
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6640  | https://doi.org/10.1038/s41598-024-57198-5

www.nature.com/scientificreports

Optimizing ensemble U‑Net 
architectures for robust 
coronary vessel segmentation 
in angiographic images
Shih‑Sheng Chang 1,5,8, Ching‑Ting Lin 2,8, Wei‑Chun Wang 3,4,7, Kai‑Cheng Hsu 2,3,4,5, 
Ya‑Lun Wu 2, Chia‑Hao Liu 1 & Yang C. Fann 6*

Automated coronary angiography assessment requires precise vessel segmentation, a task 
complicated by uneven contrast filling and background noise. Our research introduces an ensemble 
U-Net model, SE-RegUNet, designed to accurately segment coronary vessels using 100 labeled 
angiographies from angiographic images. SE-RegUNet incorporates RegNet encoders and squeeze-
and-excitation blocks to enhance feature extraction. A dual-phase image preprocessing strategy 
further improves the model’s performance, employing unsharp masking and contrast-limited 
adaptive histogram equalization. Following fivefold cross-validation and Ranger21 optimization, 
the SE-RegUNet 4GF model emerged as the most effective, evidenced by performance metrics such 
as a Dice score of 0.72 and an accuracy of 0.97. Its potential for real-world application is highlighted 
by its ability to process images at 41.6 frames per second. External validation on the DCA1 dataset 
demonstrated the model’s consistent robustness, achieving a Dice score of 0.76 and an accuracy of 
0.97. The SE-RegUNet 4GF model’s precision in segmenting blood vessels in coronary angiographies 
showcases its remarkable efficiency and accuracy. However, further development and clinical testing 
are necessary before it can be routinely implemented in medical practice.

Coronary Artery Disease (CAD), the leading cause of cardiovascular death worldwide, is responsible for almost 
7 million fatalities annually1. Coronary angiography remains the gold standard for diagnosing the presence and 
severity of coronary artery diseases, guiding revascularization strategies. The findings from coronary angiography 
also have prognostic implications for long-term outcomes2. Patients eligible for invasive coronary angiography, 
presenting with significant stenosis (> 70%) in a major vessel or stenosis > 50% alongside a fractional flow reserve 
(FFR) below 0.8, should undergo evaluation for revascularization therapy. In deciding between percutaneous 
coronary intervention (PCI) and coronary artery bypass graft (CABG), a thorough evaluation of vascular lesion 
severity and associated surgical risks is essential3.

However, accurately interpreting coronary angiography requires extensive training and can be subjective 
due to challenges like multiple viewing angles, dynamic images, overlapping structures, and uneven contrast 
enhancement. These factors contribute to inconsistency and inefficiency in current medical practices4. Earlier 
studies with semi-automated methods often required extensive manual corrections from cardiologists or trained 
experts5, which makes it not widely adopted in routine clinical use. Additionally, the common practice among 
hospitals of documenting important vascular lesions through textual summaries would further intensify the dif-
ficulties of analyzing the angiographic characteristics6. As a result, if detailed information about coronary artery 
lesions is needed for analysis, it often means revisiting and reexamining the angiograms to locate the necessary 
information. Therefore, fast and better interpretation approaches are needed to objectively extract detailed 
anatomy and pathology from complex angiographic data to assist with the clinical assessment of CAD patients.
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Automatic segmentation of coronary vessels is often considered the starting point for automated angiography 
analysis. Extracting vasculature from coronary angiography can be a complex process, which makes obtaining 
accurate vessel anatomy critical for detecting abnormal segments and measuring stenosis. While recent advances 
in employing machine learning algorithms have shown promise in assisting diagnosis for various medical imag-
ing modalities7, developing consistent and accurate algorithms for coronary angiography interpretation remains 
challenging8,9. Utilizing deep learning models such as U-Net for medical image segmentation has shown great 
potential; however, applying these techniques to coronary angiography poses unique challenges, especially in 
real-world clinical applications, Table 1. Recent deep learning architectures still show insufficient performance 
in images with small vessels, severe vascular stenosis, or poor image quality10–14. Occasionally, the preprocess-
ing of images may result in the loss of detail or distortion15. Moreover, the lack of uniform evaluation criteria 
across studies hinders direct comparison of performance metrics. Variability also exists in the definition of areas 
of interest within vessel masks; while the majority of studies encompass the three coronary artery trees, others 
concentrate exclusively on the major coronary arteries, or evaluate a single coronary artery in isolation10,16. Such 
discrepancies add to the challenge of comparing results across different studies.

We hereby present SE-RegUNet, an advanced architecture meticulously crafted for precise coronary seg-
mentation. To improve image quality in noisy and low-contrast angiographic images, we have also introduced a 
novel two-step preprocessing technique that has been optimized for this purpose. The SE-RegUNet architecture 
innovatively incorporates squeeze-and-excitation (SE) blocks to improve feature learning, along with RegNet 
encoders to achieve a harmonious balance between accuracy and computational efficiency. To assess the practical 
applicability, we evaluated our model’s efficiency and performed inference using publicly available angiogram 
datasets to verify its generalizability. Additionally, for a clearer understanding of how our architecture compares 
with the state-of-the-art models, we used uniform standards for assessment, complemented by external valida-
tion using publicly available datasets. Our goal is to advance medical diagnostic technologies by developing a 
coronary segmentation tool that combines high accuracy, broad applicability, and clinical efficiency, through 
improved model architecture and optimized image preprocessing.

Materials and methods
Study approval and data source
This study was approved by the Research Ethics Committee of China Medical University and Hospital in Taiwan 
(Document Number 1-REC1-92). All methods employed in this study were conducted strictly with relevant 
guidelines and regulations. We confirm that, based on the nature of our retrospective research and the anonymi-
zation of patient data, obtaining informed consent from subjects and/or their legal guardian(s) was deemed 
unnecessary by the Institutional Review Board (IRB) of China Medical University Hospital. The data source 
was coronary angiography performed at China Medical University Hospital (CMUH), a tertiary medical center 
in Taiwan, according to the clinical indications between 2021 and 2022. Of the 3793 consecutive angiographies 
selected, 1015 patients underwent PCI.

Table 1.   Comparative analysis of coronary artery segmentation algorithms: performance, limitations, and 
dataset size. ACC​ accuracy, DICE dice coefficient, MPA mean pixel accuracy, F1 F1 score, TV-TRPCA total 
variation-tensor robust principal component analysis, TSRG two-stage region growing, BAB bio-inspired 
attention block, MIB multi-scale interactive block, DSA digital subtraction angiography.

References No. of angiograms Algorithm Results Limits

Cervantes-Sanchez et al.30 130 Multiscale ANN ACC: 0.97
DICE: 0.69

High computational demand; difficulties near major 
vessels

Yang et al.10 3302 U-Net with Advanced CNN Encoders F1: 0.94 Limited to single and major coronary arteries; issues 
with LCA and stenotic regions

Li et al.11 538 CAU-net ACC: 0.99
DICE: 0.90

Requires DSA images; suboptimal performance on 
small vessels

Shi et al.37 4000 UENet: U-Net generator with multi-scale discriminator MPA: 0.84 Requires binary images for input

Zhou et al.16 102 U-Net F1: 0.89 Focuses only on RCA and main coronary arteries; 
problematic at bifurcations

Iyer et al.12 462 AngioNet: Deeplab v3+ with APN ACC: 0.98
DICE: 0.86

Tends to overestimate vessel boundaries in severe 
stenosis; issues with sharp diameter changes

Algarni et al.13 130 Attention-based nested U-net ACC: 0.97
DICE: 0.92 Difficulties with small vessels and lower-quality images

Menezes et al.14,34 416 EfficientUNet ++  ACC: 0.99
DICE: 0.95

Struggles with catheter discrimination, poor image 
quality, and severe stenosis

Roy et al.35 28 U-Net ACC: 0.98 Limited by a small dataset; concerns over broad 
applicability

Meng et al.17 616 U-Net 3+ DICE: 0.89

Shen et al.36 70 DBCU-Net: U-Net combining DenseNet and bi-
directional ConvLSTM

ACC: 0.99
F1: 0.88 Small dataset size; questions regarding generalizability

Fu et al.15 217 TV-TRPCA, TSRG F1: 0.93 Filtering process may reduce precision

Zhang et al.38 1000 CIDN: U-Net, introducing BAB and MIB ACC: 0.98
F1: 0.87
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Study dataset
As indicated in Table S2, previous research utilizing the U-Net framework has shown that a dataset of 600 
angiogram videos can yield satisfactory training outcomes12,14,17. Typically, the first 6–10 videos from a cardiac 
catheterization are diagnostic angiographies. Therefore, we have decided to compile our dataset from 100 cardiac 
catheterization procedures, expecting to gather between 600 to 1000 angiography videos in total. In this study, 
we randomly collected 50 consecutive cases from two distinct groups in our database. The first group consisted 
of individuals with normal or mildly diseased coronary arteries, while the second group comprised individu-
als with severe coronary artery diseases who had undergone PCI. In total, we selected 100 cases to form our 
study cohort. Patients with a history of CABG were excluded from our selection. Only diagnostic angiograms 
were utilized for the development of our model. To establish ground truth for our models, three cardiologists 
independently selected a key frame image with optimal vessel opacification for each patient and created masks 
delineating coronary vasculature by consensus. We then used an open-access segmentation tool, MedSeg (https://​
www.​medseg.​ai/), to manually trace the vessels to produce ground truth masks. To develop a general segmenta-
tion model, all coronary arteries were labeled as one class. A total of 619 images of coronary angiography were 
labeled for this study.

Model development
We developed an automated analysis pipeline containing image preprocessing, classification, and segmentation 
models, as depicted in Fig. 1. As the first step, the raw angiography underwent image preprocessing to normal-
ize contrast and enhance the vessel silhouette. Next, a classifier categorized each image as either a left or right 
coronary artery based on the main visible vessels. Once the left coronary artery (LCA) or right coronary artery 
(RCA) was determined, the corresponding segmentation model was applied to extract the coronary vasculature 
in that image.

Model training
We divided the dataset into training/validation and test sets to enable robust model development, optimization, 
and evaluation. The training/validation data, 80% of total images (510 angiography), was split into five equal 
folds for cross-validation. Each fold was iteratively held out for model validation, while the other four were 
used for training. This allowed for optimizing hyperparameters and assessing performance across different data 
combinations. After completing the cross-validation, we utilized the independent test set, comprising 20% of 
the total images (109 angiography images), which had been held out from the initial dataset division, to test the 
model. This final step aimed to provide an unbiased estimate of the model’s performance on new, unseen data, 
further validating its generalizability and effectiveness in real-world scenarios. All experiments utilized high-
performance computing platforms containing Intel® Xeon Platinum 8186 processors and Nvidia V100 Graphic 

Figure 1.   The flow diagram of the whole study design includes image preprocessing, a classification model, and 
a segmentation model. LCA, left coronary artery; RCA, right coronary artery.

https://www.medseg.ai/
https://www.medseg.ai/
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Processing Units (GPUs) with 32 GB RAM to facilitate and ensure efficient training, cross-validation, and testing 
of the deep learning models on the angiography dataset.

Image pre‑processing
We utilized an optimized preprocessing pipeline to normalize contrast and enhance coronary vessels on the 
raw angiography before input to the model. The pipeline combined two well-established techniques—unsharp 
masking (USM) and contrast-limited adaptive histogram equalization (CLAHE). USM, introduced by Malin 
in 1977, sharpens images by subtracting a Gaussian blurred version from the original image and merging the 
result. This enhances high-frequency details and edges18. CLAHE, developed by Zuiderveld19, adapts histogram 
equalization to local image tiles to boost contrast while limiting noise amplification. It was demonstrated that 
USM can significantly improve the perceived sharpness of an image by fusing with the first-order differen-
tial image and the second-order differential image, which makes the objects’ edges appear more distinct and 
pronounced. CLAHE, on the other hand, is a variant of adaptive histogram equalization used to improve the 
contrast and visibility of details in digital images. CLAHE can help maintain detailed visibility and enhance the 
overall visual quality of the image while avoiding the noise and artifacts that can occur with standard histogram 
equalization. Both approaches were widely utilized in medical imaging for enhancing feature visibility20–23. Our 
pipeline applied USM followed by two CLAHE filters with tuned parameters. The resulting three images were 
merged into a 3-channel RGB image to be fed into the classification and segmentation models. Figure 2 shows 
this tailored preprocessing pipeline effectively extracted coronary vessels from the low-contrast angiography.

Coronary vessel segmentation model
This study introduced a novel SE-RegUNet model explicitly designed for efficient and accurate vessel segmenta-
tion. Ronneberger et al. introduced the U-Net architecture, which has become a popular segmentation model. 
U-net was built on the fully convolutional network, replacing pooling operators with upsampling operators in the 
decoder step. This increased the output resolution to match the input image, significantly improving biomedical 
image processing24. RegNet was later introduced by Facebook AI Research. This flexible convolutional network 
outperformed EfficientNet models with lower top-1 error rates and up to fivefold inferencing speed using GPUs 
while having similar floating-point operations per second (FLOPS)25. We replaced the encoder part of U-Net with 
this efficient and flexible RegNet backbone to enhance our model’s feature extraction capability. SE-RegUNet is a 
fusion of U-Net and RegNet, leveraging the strengths of both architectures. In addition, we introduced squeeze 
and excitement blocks in the decoder layer to adjust channel-wise feature responses by considering the inter-
dependencies between channels in the model optimization process, focusing on relevant features, and reducing 
noise26. This unique design allows our model to adapt better to complex vessel structures. The structural diagram 
of the entire model and parts of the decoding layer are illustrated in Fig. 3. We developed two versions of models, 
SE-RegUNetz 4.0GF and SE-RegUNety 16GF models, for vascular segmentation.

Figure 2.   Comparison of coronary angiography images before (a–d) and after (a′–d′) image preprocessing 
steps. The application of USM + CLAHE visibly enhances the image quality, sharpening the edges and 
boundaries of the vessel for more precise analysis. USM, unsharp masking; CLAHE, contrast-limited adaptive 
histogram equalization.
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The angiogram was meticulously annotated to differentiate between coronary artery vessels and non-vascular 
areas. A softmax function was added to the final layer of the segmentation model, which converts the raw scores 
into a probability distribution over the classes. The output values were between 0 and 1 and sum up to 1, mak-
ing it easy to interpret as class probabilities. We adjusted the parameters of RegNet to match Meta® Research’s 
GitHub repository “Classy Vision”27. During the training steps, we used 200 epochs with eight images per batch 
and a resolution of 512 × 512 pixels. Furthermore, to address the class imbalance, we employed a weighted focal 
loss (FL) during training to achieve better performance for the vessel segmentation task. This was formulated 
as shown:

where WCE means weighted cross entropy. The values for α and γ were set at 0.8 and 2, and the weight of model 
loss in the vessel class was set at 20, respectively. We utilized Ranger21, a new optimizer developed by Wright et al. 
that combined AdamW with eight other components for model optimization28, with the learning rate set to 0.001.

For model comparisons, we used our data to train and benchmark other published state-of-the-art models for 
the same coronary arteries segmentation tasks, including AngioNet (angiographic processing network and Deep-
Labv3+ with Xception backbone)12, UNet3+17, UNet++ with EfficientNet-B5 backbone14, and Reg-SA-UNet++29.

(1)FL = − α(1−WCE)γ ∗ log (WCE)

Figure 3.   (a) The flow diagram of the SE-RegUNet model for coronary artery segmentation, comprising 
encoders and decoders linked by skip connections and incorporating self-attention modules to refine feature 
representations; (b) Illustration of the architectural composition of the decode layer. The decode layer consists 
of two 2D convolution layers with batch normalization and ReLU activation, forming the U-Net block. We 
enhance features by adding a squeeze and excitement block to the output.
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External validation
The UMAE T1-León Cardiology Department at the Mexican Social Security Institute has shared their DCA1 
Dataset. This dataset includes 134 X-ray coronary angiography accurately labeled with segmentation ground 
truth by experienced cardiologists. Based on the dataset, Cervantes-Sanchez et al.30 were able to achieve an 
accuracy score of 0.9698 with a Dice coefficient of 0.6857 by employing a multilayer perceptron network and 
several preprocessing methods including Gaussian matched filters and Gabor filters. We used this database as 
our external validation dataset to compare our model performance to other state-of-the-art models. All the 
comparison models tested in this study were trained from scratch to ensure that the pre-trained weight with 
optimized parameters did not affect the model performance. To prevent overfitting in a limited dataset, the 
training process for this section was capped at 100 epochs.

Evaluation metrics
We employed several key metrics in our model evaluation, including sensitivity (recall) (S1), specificity (S2), 
accuracy (S3), and precision (S4)31. When evaluating the segmentation model, we utilized the Sørensen-Dice 
coefficient, also known as the Dice score, a commonly used statistical tool, computed using a formula:

This formula compares the ground truth (X) against the prediction generated by the segmentation model 
(Y), which is presented as a probability map ranging from 0 to 1. LCA and RCA classification performance was 
measured using Area Under the Receiver Operating Characteristic Curve (AUC)32 and accuracy (S3) as metrics.

Results
Table 2 displays the baseline characteristics of the 100 patients employed in this study. The average age of the 
cohort is 65.2 years, with the majority being male (69%). The data also reveals a high prevalence of cardiovascular 
risk factors, such as diabetes (38%), hypertension (63%), and chronic kidney disease (23%).

Table S1 compares different models’ computational demands and complexities based on their number of 
parameters, FLOPs, model size and training memory used. The SE-RegUNety 16GF model showed significantly 
more parameters (196.3 million) than the other models, while AngioNet was found to be the most efficient with 
11.0G FLOPs. Among the different versions of U-Net models, the SE-RegUNetz 4GF exhibited the most well-
rounded performance with moderate parameters (30.6 million) and FLOPs (28.0). Compared to similar model 
architectures, the SE-RegUNetz 4GF demands less memory than most of these models, hinting at its suitability 
for training on a smaller GPU. Based on the complexity and inference speed of the model employed, we selected 
the RegNetz 4GF-based U-Net model, denoted as “SE-RegUNet 4GF,” as our primary model from the two RegNet 
model structures we introduced.

LCA and RCA classification serves as the foundation for automatic coronary angiography assessment. In this 
task, 80% of the images were used for training and validation, with the remaining 20% reserved for testing. This 
classification model achieved an AUC score of 1.000 and 99.08% accuracy in determining whether the coronary 
artery is LCA or RCA.

Table 3 summarizes the segmentation performance and efficiency of the different models tested. The SE-
RegUNet 4GF model achieved the best overall Dice score (0.7217) and accuracy (0.9721) while maintaining a 
high efficiency with a frame per second (FPS) of 41.6. In contrast, SE-RegUNet 16GF had top specificity (0.9907) 
but lower FPS due to its large model architecture. Figure 4 visually compares the ground truth masks (in blue) 
and segmentation results (in red) from each model for both left and right coronary arteries. The SE-RegUNet 
4GF model showed great qualitative results overall.

To demonstrate the real-world clinical application of our developed models, we implemented an interac-
tive web-based tool using the HuggingFace platform (https://​huggi​ngface.​co/​spaces/​KurtL​in/​Coron​aryAn​gioSe​
gment) (Fig. S2). This prototype application enabled users to upload a coronary angiographic image and obtain 
vessel segmentations from our best-performed model, potentially assisting physicians in artery visualization and 
analysis during their clinical assessment. However, extensive clinical validation is still required before clinical 

(2)Dice =
2∗|X ∩ Y |

|X| + |Y |

Table 2.   Descriptive characteristics of the dataset used for model development. BMI, body mass index; LVEF, 
left ventricular ejection fraction.

N ± SD or N (%)

Age (y/o) 65.2 ± 13.5

Sex Male: 69 (69)
Female: 31 (31)

BMI 25.2 ± 4.2

Diabetes mellitus 38 (38)

Hypertension 63 (63)

Chronic kidney disease 23 (23)

Acute myocardial infarction 5 (5)

LVEF (%) 54.2 ± 11.7

https://huggingface.co/spaces/KurtLin/CoronaryAngioSegment
https://huggingface.co/spaces/KurtLin/CoronaryAngioSegment
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Table 3.   Evaluation of model segmentation performance and efficiency. FPS frame per second, SD standard 
deviation. *FPS data was collected using a single NVIDIA V100 GPU. +The models that were developed in our 
study.

Model (Backbone) Dice score (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD) Precision (SD) FPS* (SD)

AngioNet (Xception) 0.6273 (0.0946) 0.9560 (0.0110) 0.7518 (0.0936) 0.9684 (0.0109) 0.5615 (0.1345) 60.8259 (2.4769)

UNet3+ 0.6353 (0.1153) 0.9606 (0.0131) 0.6996 (0.1456) 0.9759 (0.0125) 0.6217 (0.1418) 13.1622 (0.2059)

UNet++ (EfficientNet-B5) 0.7090 (0.0770) 0.9707 (0.0103) 0.7116 (0.1134) 0.9863 (0.0069) 0.7370 (0.1208) 24.5961 (1.3603)

Reg-SA-UNet++ (RegNetz 
4GF) 0.6822 (0.0992) 0.9682 (0.0121) 0.6878 (0.1360) 0.9849 (0.0103) 0.7170 (0.1307) 28.8096 (2.0621)

SE-RegUNety 16GF (RegNety 
16GF)+ 0.7034 (0.1006) 0.9722 (0.0112) 0.6585 (0.1383) 0.9907 (0.0049) 0.7905 (0.1075) 25.0908 (1.0991)

SE-RegUNetz 4GF (RegNetz 
4GF)+ 0.7217 (0.0773) 0.9721 (0.0096) 0.7240 (0.1137) 0.9869 (0.0062) 0.7477 (0.1141) 41.6606 (2.6358)

Figure 4.   Comparison of ground truth (blue mask) and the segmentation results of each selected model (red 
mask) for the right coronary artery (top portion) and the left coronary artery (bottom portion).
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implementation. On average, our SE-RegUNet 4GF model took around 2 s to generate masks for an image with 
a 512 × 512 pixels resolution. This was achieved using only two vCPUs and 16 GB of RAM.

We further evaluated another integrating the angiographic processing network (APN) from AngioNet as an 
additional preprocessing step. APN applies adaptive filtering before segmentation, unlike our static pipeline of 
USM and CLAHE. Table 4 shows that adding APN before our model improved sensitivity, resulting in fewer 
false negatives. However, this also led to a lower overall Dice score than USM + CLAHE.

When validated on the independent DCA1 dataset, SE-RegUNet 4GF again achieved the highest Dice coef-
ficient (0.76) and sensitivity (0.78) among all models tested, as shown in Table 5. However, the AngioNet model 
showed lower performance on external data, with the lowest Dice score (0.66) and sensitivity (0.61). UNet3+ 
and Reg-SA-Unet++ achieved similar overall Dice scores of around 0.75, while UNet++ scored 0.74. All tested 
models showed a minor decrease in Dice score and sensitivity compared to internal cross-validation, as often 
observed when validating the new dataset.

Discussion
This study clearly demonstrated a novel deep-learning approach of SE-RegUNet architecture for the automatic 
segmentation of coronary arteries in angiography, which achieved top performance with a Dice score of 0.7217 
and an accuracy of 0.9721 on the test dataset. A key contribution of this study was integrating RegNet encoders 
and squeeze-and-excitation blocks to boost segmentation accuracy while maintaining high efficiency. Another 
important novelty was our optimized image preprocessing pipeline combining USM and CLAHE to extract and 
enhance vessel structures from noisy, low-contrast angiography.

A deep learning model’s total number of parameters could affect its complexity, capacity, and learning ability. 
In general, models with more parameters have higher representational power as they can capture the hidden 
patterns and relationships in the dataset. However, more parameters could cause the model to overfit easily 
and have a slower infer speed. In our dataset, the SE-RegUNet 16GF model achieved the highest Dice score, 
accuracy, specificity, and precision in the test dataset. However, the model had the second lowest infer speed 
due to its complex model structure. AngioNet, which combined APN with Xception-backboned DeepLabv3+, 
can analyze 60 images per second but has the lowest Dice score and sensitivity. Overall, SE-RegUNet 4GF was 
the most balanced model in our study, with the second-highest Dice score, accuracy, sensitivity, specificity, and 
precision evaluated in the testing set. External validation on the DCA1 Dataset also showed similar results, in 
which SE-RegUNet 4GF scored the highest Dice score and sensitivity. In this case, SE-RegUNet 16GF showed 
lower performance than SE-RegUNet 4GF, possibly due to the smaller external sample size, which is only one-
fifth of the CMUH dataset. The model with more parameters will easily overfit with a small dataset since the 
model only learns the specific patterns in the training data and thus may not perform well in the external vali-
dation dataset. For potential real-world applications in the cath lab, we also try to add a function to detect the 
best keyframe for evaluating the segmentation model of coronary arteries. After testing in the CMUH dataset, 
the keyframe determination task had a mean absolute error (MAE) of 6.5 frames (0.433 s), as shown in Fig. S3, 
comparable to the results reported by other researchers16,33. We will include this step in our pipeline as part of 
our upcoming functionality.

To address the challenges encountered in previous studies, where models demonstrated diminished perfor-
mance in scenarios of poor image quality or when the contrast between vessels and background was low13,14, 
we incorporated two image preprocessing steps in addition to customizing our model. This research conducted 

Table 4.   Comparison of segmentation performance with different image preprocessing techniques for 
coronary angiography. APN angiographic processing network, USM unsharp masking, CLAHE contrast-
limited adaptive histogram equalization, SD standard deviation.

Model (Backbone) Preprocessing Dice score (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD) Precision (SD)

SE-RegUNet (RegNetz 
4GF)

APN 0.6489 (0.1067) 0.9640 (0.0098) 0.8493 (0.0691) 0.9698 (0.0091) 0.5431 (0.1366)

USM + CLAHE 0.7217 (0.0773) 0.9721 (0.0096) 0.7240 (0.1137) 0.9869 (0.0062) 0.7477 (0.1141)

USM + CLAHE + APN 0.7297 (0.0793) 0.9718 (0.0096) 0.7597 (0.0969) 0.9846 (0.0074) 0.7267 (0.1254)

Table 5.   Comparison of segmentation performance of models validated on the DCA1 dataset. *The models 
that were developed in our study.

Model (Backbone) Dice score Accuracy Sensitivity Specificity Precision

AngioNet (Xception) 0.6624 0.9676 0.6121 0.9891 0.7751

UNet3+ 0.7187 0.9712 0.7169 0.9862 0.7728

UNet++ (EfficientNet-B5) 0.7420 0.9723 0.7484 0.9851 0.7523

Reg-SA-UNet++ (RegNetz 4GF) 0.7595 0.9731 0.7764 0.9850 0.7537

SE-RegUNet 16GF* (RegNety 16GF) 0.7557 0.9730 0.7718 0.9853 0.7582

SE-RegUNet 4GF* (RegNetz 4GF) 0.7621 0.9730 0.7821 0.9849 0.7537
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a comparative analysis between our approach and the Adaptive Preprocessing Normalization (APN), which 
has been reported to exhibit commendable performance12. The results indicated that the APN approach had 
a higher sensitivity compared to our solution, which involved two steps of USM and CLAHE. However, our 
method achieved a better overall Dice score. The combination of APN and USM + CLAHE yielded only minor 
improvements in Dice and sensitivity, while significantly reducing efficiency. Using adaptive techniques like APN 
can improve specific metrics, however, our optimized static preprocessing pipeline still provides competitive 
coronary vessel segmentation performance with high efficiency.

The accuracy of the automatic vessel segmentation task in coronary angiography has been extensively studied. 
For example, Iyer et al.18 introduced AngioNet, which combined a self-designed APN preprocessing method 
with Deeplabv3+ and improved Dice scores from 0.812 to 0.864. Meng et al.17 achieved a Dice score of 0.8942 
using U-Net 3+ with full-scaled skip connections and deep supervisions. Menezes et al.34 used U-Net++ with 
EfficientNet B5 backbone, obtaining a Dice score of 0.8904 with the original dataset, and after data augmentation 
and fine-tuning, the score increased to 0.9134. However, different evaluating metrics and vessel mask principles 
were used in these studies, making it difficult to compare the achieved results among varied models. Moreover, 
some of the research relies on small training data sets and does not provide performance results on external data 
sets16,35,36, raising concerns about the models’ ability to generalize. Therefore, in this research, we re-trained all 
the comparison models with our CMUH study Dataset and validated them on an independent DCA1 Dataset. 
The proposed SE-RegUNet 4GF achieved the highest Dice score and accuracy on the CMUH dataset. When 
validated on independent DCA1 data, SE-RegUNet 4GF again showed the highest Dice and sensitivity and high 
accuracy. Our model’s ability to maintain consistent segmentation performance, regardless of the data source, 
indicated its overall generalizability. While all the tested models showed slightly reduced performance metrics 
when validated on external data, our tailored approach still maintained good accuracy.

Limitations
Our study has inherent challenges in using deep-learning models to segment coronary arteries from angiogra-
phy. First, when filled with contrast medium, the catheters connected to the left main (LM) artery or RCA have 
characteristics similar to those of the adjacent coronary vessels, making it difficult for the segmentation model 
to classify them accurately. Even when the catheter mask was removed during training steps, the model still mis-
classified some parts of the catheter as a vessel, as shown in Fig. S4. Identifying the ostial section of the coronary 
arteries (such as LM and ostial RCA) from the catheter can be challenging. In this case, categorizing catheters 
as a distinct class during model training could help differentiate them from vessels. Second, we chose to exclude 
patients who have undergone CABG surgery. This is due to the complexity of the vasculatures and the need to 
pan the exam table to cover the entire course of the graft vessels. This could potentially limit the generalizability 
of the models. However, this could be addressed by studying videos or selecting multiple key images in the future 
studies. Third, if the ribs overlay directly on the vessel, it can cause a contrast difference, which may result in the 
model’s prediction showing a fractured mask near the border. Finally, despite cardiologists agreeing on labeling 
methods, some minor discrepancies remain in their labeling details. For example, some cardiologists labeled 
all blood vessels, while others only labeled the clinically significant arteries. To address this, prior discussions 
on labeling methods should have taken place to minimize these variations. Another limitation of this study was 
that the models were developed solely based on a dataset gathered from a solitary medical facility. The data set 
comprised only 100 patients and was collected using a single X-ray machine within a year. As a result, the find-
ings may not apply to other hospital settings. However, we did use an external dataset from a different country 
for validation. It helped to ensure that our model’s performance was still acceptable in other hospital settings. 
Nevertheless, we plan to conduct further external validations before considering them for real-world clinical use.

Future works
Although the current model for vessel segmentation exhibits high accuracy and efficiency, additional features 
are necessary to develop a comprehensive automated assistant for coronary angiography in clinical settings. The 
next step should be to expand the platform to classify stenosis severity and make it an integrated cardiovascular 
risk assessment and treatment recommendation tool. It is vital to validate the system across diverse patient 
populations in different hospital settings and imaging equipment to evaluate its real-world performance. The 
design must be seamlessly integrated into routine clinical workflows and meet regulatory requirements before 
it can be widely adopted as the new standard of care.

Conclusion
The SE-RegUNet 4GF model shows excellent potential in helping physicians efficiently and accurately detect 
coronary artery disease by segmenting coronary angiography. However, further refinements to the model opti-
mization with extensive clinical validations are needed before it can be integrated into regular clinical practices.

Data availability
The dataset used in this study, obtained from China Medical University Hospital, is currently unavailable due to 
privacy concerns. However, we utilized the DCA1 dataset for external validation, which can be accessed through 
the link provided by the author at http://​perso​nal.​cimat.​mx:​8181/​~ivan.​cruz/​DB_​Angio​grams.​html. If interested, 
the code can be made available by the corresponding author upon request.
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