 
generative model.

Membership disclosure

N0147 0.0035

DCCG 0.08045

CCHS 0.00547
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marginally improve replicability, although one can make the counterargument that the additional complexity of 
handling larger datasets would not provide a meaningful return in terms of replicability.

Our methodology can also serve as a general framework for evaluating and comparing the replicability of 
synthetic datasets. Replicability is only one dimension of the utility of synthetic datasets and generative models, 
but an important one.

Limitations
Our analytic workload was logistic regression models. This type of analysis is one of the most common in health 
research and therefore the results should still have broad  applicability62. However, other types statistical models 
should be evaluated in future work.

Our study was focused on evaluating the replicability using fully synthetic datasets. We did not consider 
partially synthetic datasets nor hybrid synthetic datasets, which may produce a different set of recommenda-
tions. We also did not consider other utility metrics, such as the fidelity of the synthetic data. Arguably, fidelity 
is mostly relevant if it enables  replicability25, and therefore having a framework for assessing replicability is a 
necessary condition for assessing utility in general.

We did not examine the impact of generating multiple synthetic datasets on the results of machine learning 
models and prognostic model prediction accuracy on unseen cases. We limited our investigations to the com-
monly used logistic regression models and parameter inferences only.

Our results are limited by the characteristics of the datasets that were used. While there was heterogeneity in 
these datasets in terms of type, jurisdiction, and context, additional evaluations using our replicability framework 
would be of value.

Data availability
The materials from this work have been deposited in OSF at (https:// doi. org/ 10. 17605/ OSF. IO/ VSKU2). The 
N0147 dataset can be requested from Project Data Sphere. Access to the master CCHS dataset can be requested 
from Statistics Canada, however, a public use file from Statistics Canada for this dataset has been deposited in the 
OSF repository for this project to enable reproducibility. The DCCG dataset can be requested from the Danish 
Colon Cancer Registry. The Python and R code used in the analysis and visualizations have been deposited in 
the OSF repository, as well as the interim results used for the plots of the results. The original protocol and one 
amendment that were submitted to the research ethics board for this study are also included in the OSF reposi-
tory. These protocols follow the format required by the research ethics board at the CHEO Research Institute 
that reviewed the study.
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