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Physics‑assisted machine learning 
for THz time‑domain spectroscopy: 
sensing leaf wetness
Milan Koumans 1, Daan Meulendijks 1, Haiko Middeljans 1, Djero Peeters 1, Jacob C. Douma 2 & 
Dook van Mechelen 1*

Signal processing techniques are of vital importance to bring THz spectroscopy to a maturity level to 
reach practical applications. In this work, we illustrate the use of machine learning techniques for THz 
time‑domain spectroscopy assisted by domain knowledge based on light–matter interactions. We 
aim at the potential agriculture application to determine the amount of free water on plant leaves, 
so‑called leaf wetness. This quantity is important for understanding and predicting plant diseases that 
need leaf wetness for disease development. The overall transmission of 12,000 distinct water droplet 
patterns on a plastized leaf was experimentally acquired using THz time‑domain spectroscopy. We 
report on key insights of applying decision trees and convolutional neural networks to the data using 
physics‑motivated choices. Eventually, we discuss the generalizability of these models to determine 
leaf wetness after testing them on cases with increasing deviations from the training set.

The quest to implement societally and industrially relevant applications of THz technology is impeded by aspects 
such as costs and performance as compared to alternatives. Despite the wide range of exploratory studies of 
THz technology since the late 1980s, and the numerous suggested  applications1, very few products exist that 
use THz-based techniques. Often demonstrators underperform compared to a cheaper alternative that already 
exists or that is conveniently adapted to a new application. However, since THz technology is rather new on the 
market, costs will remain high at least for a while. The only promising way out is to find a novel application for 
the technology, which it can almost uniquely serve, and for which the business case is strong enough to support 
the high  costs2. In this case, its overall performance needs to justify its usage. On the hardware side, technological 
maturity has strongly improved over the last decades, although the progress at an integrated level is  lagging3. On 
the software side, despite crucial advancements such as model-based analysis that is now widely  employed4, the 
limitations are generality, robustness, and speed, which are essential for realistic application cases.

The agriculture sector is an area where a multitude of sensing technologies are employed to aid management 
decisions. Certainly due to this reason, there is a vivid interest in searching for applications in this field where 
THz spectroscopy can make a  difference5. Globally, pests and pathogens are a big threat to crop production, 
with yield losses reported in the range of 9–21%6. For some pathogens, such as water molds and some fungi, 
the presence or absence of free water on the surface of leaves, so-called leaf wetness, is key for infection and/or 
sporulation and is therefore an important parameter in disease epidemiology. A famous example is Phytophthora 
infestans, the causal agent of late blight, responsible for the Irish Potato Famine in the mid-19th century. The 
development of P. infestans depends on the presence of leaf wetness and the surrounding  temperature7,8. In ideal 
circumstances, P. infestans can decimate a potato crop in less than 10 days. Control of late blight, as well as that of 
other pests and pathogens, is nowadays mostly done using crop protection  products9. There is, however, a strong 
push from policymakers to reduce this. Early detection and improved predictions of when and where diseases 
may be expected can help targeted (preventive) measures. Instead of directly detecting the molds, which in the 
field are difficult to observe, predicting leaf wetness during the growth season is an important input for decision 
support systems to advise on spraying crop protection products.

Terahertz spectroscopy is particularly suited to accurately sense little amounts of water and is proven to 
probe leaf  properties10–14. The current state-of-the-art uses electrical measurements to infer upon leaf wetness. 
They are, however, not directly performed on a plant leaf and lack  interpretability15. Other technologies that 
can sense water, such as visible imaging, will have difficulties estimating very small amounts of water due to a 
lack of contrast. The infrared range, on the other hand, contains several strong water absorptions bands, but 
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its frequency domain operation will make it difficult to distinguish between surface water and water contained 
inside a leaf, and its shorter wavelength also causes more local sensing.

Model-based signal processing, e.g., based on the transfer matrix method, can be powerful in well-behaved 
conditions, such as paint layer inspection in an automotive paint shop and wafer metrology in a  cleanroom16, 
it will not describe well the complex situation at hand of an anisotropic and curved plant leaf in a crop canopy 
exposed to weather conditions. Signal processing using a data-based learning method could be the solution in 
this case. Many other studies have used machine learning on THz spectroscopic  data17–20. However, most of 
these studies suffer from a lack of transparency of the used method such that the quality of the result is unclear 
in aspects of generality and reproducibility.

Here, we report on the application of machine learning models to THz time-domain data in order to deter-
mine leaf wetness, defined as the weight of a pattern of water droplets at the surface of a plant leaf. We explore 
two distinct methods, decision trees and convolutional neural networks, and design the models based on our 
physics-based interpretation of the data. Both methods accurately predict leaf wetness, independent of the 
droplet pattern. We obtain an accuracy of about 4% when training and testing on an acquired data set of about 
10,600 distinct droplet patterns. In order to explore the performance of our method on closely related data, we 
test their generality by inferring onto a second acquired data set of about 1500 droplet patterns where the leaf 
material was flipped in the beam path. The majorly reduced predictability of 40–50% indicates the sensitivity of 
the models to learning less relevant features. As a solution, we suggest the use of physics-informed algorithms, 
where a model-based constraint may increase the correlation with the target variable.

The paper is structured as follows: “Results”  section first discusses the acquired data sets with a physics-based 
interpretation, and subsequently sets forth a didactic approach of applying decision trees and convolutional 
neural networks to these time-domain data and give particular emphasis to feature engineering. The general-
ity of the said models is evaluated in “Discussion” section, where we have designed three validation cases with 
increasing deviations of the test set as compared the training set. Although from a light–matter-perspective these 
changes are minor, for the used machine learning algorithms they turn out to be significant. We eventually list 
challenges that the proposed sensing method will face prior to integration as a demonstrator in a crop canopy.

Results
The transmitted electric field E(t) of water droplet patterns on plasticized plant leaves has been experimentally 
recorded in transmission geometry at THz frequencies (0.1–3 THz) in the time-domain for about 12,000 distinct 
patterns as described in “Methods” (Fig. 1a,b). We like to highlight the size of this experimental data set, which 
is minimally required for meaningful training and testing using machine learning algorithms. The data set is 
divided into set E (t) for which the droplet patterns are deposited on the top side of the leaf sample, and set E ′(t) 
for which the patterns are on the bottom side of the leaf sample. For the first data set, E (t) , Fig. 1c shows the 
distribution of the total sample weight G, being the sum of the weight of the plasticized leaf and the leaf wetness 
weight g, whereas Fig. 1d displays the distribution of only g. Both gravimetric weights G and g are determined 
with a scale (see “Methods”). Although a more homogeneous distribution would have been preferred for the 
latter, the deposition technique and vertical mount of the leaf sample (see “Methods”) favor small droplets above 
large ones that run down above a given level of g. Fig. 2a shows a given measurement series Er(t) ∈ E (t) for 
selected values of g, which visually drastically changes with g. Besides, each E(t) ∈ Er(t) is also related to a given 
leaf wetness pattern with its droplet size distribution. Therefore, spectra E(t) with identical value g may mutually 
differ. The standard deviation σ(t) of Er(t) demonstrates that the influence of water on E(t) is predominantly 
present in the range (4, 5) ps, related to a single passage of THz radiation through the droplet pattern and leaf 
sample (Fig. 2b). However, maybe of more importance for sensing water is the range of E(t) where the radiation 
internally reflects within the water droplets. From simulating E(t) using a transfer matrix model, we find that the 
first internal reflection inside droplets shows up in E(t) as a shoulder right after the largest positive peak, that is, 
around 5.5 ps. This can be better visualized through the quantity ξ = E(t)/max(E(t))− E0(t)/max(E0(t)) with 
E0 referring to a leaf sample with g = 0 (see Fig. 2c). When plotting ξ for the entire data set E (t) as a function 
of g (Fig. 2d), this effect shows up a fork for low g around 5.5 ps. The ray trajectory in the droplet-plastic-leaf-
plastic system is, however, sufficiently complex that more subtle features in E(t) cannot be uniquely attributed 
to a specific radiation path. To obtain an accurate prediction of the leaf wetness g, we employ two different data-
driven methods, decision tree regression and convolutional neural networks. For each algorithm, we determine 
the mean absolute error and median percentage difference, defined as the median of |gp − g |/(g + ǫ) with the 
predicted leaf wetness weight gp and small ǫ for stability when g ≈ 0.

Decision trees
The above-described problem to predict gp from the experimental input matrix E (t) is equivalent to determining 
a function f for which holds that f : E (t) → g . We have ascertained that the relation between distinct features 
of E (t) , as discussed below, and the target variable g is not linear. To evaluate this problem, we choose a decision 
tree method which is proven to work with non-linear mappings f for mid-sized data sets such as that of E (t) . A 
decision tree is a supervised machine learning method that is shaped as a flowchart in which iterative decisions 
lead to a piece-wise approximation of the target variable (see Fig. 3a for a single class and two features x1 and x2 ). 
We refer to “Methods” for further details. As common for machine learning algorithms, decision trees fit on fea-
tures that are reminiscent of the data. Many reports employing machine learning methods on THz time-domain 
data either first convert to the frequency domain, thereby losing crucial spatial information, or simply use all data 
of the time trace E(t)18,19,21. However, points within E(t) are time-correlated and when directly used as features, 
the correlation may hamper determination of the independent effect of each feature on the target variable. For 
this reason, and in order to make the computation resource efficient, feature engineering was used to extract the 
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most reminiscent features from E(t), which are not temporally correlated. We hereto fit a polynomial function 
of degree n to relevant temporal ranges of E(t) (Fig. 3b), as further detailed in “Methods”. n is chosen as small as 
possible, but large enough to capture reminiscent features of E(t) to best predict g. Although visually the fit may 
not seem optimal, for the algorithm it is. Besides the coefficients of the polynomial terms, also the beginning of 
the time window tstart is added as a feature as well as the absolute air humidity a, which has a strong influence 
on E(t). Optimization for the displayed range in Fig. 3b leads to n = 11 as described in “Methods”. The feature 
vector thus reads [ t0 , t1 , ..., t11 , tstart , a], where t0 is the bias term and will be further indicated like that. Among 
these features there can be, however, ones that are mutually correlated and ones that are only a little related to 
the target variable. We use recurrent feature elimination to reduce the dimensionality of the feature matrix and 
enhance the performance of the model, as further detailed in “Methods”. Eventually, hyperparameters responsible 
for the regularization of the final ensemble model are determined using 5-fold cross-validation on a training set 
consisting of 85 % of data set E (t).

The predictive performance of a bagged decision tree as described here and further detailed in the meth-
ods was evaluated on an unseen test set consisting of 15 % of data set E (t) and is shown in Fig. 5a. The mean 
absolute error on gp is 0.35+0.17

−0.1  mg and the median percentage difference is 3.4+1.5
−1 % . The mean inference time 

is 139 ms ( σ = 22 ms) per sample using the hardware as mentioned in “Methods”. The indicated error bars are 
motivated in “Discussion” .

Convolutional neural network
An artificial neural network is a convenient tool to autonomously discover intricate patterns and representations 
of signals. The simplest neural network predicts an output variable yi given input data Xtrain and known target 
variable ytrain as in linear regression by learning a mapping function f : Xtrain → ytrain . The architecture of 
such a neural network consists of an input layer with input data xi ∈ Xtrain and an output layer with output data 
yi . The real strength of a neural network is, however, to find patterns and representations in high-dimensional 
input data. Hereto, cross-correlations between the inputs are learned using so-called perceptrons (artificial 
neurons) that output a latent variable h depending on input xi . Subsequently, an activation function, for instance 
ϕ(h) = max(0, h) , is applied to h. This has the effect that only neuron output of sufficient importance is fed deeper 
into the network and correlated to the output of neurons in the subsequent layer. In this way, the network can 
learn non-linear relationships beyond the simple perceptron model. In case the input can be represented as an 
image, patterns are more effectively learned by using a so-called convolutional neural network (CNN). In such 

Figure 1.  (a) Experimental setup showing a plasticized leaf on a scale in a THz time-domain transmission 
configuration. (b) Selected images from a measurement series showing the formation of a droplet pattern with 
leaf wetness weight g = 2.5 , 12.5 and 22.5 mg, respectively. The THz beam size is comparable to the size of the 
droplet pattern. (c) Distribution of the total weight G for data set E (t) . (d) Distribution of the leaf wetness 
weight g for data set E (t).
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Figure 2.  (a) Experimentally determined E(t) ∈ Er(t) for selected values of g at ambient conditions (see 
“Methods”). (b) Standard deviation σ(t) of Er(t) . (c) ξ = E(t)/max(E(t))− E0(t)/max(E0(t)) with E0(t) the 
transmission for g = 0 . This quantity provides detailed insight into temporal ranges of large variation. (d) ξ vs. 
g. The inset highlights the temporal shift around 5 ps as a function of g.

Figure 3.  (a) Schematic view of the mechanism of a decision tree. The dots represent data containing features x1 
and x2 , and the black lines show the division of the parameter space according to split criteria D s with s = 1.4 . 
The predicted value of each section is the average of the benchmark values in the corresponding division. (b) 
Experimentally determined E(t) for selected values of g (circles) together with polynomial fits with n = 11 (solid 
lines).
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a network a small kernel matrix is scanned over the image matrix to learn local relations between data points. 
For pictures, these kernel matrices can represent lines and circles, but also more complicated patterns, which are 
learned by the network. In addition, the method also works for correlated 1-dimensional signals.

The aim here is to construct a CNN, train it on the experimentally acquired time-domain data E (t) , and 
compare its performance to predict g to prediction using decision trees as discussed in the previous section. For 
the few studies where THz time-domain data is used for CNNs, rarely the full functional E(t) is used despite its 
spectral richness and possibility to effectively augment the number of samples as mentioned in “Discussion”20,22,23. 
A typical CNN consists of many layers which can be grouped into a feature extraction part and a regression part. 
The feature extraction part consists of multiple convolutional layers ℓ that utilize kernel operations to convolve 
over the input vector, which enables the detection of pertinent features in signal E(t). Early layers reveal the local 
context of signal E(t), whereas deeper layers combine activations of different temporal regions to extract the 
global context of signal E(t). The patterns of the kernels are determined through backpropagation as described 
in “Methods”. For each layer, the number of distinct kernels k, also called filters, has been empirically chosen as 
a function of the size of E(t), the complexity of detected patterns in E(t), and the condition to keep the network 
size as small as possible. Hence, to capture basic patterns, layer ℓ = 1 of our CNN has four filters, each of dimen-
sion (1× 3) applied to each E(t) of dimension (1× 760) (see Fig. 4m). This results in a feature map of dimension 
(1× 760× 4) . Fig. 4a,g displays the activation of E(t) for g = 4 and 15 mg, respectively, that is, the average of the 
four filters projected onto t. Similar to model-based signal processing of E(t)24, CNN shows the largest activa-
tion in the range around the absolute minimum of E(t) and hence demonstrates the local character of this first 
layer. Batch normalization has been applied after each convolutional layer, which normalizes the features during 
forward propagation. This ensures activation throughout a deep network and results in improved convergence 
while it simultaneously works as a  regularizer25. A so-called max-pooling layer is inserted behind each normali-
zation layer to reduce the network size by downsampling the resulting feature maps. Conceptually, this layer 
structure increases the receptive field of each neuron. ℓ should be chosen such that the receptive field of neurons 
in the last layer covers the complete input signal E(t). In our case, we empirically evaluated that ℓ = 6 . We can 
verify the feature extraction performance of this architecture by inspecting the activations for two cases of g = 4 
and 15 mg (see Fig. 4a–l). With increasing ℓ , the activation loses its local character and spreads throughout the 
entire temporal range. The concomitant widening and increasing height of the block functions is the effect of 
the max-pooling operations, where every iteration halves the time window and eliminates the smallest values. 
The activation shows that for earlier layers, the range (4, 5) ps is of main importance for the network. This is 
in agreement with the earlier observation that the largest amplitude of E(t) varies most with g (cf. Fig. 2a), and 
as such is the most basic pattern of E(t). Interestingly, for ℓ = 3, 4 and 5, the activations show increased values 
also in the range (5, 7) ps. As mentioned before, for g < 7 mg first internal reflections within the droplets occur 
around 5.5 ps. In addition, from modeling E(t) using the transfer matrix method, we find that the first internal 
reflection within the leaf material, although strongly damped, occurs around 7 ps. It thus turns out that these 
regions, which have an increased importance from a light–matter perspective, are likewise important for a CNN. 

Figure 4.  Activation of E(t) per convolutional layer ℓ for (a–f) g = 4 mg and (g–l) g = 15 mg averaged over 
all feature maps (panels (a,g) correspond to ℓ = 1 , and so forth). (m) Architecture of the convolutional neural 
network, indicating the output dimensions for each layer. The dimensions after each max-pooling layer are given 
as 1× dℓ × kℓ where dℓ is the length of layer ℓ and kℓ the number of filters of layer ℓ.
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Moreover, the increased activity in other regions makes our CNN sensitive to details of E(t) that can contain 
aspects that are difficult to incorporate into a physical model.

After feature extraction, regression is performed by a fully connected artificial neural network. Hereto, all 
previous activation layers are flattened to a 1D vector consisting of a concatenation of the 64 1× 11 activations 
as well as the absolute humidity a. The fully connected network consisting of two layers subsequently learns the 
nonlinear relation between determined input features and the target variable by minimizing its loss function 
given by the squared error |g − gp|

2 , with |g| = |gp| = |E (t)| , using gradient descent optimization.
The CNN is trained on E (t) for 300 epochs with a batch size of 128 using a train-test ratio of 85:15, where 

an epoch is a single iteration for which the complete training set has been (forward and backward) propagated 
through the network. During training, a validation set of 10% of the training set is used to validate the perfor-
mance after each epoch. Figure 5b graphically shows the performance of the model, having a mean absolute 
error of 0.38+0.17

−0.1  mg and a median percentage difference of 4.1+1.5
−1 % . The mean inference time is 70 ms ( σ = 9 

ms) per sample using the hardware as mentioned in “Methods”.

Discussion
The presented results demonstrate that using two very different data-driven approaches, leaf wetness can be 
determined using THz spectroscopy within a confidence interval of about 3–4%, independent of the method. 
This is well beyond the performance of model-based analysis to determine leaf wetness using THz  spectroscopy24. 
Upon comparison to methodologies reported for the closely related property of leaf water  content12,13,26, we 
estimate that our study, with its large data set and comprehensible approach, gives a realistic view of the chances 
of performing quality control on plants.

Although most studies on machine learning conclude at this point, we are here interested in the generaliz-
ability of the models. Therefore, we consider the following further test cases. For case I, we use 37 out of the 39 
measurement series of dataset E (t) , train the learning methods according to the same procedure as described, 
and test on the two remaining series Er1,r2 . Both methods underperform as compared to the results shown in 
Fig. 5, with decision trees having a median percentage difference of 8.8% and CNN 6.7% (see Fig. 6a,c). The 
question thus poses about the origin of this decreased performance. The shape of E(t) is both determined by g 
and the droplet patterns, as mentioned before. However, the temporal range (4, 5) ps with the largest amplitudes 
is of leading importance for predicting g, and mint ξ(t) ≈ 5 ps manifests a monotonous variation with g (see 
the inset of Fig. 2d), independent of the droplet patterns, both suggesting that g predominantly determines E(t). 
Yet, the values of g of the test set are a subset of the range of g on which the models are trained. The effect of 
droplet patterns on E(t), on the other hand, is more subtle and beyond the range of the largest amplitudes, as 
discussed before. We conjecture that the test set contains droplet patterns, rather than different values of g, that 
are unseen to both methods. The relative underperformance of decision trees is then probably directly linked 
to its mechanism for which a slight variation in E(t), here due to a different pattern, alters the polynomial fits 
and thus features on which it has been trained. CNN on the other hand directly learns regions in E(t) which 
are of relevance for learning g for all trained droplet patterns. Case II considers E (t) as well as an additional 
1501 time traces E(t), referred to as E ′(t) /∈ E (t) , for which the droplet pattern is created on the bottom side 
of the leaf sample. Instead of shining on the smooth and reflective top surface as for E (t) , for E ′(t) the beam 
now enters the leaf through the dull and rough bottom surface, thereby significantly changing E(t) (see inset of 
Fig. 6). Please note that the droplet pattern is always on the emitter side. The methods are trained on a subset 
of E (t) ∪ E

′(t) and tested on an unseen subset of the same data set. Figure 6b,d shows a similar performance 
in predicting gp as when considering only E (t) (cf. Fig. 5), also indicated by the median percentage difference 
of 4.4% for decision trees and 3.8% for CNN. This indicates that the models can extract relevant features within 
E(t) no matter the underlying leaf material. In case III, we train the models on E (t) and test them on the unseen 

Figure 5.  Predicted leaf wetness weight gp using (a) bagged decision trees and (b) a convolutional neural 
network, both versus the benchmark leaf wetness weight g. The insets display the distribution of the absolute 
error of gp for both models.
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data set E ′(t) . This would correspond to the practical situation where the method has learned based on droplet 
patterns on leaves which physically are not the same as those on which the model is inferred. The performance 
of the methods is rather lousy (Fig. 6e,g), as indicated by the median percentage difference of 39 % for decision 
trees and 50% for CNN. Figure 6f,h displays the absolute deviation � = g − gp grouped according to the five 
measurement series of E ′(t) as a function of the number of acquisition i. Each series starts at low i with g = 0 
after which both i and g increase concomitantly. It turns out that � is small at low g and deviates with increasing 
g. Signatures of droplet patterns with small droplets are thus overall well recognized by the models, despite the 
unseen patterns of E(t) due to the flipped leaf. We conjecture that this sensitivity may be related to the presence 
of reminiscent features of E(t) for g < 7 mg, due to internal reflections inside the droplets and leaf material (see 
“Results” ), on which the network can train. These three test cases indicate that the learning model needs input 
training data that are quite close to the data set from which will be inferred. Although it is promising that g is 
well predicted from data corresponding to droplet patterns that have not been seen before, unseen variations of 
the leaf material cause changes in E(t) to which the methods are not robust. This could be resolved by training 
the models on data that besides a large variation of g and droplet patterns also include a large diversity of leaves.

The confidence and related error bars of each machine learning model also depend on specific parameters that 
are chosen within the architecture and implementation. For decision trees, for instance, we made use of domain 
knowledge to select four temporal regions within E(t). However, a different choice of the temporal intervals will 
alter the optimal polynomial order n, modify the feature vector, and thus the performance of the method. For 
the convolutional neural network, the specific network architecture expressed by variables such as the number 
of layers, filters, and the number of epochs significantly varies the performance of the network. For the current 
data set, the quoted performance due to the described variations has an estimated error bar of the order of around 
1.5% . However, also the data set size is an important parameter. Whereas for decision trees 9018 time traces with 
11 features each gives a significant data set of 105 features to train on, for CNNs the final feature size is more dif-
ficult to estimate. Although all temporal points of E (t) with size (9018, 760) are used as input, feature extraction 
leads to much fewer features than the number of elements of this matrix. By visual inspection of the activations 
(see Fig. 4a–l), we estimate that each E(t) provides some 102 patterns reminiscent of g, summed over all feature 
maps. On the other hand, for each E(t) many patterns together are needed for an accurate prediction of g, which 
reduces the feature space from the number estimated before. To clarify this point we draw the analogy with hav-
ing a picture of a cat, where a cat is defined by its eyes, ears, tail, fur, etc. Having only one of these features will 
not lead to an accurate prediction of the picture showing a cat. We therefore estimate that the total data size on 
which the CNN trains should be also of the order of 105 , which is on the low side of what is common for CNNs.

The performance of the studied method is also determined by the experimental setup. The nebulized water 
does not always entirely end up in the area covered by the THz beam, thereby contributing to the measured 
gravimetric weight that is not seen by the THz beam. We expect that these errors are the cause of the horizontal 
lines in Fig. 2d. Additionally, the accuracy of the gravimetric measurements of g is rather low, mostly due to 

Figure 6.  gp vs. g using (a,b,e) bagged decision trees and (c,d,g) CNN, for three test cases. For each case, the 
test data set is mentioned in the figure title. Case I tests generalizability towards unseen droplet patterns using 
two unseen measurement series Er(t) ∈ E (t) . Case II tests generalizability towards droplet patterns on top and 
below a leaf sample using the enlarged data set E (t) ∪ E

′(t) . Case III tests generalizability towards droplet 
patterns on an unseen leaf surface by training on E (t) and testing on E ′(t) ). The inset displays E(t) and E′(t) , 
both at g = 0 , indicating the difference in the transmitted electric field between irradiating a leaf from the top 
side and the bottom side, respectively. � = g − gp for the 5 data sets (indicated by the color scheme) of E ′(t) 
vs. the number of acquisitions i for (f) bagged decision trees and (h) CNN.
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natural air convection and air streams caused by the nebulizers. However, the leaf cannot be placed in an enclosed 
box, as then the relative humidity gets spatial and temporal fluctuations with drastic consequences on E(t). We 
estimate the absolute error on g between 0.1 and 0.2 mg.

Although these results indicate that our data-driven approaches provide a performant model to determine 
leaf wetness in a lab setting, the real baptism of fire for the methodology should be a test in the application 
environment. A first change would be to determine leaf wetness of water nebulized onto a leaf, instead of onto 
a plastic sheet attached to the leaf. As the analyses are merely sensitive to the influence of the droplet pattern to 
E(t), we estimate that as long as droplets are formed on the leaf, the performance of the used algorithms is largely 
comparable. A leaf wetness sensor for the agriculture sector would need to continuously sense leaf wetness during 
the growth season on a representative size of the crop canopy. A reflection geometry would be preferred over a 
transmission one, and instead of a single leaf, many leaves will need to be probed simultaneously. In addition, 
leaves will not be clean and flat but occur with a large distribution of appearances. Moreover, the air can be 
highly humid or contain rain, and dust, and the beam path may be (temporally) disturbed by passing insects. We 
estimate that despite the reported performance of the algorithms presented in this work, this real setting, which 
may vary depending on the canopy, will be challenging for the described methods. A solution may be found in 
adding model-based constraints to data-driven learning algorithms, which may increase correlation to the target 
variable rather than to less relevant variations within the data, as explored in physics-informed neural  networks27.

Conclusions
We have studied the application of conventional machine learning methods to THz time-domain data to deter-
mine leaf wetness. Hereto, we experimentally acquired a large data set of 12,000 distinct time domain traces 
E(t) corresponding to a distribution of droplet patterns on plant leaves. Using domain knowledge related to the 
light-matter interaction, we designed and trained a decision tree model and a convolutional neural network and 
gave special attention to feature extraction. Both models predict leaf wetness with an accuracy of about 4%. The 
generalizability of the methods was evaluated on unseen datasets with increasing deviations from the training 
set. We observe a similarity between features important for CNN and those having a physical interpretation. In 
conclusion, conventional machine learning models can be of additional value when compared to model-based 
signal processing, especially in case the sample configuration is complex and well beyond a multilayer structure, 
although the sensitivity upon input data is an obstacle for practical application.

Methods
Samples
The plant material used in this work is Alliaria petiolata, also known as garlic mustard. The plant is widely spread 
in the Netherlands, in the wild, and in private gardens. The plant has been grown in the open ground, and leaves 
are harvested in May to June. Of the selected leaf, a circle of 30 mm diameter is cut and immediately embedded 
in between two plastic sheets each 0.08 mm thick to prevent it from fast drying out. The plastic sheets have not 
been sealed at their edges. During the measurement campaign, the leaf naturally dried out on the order of 18% 
(that is, about 11 mg) in 5 days. This range of relative leaf water content corresponds to variations due to well-
watered vs. severe-drought growth conditions.

Experimental setup
The optical properties of a moistened plant leaf have been obtained by performing THz time-domain trans-
mission spectroscopy (Toptica Teraflash Pro). The sample has been put out-of-focus such that the THz beam 
covers the surface area on which water is nebulized. Water droplet patterns on the plasticized leaf sample have 
been created by using two nebulizers (Medisana, Inhalator IN 500). The nebulizers are equipped with specially 
designed nozzles and are symmetrically positioned in the plane of incidence and facing the sample (see Fig. 1a). 
The nebulizers are filled with distilled water and have been switched on at random to create a wide range of 
different droplet patterns. The gravimetric leaf wetness weight g of the moist sample is recorded simultane-
ously with the THz data. Hereto, the plasticized leaf sample was mounted on a dedicated holder attached to a 
precision scale (Sartorius WZA224-L). In addition, an RGB picture is taken from each droplet pattern using an 
optical camera (Logitech Brio 4K). Simultaneously, also the absolute air humidity a has been recorded. During 
the entire measurement campaign, which lasted 7 days, the temperature was 25.0  ± 0.3 ◦ C, and the relative 
humidity was 42± 6%.

Training and inference of the described models are performed using python libraries Sklearn (for Decision 
trees), TensorFlow (for CNN) on a CPU (Intel i7-7700HQ @ 2.8 GHz), using 4/4 cores and multi-threading 
enabled.

Data acquisition
Using the experimental setup described above, the transmitted electric field E(t) has experimentally been deter-
mined of a plasticized leaf sample that has been moistened. A measurement sequence is divided into separate 
time slots: 0.5 s for nebulization, 1.0 s waiting time where the nebulization cloud deposits itself onto the sample 
and diffuses away from the beam path, and 1.5 s for acquiring 50 averages of E(t), recording g and a, and obtain-
ing an RGB picture of the droplet pattern. A measurement series starts with a dry plasticized leaf sample, i.e. 
g = 0 , and ends when a first droplet runs down the sample. For a subsequent measurement series, the sample 
is first wiped dry, and remoistened.

The THz beam shines onto the upper side of the leaf for data contained in E (t) , whereas it shines onto the 
bottom side of the leaf for data within E ′(t) . In both cases, the droplet pattern is directed towards the emitter 
side. E (t) contains a total of 10,609 different droplet patterns organized in |r| = 39 measurement series Er(t) , 
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which all together are acquired within 5 days. E ′(t) contains 1501 patterns recorded in |s| = 5 measurement 
series E′

s(t) acquired within 2 days. Each E(t) contains 760 data points and spans a delay of 38 ps.

Data processing
Decision trees
Decisions within regression trees use quantitative split criteria such as the absolute error (L1-norm) or squared 
error (L2-norm) to determine the best split at a decision point D (see Fig. 3a). A single decision tree is deter-
ministic in its prediction, making it prone to overfitting. To overcome this shortcoming, an ensemble of simpli-
fied trees is used. Each simplified tree independently predicts the target value, after which the predictions are 
averaged. This reduces the variance of the model while maintaining the predictive power of the decision trees. 
Simplifying the trees by limiting the seen input data is called bagging and is a well-proven method that is capable 
of learning nonlinear relations between input features and the target variable. Due to the simplistic nature of 
decision trees, inference is interpretative and most importantly, ensemble modeling leads to improved robust-
ness compared to single estimators.

Feature extraction is performed by fitting a polynomial function of order n to a selected temporal range m of 
E(t). As E(t) has a high temporal variation, and to keep n low for optimal performance of the method, we choose 
several ranges to capture all relevant patterns of E(t). The standard deviation σ of Er(t) is enhanced in the range 
(4, 22) ps (see Fig. 2b) which we split into m = 4 equal temporal regions (4, 7); (7, 10); (15.5, 18.5) and (18.5, 
21.5) ps. As E(t) for g = 0 , E0(t) , manifests a slight temporal shift due to factors such as leaf water content, air 
humidity, and drift, the onset of all measured traces E(t) occurs at a slightly different value of t. To correct for 
this, the onset of region m = 1 is determined by the slope d/dt of E(t)/max(E(t)) . Hereto, E(t) has been inter-
polated to enhance the temporal precision. Determination of the order n of each range has been done using a 
grid search algorithm, which is a brute-force search of a predefined set of options. Hereto, we calculate the L2 
loss of the validation set after training on n ∈ [0, 20] . For the four different temporal regions of interest we obtain 
optimal polynomial fits with order n1 = 11, n2 = 2, n3 = 4 , and n4 = 8 , respectively. Subsequently, we eliminate 
recursive features from the input features using permutation importance as a ranking  criterion28. By shuffling 
a feature column in the input matrix, the correlation between the feature and target value is evaluated. As such, 
features with little correlation to the target value are iteratively eliminated, as well as features that are correlated 
to others that already show dependence on the target value. This reduces the number of input features and in 
turn, increases the predictive power of the validation set. In this way, the feature vectors obtained by applying 
the decision tree algorithm simultaneously to all regions m read [ t2 , t4 , tstart, a], [bias, t2 ], [ t1, t2 ], [bias, t2, t6 ], for 
m = 1.4 , respectively. One can see that although both a and tstart are present within the features for m = 1 , they 
are eliminated from the features for m > 1 due to mutual correlations.

To train a generalizable model, we use an ensemble of randomized decision trees, opposite to for instance 
a single tree which is prone to overfitting. The randomization is effectuated by the well-established principle of 
bootstrap aggregation (or bagging), where different subsets Di are sampled from training set D with replace-
ment, meaning that the same sample can be sampled multiple times. We further optimize the trees by tuning 
hyperparameters that control regularization, including the number of samples per tree n_samples , the number 
of features per tree n_features , and the maximum depth of branches of a tree max_depth . After optimiza-
tion of these hyperparameters using the mentioned grid search algorithm, we obtain n_samples = 2000 , and 
max_features turns out to be equal to n_features such that the decision tree becomes a bagged decision tree. 
The minimum number of samples after a split is set to 5 to smooth the predicted value of a  tree29.

Convolutional neural network
The architecture of the CNN is shown in Fig. 4m. The input data is inserted in a concatenation of six groups 
each containing a convolutional layer. This structure is motivated by a receptive field which increases with each 
deeper layer. Since deeper layers learn more complex patterns, the number of filters is increased by a factor of 
two for each layer. Moreover, the convolutional layers are (after batch normalization, see below) succeeded by a 
max-pooling layer that decreases the length by a factor of two. Given the kernel dimension (1× 3) and that of 
the input vector E(t) (1× 760) , we have chosen for zero padding the extremes of E(t) with a single entry to have 
the dimension unaltered after convolution. After this feature extraction part, the output is flattened and feature 
a is appended before inserting it in a two-layer fully connected network. The entire network has 72,385 trainable 
parameters: 26,144 are responsible for feature detection and 46,241 for regression.

Input data needs to be normalized before feeding it into the network to ensure proper convergence during 
gradient descent, as steepest gradient descent algorithms do not possess the property of scale invariance. Nor-
malization of the absolute humidity is performed as a′

i
= (ai − µa)/σa where µa is the mean of a with respect 

to the training population and σa its standard deviation. For all E(t), a uniform division factor of 4 is applied 
to ensure all data points are within the range (−1, 1) . For activation, we make use of the Rectified Linear Unit 
(ReLU) function, defined as ϕ(h) = max(0, h).

Convolutional networks require supervised learning to learn the intrinsic patterns to predict the target 
value. Supervised deep learning models use backpropagation to autonomously shape function f to find relation 
f : x → y , where x is the input and y the target. We have used the Adam optimizer to find the optimal model 
parameters. Adam is a simple and computationally efficient algorithm that combines the advantages of AdaGrad 
and RMSProp, resulting in an optimizer that is robust and well-suited to a wide range of non-convex optimiza-
tion problems in the field of machine  learning30.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7034  | https://doi.org/10.1038/s41598-024-57161-4

www.nature.com/scientificreports/

Ethical approval
The authors state permission to harvest leaves of Alliaria petiolata used in this study. All methods were carried 
out in accordance with relevant guidelines and regulations.

Data availability
The datasets and algorithms used during the current study are available from the corresponding author on 
reasonable request.

Received: 17 October 2023; Accepted: 14 March 2024

References
 1. Koch, M., Mittleman, D. M., Ornik, J. & Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 3, 48. 

https:// doi. org/ 10. 1038/ s43586- 023- 00232-z (2023).
 2. van Mechelen, D. An industrial THz killer application?. Opt. Photon. News 26, 16–18 (2015).
 3. Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56, 223001. https:// doi. org/ 10. 

1088/ 1361- 6463/ acbe4c (2023).
 4. van Mechelen, J. L. M., Kuzmenko, A. B. & Merbold, H. Stratified dispersive model for material characterization using terahertz 

time-domain spectroscopy. Opt. Lett. 39, 3853–3856 (2014).
 5. Rawson, A. & Sunil, C. K. Recent advances in terahertz time-domain spectroscopy and imaging techniques for automation in 

agriculture and food sector. Food Anal. Methods 15, 498–526. https:// doi. org/ 10. 1007/ s12161- 021- 02132-y (2022).
 6. Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43. https:// doi. org/ 10. 1017/ S0021 85960 50057 08 (2006).
 7. Bregaglio, S., Donatelli, M., Confalonieri, R., Acutis, M. & Orlandini, S. Multi metric evaluation of leaf wetness models for large-

area application of plant disease models. Agric. For. Meteorol. 151, 1163–1172. https:// doi. org/ 10. 1016/j. agrfo rmet. 2011. 04. 003 
(2011).

 8. Huber, L. & Gillespie, T. J. Modeling leaf wetness in relation to plant disease epidemiology. Annu. Rev. Phytopathol. 30, 553–577. 
https:// doi. org/ 10. 1146/ annur ev. py. 30. 090192. 003005 (1992).

 9. Goffart, J.-P. et al. Potato production in northwestern Europe (Germany, France, the Netherlands, United Kingdom, Belgium): 
Characteristics, issues, challenges and opportunities. Potato Res. 65, 503–547. https:// doi. org/ 10. 1007/ s11540- 021- 09535-8 (2022).

 10. Mittleman, D., Jacobsen, R. & Nuss, M. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2, 679–692. https:// doi. org/ 10. 1109/ 
2944. 571768 (1996).

 11. Gente, R. et al. Determination of leaf water content from terahertz time-domain spectroscopic data. J. Infrared Millimeter Terahertz 
Waves 34, 316–323. https:// doi. org/ 10. 1007/ s10762- 013- 9972-8 (2013).

 12. Gente, R. & Koch, M. Monitoring leaf water content with THz and sub-THz waves. Plant Methods 11, 15. https:// doi. org/ 10. 1186/ 
s13007- 015- 0057-7 (2015).

 13. Li, R., Lu, Y., Peters, J. M. R., Choat, B. & Lee, A. J. Non-invasive measurement of leaf water content and pressure-volume curves 
using terahertz radiation. Sci. Rep. 10, 21028. https:// doi. org/ 10. 1038/ s41598- 020- 78154-z (2020).

 14. Singh, A. K., Pérez-López, A. V., Simpson, J. & Castro-Camus, E. Three-dimensional water mapping of succulent Agave victoriae-
reginae leaves by terahertz imaging. Sci. Rep. 10, 1404. https:// doi. org/ 10. 1038/ s41598- 020- 58277-z (2020).

 15. Rowlandson, T. et al. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99, 310–319. 
https:// doi. org/ 10. 1094/ PDIS- 05- 14- 0529- FE (2015).

 16. van Mechelen, J. L. M., Frank, A. & Maas, D. J. H. C. Thickness sensor for drying paints using THz spectroscopy. Opt. Express 29, 
7514. https:// doi. org/ 10. 1364/ OE. 418809 (2021).

 17. Park, H. & Son, J.-H. Machine learning techniques for THz imaging and time-domain spectroscopy. Sensors 21, 1186. https:// doi. 
org/ 10. 3390/ s2104 1186 (2021).

 18. Wang, Y. et al. Terahertz spectroscopic diagnosis of early blast-induced traumatic brain injury in rats. Biomed. Opt. Express 11, 
4085. https:// doi. org/ 10. 1364/ BOE. 395432 (2020).

 19. Cao, C., Zhang, Z., Zhao, X. & Zhang, T. Terahertz spectroscopy and machine learning algorithm for non-destructive evaluation 
of protein conformation. Opt. Quant. Electron. 52, 225. https:// doi. org/ 10. 1007/ s11082- 020- 02345-1 (2020).

 20. Wang, Q. et al. Automatic defect prediction in glass fiber reinforced polymer based on THz-TDS signal analysis with neural 
networks. Infrared Phys. Technol. 115, 103673. https:// doi. org/ 10. 1016/j. infra red. 2021. 103673 (2021).

 21. Li, R. et al. Nondestructive evaluation of thermal barrier coatings thickness using terahertz time-domain spectroscopy combined 
with hybrid machine learning approaches. MDPI 12, 1875. https:// doi. org/ 10. 3390/ coati ngs12 121875 (2022).

 22. Mao, Q. et al. Convolutional neural network model based on terahertz imaging for integrated circuit defect detections. Opt. Express 
28, 5000. https:// doi. org/ 10. 1364/ OE. 384146 (2020).

 23. Wang, C. et al. Convolutional neural network-based terahertz spectral classification of liquid contraband for security inspection. 
IEEE Sens. J. 21, 18955–18963. https:// doi. org/ 10. 1109/ JSEN. 2021. 30864 78 (2021).

 24. Koumans, M., Perez-Casanova, A. & Van Mechelen, J. L. M. Sensing moisture patterns using terahertz spectroscopy. In 2022 47th 
International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 1–2. https:// doi. org/ 10. 1109/ IRMMW- THz50 
927. 2022. 98957 81 (IEEE, Delft, Netherlands, 2022).

 25. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015). 
arXiv: 1502. 03167 [cs].

 26. Jördens, C., Scheller, M., Breitenstein, B., Selmar, D. & Koch, M. Evaluation of leaf water status by means of permittivity at terahertz 
frequencies. J. Biol. Phys. 35, 255–264. https:// doi. org/ 10. 1007/ s10867- 009- 9161-0 (2009).

 27. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440. https:// doi. org/ 10. 1038/ s42254- 021- 
00314-5 (2021).

 28. Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 27, 659–678. 
https:// doi. org/ 10. 1007/ s11222- 016- 9646-1 (2017).

 29. Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–42. https:// doi. org/ 10. 1007/ s10994- 006- 
6226-1 (2006).

 30. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization (2017). arXiv: 1412. 6980 [cs].

Acknowledgements
D.v.M. and J.C.D. are grateful to fruitful discussions with Niels Anten (Wageningen University, The Netherlands), 
and for the facilitating role of research program Synergia-SYstem change for New Ecology-based and Resource 
efficient Growth with high tech In Agriculture, financed by NWO, the Dutch Research Council (project number 

https://doi.org/10.1038/s43586-023-00232-z
https://doi.org/10.1088/1361-6463/acbe4c
https://doi.org/10.1088/1361-6463/acbe4c
https://doi.org/10.1007/s12161-021-02132-y
https://doi.org/10.1017/S0021859605005708
https://doi.org/10.1016/j.agrformet.2011.04.003
https://doi.org/10.1146/annurev.py.30.090192.003005
https://doi.org/10.1007/s11540-021-09535-8
https://doi.org/10.1109/2944.571768
https://doi.org/10.1109/2944.571768
https://doi.org/10.1007/s10762-013-9972-8
https://doi.org/10.1186/s13007-015-0057-7
https://doi.org/10.1186/s13007-015-0057-7
https://doi.org/10.1038/s41598-020-78154-z
https://doi.org/10.1038/s41598-020-58277-z
https://doi.org/10.1094/PDIS-05-14-0529-FE
https://doi.org/10.1364/OE.418809
https://doi.org/10.3390/s21041186
https://doi.org/10.3390/s21041186
https://doi.org/10.1364/BOE.395432
https://doi.org/10.1007/s11082-020-02345-1
https://doi.org/10.1016/j.infrared.2021.103673
https://doi.org/10.3390/coatings12121875
https://doi.org/10.1364/OE.384146
https://doi.org/10.1109/JSEN.2021.3086478
https://doi.org/10.1109/IRMMW-THz50927.2022.9895781
https://doi.org/10.1109/IRMMW-THz50927.2022.9895781
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/s10867-009-9161-0
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1007/s11222-016-9646-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
http://arxiv.org/abs/1412.6980


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7034  | https://doi.org/10.1038/s41598-024-57161-4

www.nature.com/scientificreports/

17626), industrial and scientific/research partners, as well as to Rik Vullings (Eindhoven University of Technol-
ogy) for proofreading the manuscript.

Author contributions
D.v.M. designed and supervised the project, J.C.D. conceived the problem statement, M.K., D.M., and H.M. made 
the experimental setup and conducted the experiments, H.M. identified the plant material, M.K. analysed the 
results. D.v.M., M.K. and J.C.D. wrote the manuscript. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Physics-assisted machine learning for THz time-domain spectroscopy: sensing leaf wetness
	Results
	Decision trees
	Convolutional neural network

	Discussion
	Conclusions
	Methods
	Samples
	Experimental setup
	Data acquisition
	Data processing
	Decision trees

	Convolutional neural network
	Ethical approval

	References
	Acknowledgements


