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An improved pear disease 
classification approach using cycle 
generative adversarial network
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A large number of countries worldwide depend on the agriculture, as agriculture can assist in reducing 
poverty, raising the country’s income, and improving the food security. However, the plan diseases 
usually affect food crops and hence play a significant role in the annual yield and economic losses in 
the agricultural sector. In general, plant diseases have historically been identified by humans using 
their eyes, where this approach is often inexact, time-consuming, and exhausting. Recently, the 
employment of machine learning and deep learning approaches have significantly improved the 
classification and recognition accuracy for several applications. Despite the CNN models offer high 
accuracy for plant disease detection and classification, however, the limited available data for training 
the CNN model affects seriously the classification accuracy. Therefore, in this paper, we designed a 
Cycle Generative Adversarial Network (CycleGAN) to overcome the limitations of over-fitting and the 
limited size of the available datasets. In addition, we developed an efficient plant disease classification 
approach, where we adopt the CycleGAN architecture in order to enhance the classification accuracy. 
The obtained results showed an average enhancement of 7% in the classification accuracy.
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Recently, the adoption of machine learning methods has attained high performance in many computer vision 
 tasks1–3. However, machine learning methods employ statistical learning algorithms to explore patterns in the 
training subset and then perform predictions and classification on the test subset, whereas deep neural networks 
choose features, provide an end-to-end pipeline for automatically extracting robust features, significantly improv-
ing the availability of leaf identification.

On the other hand, the identification of leaf diseases is essential for controlling disease spread and improving 
the healthy development of the pear  industry4–6. However, plant disease prediction is a hard and interconnected 
task that needs different technical skills and experts in the field. The existing traditional approaches depend on 
a specialist or expert in the field to manually perform careful analysis of the foliar surface and then perform 
a diagnosis, but these approaches are inefficient in terms of complexity and  cost7,8. Therefore, the deployment 
of technology has become necessary for automatically recognizing and classifying the plant diseases from the 
appearance of the first symptoms.

Machine learning and deep learning approaches have received considerable attention recently for the purpose 
of object identification and  classification9. Recently, there are several plant leaf diseases approaches that have 
been  proposed10–12, which are based on the employment of deep neural networks. These approaches showed that 
deep learning approaches have enhanced the classification accuracy in a comparison with the machine learn-
ing approaches. This is due to the large number of configurable parameters in the Deep Convolutional Neural 
Network (DCNN), where a substantial amount of labelled data is needed to train the model and improve the 
generalization capabilities.

The CNN models require enough number of training images in order to enhance the generalization capa-
bilities. However, there is a lack of agricultural data, particularly in the field of identifying leaf diseases, as the 
collection process of huge disease datasets is inefficient in terms of labor and time, since this type of data requires 
an extensive knowledge in the area of plant diseases. In addition, the manual labelling task is a very subjective 
task, and ensuring the quality of the classified data is  difficult13.

As a result, the lack of training samples is the primary constraint to further improvement for the accuracy of 
leaf disease detection. Hence, the problem of train a deep learning model using a small amount of labelled data 
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is worth examining. This problem has been addressed using the employment of traditional data augmentation 
 methods14.

Recently, the adoption of data augmentation approaches in computer vision tasks enhances the quality of 
deep learning classification, through obtaining a large size dataset, and hence better deep learning models can 
be trained with the improved  datasets15. Therefore, since image data is distinct, a new training dataset can be 
extracted from the original image using a simple geometric transformation, including: rotation, scaling, trans-
lation, cropping, noise addition, and other data augmentation techniques. These strategies, however, provide 
very extra information, and hence improving the accuracy for classification objects in a certain area. Several 
approaches have considered the issue of data augmentation to enhance the classification accuracy, as presented 
 in10,16–19, where the most popular approach for training a deep CNN model with a small amount of data is to 
augment the input data with synthetic images.

In this research work, we designed the Generative Adversarial Network (GAN) to obtain new synthetic images 
that are augmented the training dataset. GAN is a machine learning-based approach that is utilized to produce 
additional new samples with similar features to the original samples, in order to be employed in the training 
process. GAN aims to generate entire synthetic images that can contribute to increase the dataset’s diversifica-
tion. Recently, GAN approaches have become a standard method for dealing with dataset constraints. On the 
other hand, to mitigate the bias induced by class imbalance, authors  of17 proposed a new approach to augment 
synthetic samples named as Activation Reconstruction (AR).

Unlike the work presented in the previous research  works10,16,17,20 which consists of 9 different classes with 
balanced dataset, our research work focuses on the same issue with imbalanced dataset. Therefore, our main 
target is to increase the training samples and balance the number of records in each class, in order to minimize 
the model over-fitting, and hence offers high classification accuracy.

Therefore, in this work, we develop an efficient deep vision classification approach for pear plant disease clas-
sification through the employment the Cycle GAN, in order to increase the number of samples in the selected 
dataset through producing new images, that result in enhancing the classification accuracy. Hence, the main 
contribution of this work lies on the following aspects:

1. Develop a new efficient approach that integrates classification with the CycleGAN approach in order to 
resolve the problem of a limited training set.

2. Validate the proposed approach through several experiments to assess the performance of the developed 
system in terms of classification accuracy.

The rest of this paper is organized as follows: “Related works” section discusses the recent developed pear 
plant disease classification approaches, whereas “System design” section presents and discusses the proposed clas-
sification system. “Experimental results” section shows the experimental testbeds and results, and “Discussion” 
section discusses the results obtained from several experiments that have been conducted to assess the efficiency 
of the developed system. And finally, “Conclusion and future work” section concludes the work presented in 
this paper and draws a future work.

Related works
This section discusses the recent developed plant disease classification approaches detection. Authors  of21 reviews 
the diseases affecting on 11 different plants and presented how the diseases can be identified from plant leaf 
images using deep CNN learning models. However, in this paper, we focus on the problem of classification of 
pear diseases through the employment of deep CNN models.

The work presented  in22 involves exploring the variability factors that impact the classification of plant dis-
eases through analyzing the same plant and diseases under different conditions, where 5 different approaches 
including EfficientB0, MobileNetV2, InceptionV2, ResNet50, and VGG16 have been employed. As a result of 
this study, authors revealed that the model performance drops extremely when using representative datasets, in 
addition, the presented results showed that deep learning is an effective technique for plant disease classification.

Authors  of23 investigated the Convolutional Block Attention Module (CBAM) to enhance the classification 
accuracy of CNN which is a lightweight attention module which can be plugged into the CNN architecture with 
negligible overhead. Authors employed several CNN models, including: EfficientNetB0, MobileNetV2, ResNet50, 
InceptionV3, and VGG19 in order to perform transfer learning for plant disease classification. As a result, the 
EfficientnetB0 and CBAM architecture obtained 86.89% classification accuracy.

In11, authors investigated the ensemble learning approach to develop a robust network that is able to predict 
four different pear leaf diseases, where authors employed and analyzed the results of several CNN architectures, 
including: EfficientNetB0, InceptionV3, MobileNetV2 and VGG19.

The work presented  in24 involves employing an improved YOLOv4-tiny for the purpose of root crop detection 
using a single-board computer (SBC). The employed method allows for processing up to 14 images of 416 × 416 
pixels with a result of 86% precision and 91% recall.

The task of balancing the dataset in deep learning applications is a crucial problem that has been researched 
and addressed in several research works, driven by the requirement of a health agricultural yield, whereas cost-
effectiveness, accuracy, sensitivity, and user-friendliness are all essential considerations.

Although data augmentation is an effective strategy to deal with limited training data, however it is not 
widely applicable. Because selecting a suitable data augmentation technique requires a prior understanding of 
the target domain and task. Furthermore, parametrization of data augmentation methods adds a new set of key 
hyper-parameters that can significantly affect the deep learning method’s inaccuracy.
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Therefore, in order to balance skewed data, authors  of19 proposed a data augmentation approach through 
employing Deep Convolutional Generative Adversarial Networks (DCGAN). Authors revealed that the best 
classification accuracy is achieved when the number of samples in each class is nearly equal (balanced dataset). 
Authors employed a VGG16 CNN model as a classifier to assess the performance of the developed DCGAN 
approach. The experimental results revealed that, with employing the GAN-based data augmentation strategies, 
an increase in the distribution integrity of classes in the selected dataset.

As presented above, various GAN methods have been employed in diverse deep neural network application 
in order to address the challenge of balancing imbalanced datasets. DCGAN on the other hand employs random 
vector image synthesis rather than image translation, which can result in a bottleneck. However, with unpaired 
dataset, DCGAN method does not consider image-to-image translation.

In addition, large amount of data is necessary for the purpose of improvement of the classification accuracy 
in all of the above approaches, as well as other deep learning approaches for various tasks in computer vision so 
far. Starting with a small number of original images and gradually synthesizing additional plant disease images 
synthetically using CycleGAN and feeding those samples to our training set using the approach proposed in this 
study, we may achieve comparable performance.

System design
In order to obtain an efficient classification performance in terms of classification accuracy for the purpose of the 
pear plant diseases categorization using a small number of images in the training dataset. This section discusses 
the system design including the design of two different approaches in order to assess the efficiency of employing 
the CycleGAN architecture on the classification accuracy.

For the purpose of plant disease classification, we discuss various deep CNN models which may be employed 
for the purpose of plant disease classification. Recently, there are several deep CNN models that have been 
developed for the purpose of image classification. AlexNet  model25 has a total number of 8-layer structure with 
60 million parameters, whereas VGGNet-1626 consists of a total number of 16 layers and 7 million parameters. 
 GoogleNet27 on the other hand consists of nine inception modules and two max-pooling layers for down-
sampling the input as its fed forward through the network. The Inception V3, MoibleNetV1 and MobileNetV2 
consist of 27, 4.2, and 3.37 million of parameters, respectively. Table 1 summarizes the deep CNN models that 
have been employed for image classification tasks.

For the purpose of improving the classification accuracy, and according to several research  works28–30 that 
analyzed the performance of several deep vision models, we have employed 3 different deep vision models: 
VGG19, ResNet50 and EfficientNetB0.

The developed system has been implemented through two different approaches: the first approach involves 
developing a plant disease classification using the original DiaMOS dataset, whereas in the second approach, we 
employed the CycleGAN method to efficiently increase the size of the DiaMOS dataset.

The first approach is depicted in Fig. 1, where the DiaMOS dataset is first divided into two subsets: training 
and testing, then train the deep CNN model using 3 different deep classification models (VGG19, ResNet50 and 
EfficientNetB0) through employing the original DiaMOS dataset.

The next approach involves generating new labelled images through training the CycleGAN, for two main 
reasons: balancing the classes in the DiaMOS dataset, and increase the size of the DiaMOS dataset in order to 
obtain better classification accuracy, where the new generated images will be added to the original image dataset 
in order to enhance the initial dataset, through incorporating more images. Next, the designed CNN model is 
employed to train using the new generated dataset. Figure 2 presents the concept of the second approach, where 
the integration of CycleGAN method is presented before the process of dividing the dataset into two subsets.

In general, the CycleGAN architecture consists of two models: the generator model and a discriminator 
model. The generator receives a point from a latent space as an input and produces new plausible images from 
the domain, whereas the discriminator takes an image as an input and predicts whether the taken image is a real 
one (from the DiaMOS dataset) or fake (from the generated dataset).

Table 1.  Summary of the deep CNN models that have been employed for image classification.

Model No. of layers Parameters (million) Size

AlexNet 8 60 –

VGGNet-16 23 138 528 MB

VGGNet-19 26 143 549 MB

Inception-V1 27 7 –

Inception-V3 42 127 93 MB

ResNet-152 152 50 132 MB

ResNet-101 101 44 171 MB

InceptionResNet V2 572 55 215 MB

EfficientNet B0 – 5 –

MobileNet-V1 28 4.2 16 MB

MobileNet-V2 28 3.37 14 MB
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On the other hand, transfer learning is the reuse of a previously trained network to a new task in deep learn-
ing. Transfer learning has become popular recently as it allows the network to be trained with a minimal quantity 
of data while retaining high accuracy. A computer leverages information from a prior task to boost generaliza-
tion about the new task in transfer learning. The final levels of the trained network are replaced in our approach 
by adding extra layers for the aim of transfer learning, such as adding a fully connected layer and a four-class 
soft-max classification layer. Therefore, we added an additional activation layer, batch-normalization layer, and 
a dropout layer. For the experiments, we use the same settings in terms of batch-size and learning rates.

Experimental results
In this section, we discuss the materials and methods that been employed to develop an efficient pear plant disease 
classification approach. In addition, we present and discuss the results obtained from two different approaches. 
Therefore, for the purpose of system validation, the first stage includes the employment of the three different 
deep vision models with the DiaMOS dataset, and then train each deep vision model separately, whereas in the 
next stage, new labelled images are generated using the CycleGAN approach, where the new generated images 
will be added to the original dataset to build a new dataset with more images and balanced classes.

The final stage includes employing the deep vision models with the new generated dataset. Then a compara-
tive study is provided to show the classification accuracy between the original dataset, and the new generated 
dataset through applying the CyleGAN approach.

DiaMOS dataset
For the purpose of system validation, the DiaMOS dataset has been employed in our study. DiaMOS dataset is 
presented  in31 and is a recent pear dataset, which consists of 3,505 images for pear fruit and leaves affected by 
three different diseases (spot, curl, slug), with the aim of saving time and resources for other researchers to allow 
more effort to be paid on the evaluation and comparison of classification algorithms. DiaMOS plant is a pilot 
dataset that contains images of an entire growing season of a pear tree, for the purpose of building a representa-
tive sample that covers the main cultural aspects of the pear plant. Table 2 summarizes the main attributes for 
the DiaMOS dataset.

DiaMOS dataset has been employed in diverse plant disease classification  works7,11,22,23, where DiaMOS 
dataset consists of four categories: healthy, leaf-spot, leaf-curl, and slug damage, as presented in Table 3.

DiaMOS images were collected using different devices, including a smartphone (Honor 6x) and DSRL cam-
era (Canon EOS 60D), therefore, DiaMOS dataset consists of two types of image resolutions: 2976 × 3968 and 
3546 × 5184. However, the different resolutions increase the complexity of the DiaMOS dataset and represents 
an added value for the dataset itself.

In our study, we focus on classifying the pear images into 4 different classes: healthy, slug, curl, and spot. 
DiaMOS dataset has been divided into 3 main parts: training subset, validation subset, and testing subset, with 
the ratio of 70%, 10%, and 20% respectively. In addition, in order to preserve the balanced percent of each class, 
DiaMOS dataset was split using the ShuffleSplit technique presented  in19. On the other hand, the dimension for 
each image in the DiaMOS dataset, was reduced to 224 × 224 × 3.

Figure 1.  The main stages of approach 1.

Figure 2.  The main stages of approach 2.
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Convolutional neural network classifier
Convolutional Neural Network (CNN) is a type of network architecture for deep learning algorithms which is 
specifically used for image recognition and the tasks that include the processing of pixel data. In this work, we 
employed an efficient CNN model to achieve the goal of plant disease recognition. The employed CNN model 
consists of several layers: convolutional layers, pooling layers, batch normalization layers, and fully connected 
layers.

In this paper, we have employed the VGG19, ResNet50, Inception-V3, MobileNet-V2 and EfficientNetB0 to 
diagnose the different plant diseases in the DiaMOS dataset. The reason behind employing these three models 
was because of their parameter numbers are smaller than other deep CNN models. In addition, these models 
require less computation requirements than other models.

CycleGAN
The training process of deep learning model requires large number of records of paired examples. However, in 
most cases, preparing large datasets are not valid, as with the employed DiaMOS dataset. The CycleGAN is a 
method that involves an autonomous training of image-to-image translation models without paired examples 
using the GAN architecture, where these models are trained in an unsupervised approach, using a collection of 
images from the source and target domain that do not require to be related in any way.

As discussed earlier, DiaMOS dataset contains a small number of records, in addition, DiaMOS includes 
imbalanced data classes, and hence this leads to poor plant disease classification performance. Therefore, one 
of our main goals was to increase the size of the DiaMOS dataset and balance the records in each class. Figure 3 
presents the histogram for the total number of images for each class (plant disease) located in the DiaMOS.

Therefore, CycleGAN has been adopted to expand the data set size, which had the same number of images. 
Figure 5 shows an example of a real image (left-hand side) and a sample image (right-hand side) generated by the 
regularized GAN architecture. Figure 4 presents an example to one unique class that belongs to the healthy class.

Table 2.  General information about the DiaMOS plant dataset.

Attribute Value

Plant Pear

Data source location Sardegna, Italy

Region of Interest (ROI) captured RGB imags

Cultivar Leaf, fruit

Annotation csv, YOLO

Total size 3505 images (3006 leaves images + 499 fruit images)

Table 3.  The distribution of classes in the DiaMOS plant dataset.

Leaf symptoms Size

Healthy 43

Spot 884

Curl 54

Slug 2025

Figure 3.  The distribution of images for each class.
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Results
This section discusses the results obtained from two main different scenarios: the first one was through adopting 
the 3 deep vision models with the original DiaMOS dataset, whereas the second scenario involves employing the 
3 deep models with the enlarged DiaMOS dataset after deploying the CycleGAN approach. For both scenarios, 
we estimated the following parameters:

1. Confusion matrix: in general, the confusion matrix illustrates the complete performance of the deep clas-
sification model.

2. Classification accuracy: it refers to the percentage of the total number of plant images that were correctly 
predicted.

3. Precision: it refers to the percentage of correctly predicted positive cases over the total predicted positive 
cases.

4. Recall: it refers to the percentage of correctly predicted positive cases to all the cases in the real class.
5. F1-score: it refers to the weighted average of precision and recall. In certain cases, the F1-score is more useful 

than classification accuracy when the dataset is unbalanced, as with the original DiaMOS dataset.

First, the results of the confusion matrix are discussed in details. Confusion matrix shows the errors that 
made by the classifier and the types of errors that are being made. The confusion matrices are presented first for 
employing the three deep vision models with the original dataset.

Table 4 presents the confusion matrix for the VGG19 model using the original dataset. As noticed, the average 
misclassification is equal to 29%, which is a high ratio. On the other hand, Table 5 shows the confusion matrix for 
the EfficientNetB0 model using the original dataset, with a higher misclassification rate of 31%. Finally, Table 6 
includes the confusion matrix for the ResNet50 model with the original dataset, where a minimum misclassifica-
tion rate was obtained with this model with a percentage of 18%. Therefore, the RestNet50 classification model 
achieves the best results in terms of classification accuracy.

Then, the confusion matrices are presented for employing the three deep vision models with CycleGAN leaf 
images dataset. Table 7 presents the confusion matrix for the VGG19 model using the CycleGAN architecture. 
On the other hand, Table 8 presents the confusion matrix for the CycleGAN approaching using the ResNet50 
model. As noticed, ResNet50 achieves better classification accuracy than the VGG19 model. And finally, Table 9 
presents the confusion matrix for the EfficientNetB0 model using the CycleGAN leaf images.

The accuracy, precision, recall, and F1-score are significant parameters that need to be measured for each 
deep vision model. According to experimental studies, ResNet50 offers the best classification accuracy using 
the original DiaMOS dataset. In addition, ResNet50 achieves the best precision, recall, and F1-score among the 

Figure 4.  An original image of a healthy class (left-side) and a generated image by GAN (right-side).

Table 4.  Confusion matrix results for the original dataset using the VGG19 model.

Actual

Healthy 0 2 2 0

Slug 0 187 16 0

Spot 0 66 23 0

Curl 0 0 0 0

Healthy Slug Spot Curl

Predicted
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three models. Table 10 summarizes the results of accuracy, precision, recall, and F1-score for the three deep 
vision models using the original dataset.

Table 11 on other hand presents the experimental results of accuracy, precision, recall, and F1-score for the 
three deep vision models using the CycleGAN leaf images. As noticed, the classification accuracy has improved 
for the ResNet50 model when the CycleGAN leaf images were employed, and this refers to the high efficiency 
of the CycleGNA architecture. Moreover, the precision score has significantly enhanced with the VGG19 and 

Table 5.  Confusion matrix results for the original dataset using the EfficientNetB0 model.

Actual

Healthy 0 4 0 0

Slug 0 203 0 0

Spot 0 89 0 0

Curl 0 0 0 0

Healthy Slug Spot Curl

Predicted

Table 6.  Confusion matrix results for the original dataset using the ResNet50 model.

Actual

Healthy 0 0 4 0

Slug 0 175 28 0

Spot 0 23 66 0

Curl 0 0 0 0

Healthy Slug Spot Curl

Predicted

Table 7.  Confusion matrix results for the leaf images dataset using the VGG19 model.

Actual

Healthy 45 0 0 0

Slug 2 363 63 0

Spot 0 43 112 8

Curl 0 0 0 102

Healthy Slug Spot Curl

Predicted

Table 8.  Confusion matrix results for the leaf images dataset using the ResNet50 model.

Actual

Healthy 32 0 0 0

Slug 7 170 33 1

Spot 0 10 79 4

Curl 0 0 0 74

Healthy Slug Spot Curl

Predicted

Table 9.  Confusion matrix results for the leaf images dataset using the EfficientNetB0 model.

Actual

Healthy 29 0 6 4

Slug 5 172 27 0

Spot 0 40 51 25

Curl 2 0 0 50

Healthy Slug Spot Curl

Predicted
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ResNet50 models. The recall parameter metric has also improved significantly with 91% for the ResNet50 deep 
vision model. And finally, the F1-score has also enhanced for the ResNet50 model with 87% score.

As noticed from the experimental results, the accuracy, precision, recall, and F1-score have improved for all 
the deep vision models when adopting the CycleGAN leaf images. Figure 5 shows the classification accuracy for 
both the original DiaMOS dataset and the CycleGAN leaf images dataset. As presented below, the classification 
accuracy has improved for the three adopted models with an average of 7% enhancement.

The precision score was measured in both scenarios for the three deep vision approaches, as noticed in Fig. 6. 
As presented below, there is a significant difference between the precision scores using the original dataset, and 
with using the CycleGAN leaf images dataset. An average enhancement in the precision score of 51% using the 
CycleGAN leaf images dataset in the three deep vision classification models.

The recall score on the other hand was also measured for the two systems using the three deep vision clas-
sification models. The recall score has noticeably enhanced when adopting the CycleGAN leaf images dataset. 
Figure 7 presents the recall score values for the two systems using the three deep vision classification models. As 

Table 10.  The results obtained from 3 different models using the original DiaMOS dataset.

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

VGG19 70.95 17.14 25.00 20.34

ResNet50 81.42 38.93 40.09 39.48

EfficientNetB0 68.58 17.14 25.00 20.34

Table 11.  The results obtained from 3 different models using the CycleGAN leaf images.

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

VGG19 84.28 85.47 88.38 86.84

ResNet50 86.59 85.17 91.38 87.73

EfficientNetB0 73.48 71.42 74.70 71.84

Figure 5.  The accuracy score for the 3 models using the two datasets.

Figure 6.  The precision score for the 3 models using the two datasets.
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noticed, an average enhancement of 57% in the recall score value over the recall score that was obtained using 
the original dataset.

Finally, the F1-score was measured for the two systems using the three different deep vision classification 
models. Figure 8 depicts the F1-scores for the three deep vision classification approaches using the original data-
set and the CycleGAN leaf images dataset. As noticed the F1-score values have noticeably enhanced when the 
CycleGAN leaf images dataset was employed. An average enhancement of 48% when employing the CycleGAN 
leaf images dataset with the three deep vision classification models.

Discussion
In general, CNN architecture requires a large dataset for training purposes in order to achieve better classifica-
tion performance, which is not valid in the area of plant disease classification. In addition, when the number of 
model parameters exceeds the number of data samples, the small training dataset causes overfitting, and hence 
minimize the classification  accuracy32.

Data augmentation can overcome the challenges of insufficient data and unequal distribution through increas-
ing the model performance for several tasks, including: detection, classification and recognition of plant diseases. 
According  to33, most of the recent developed machine learning approaches are based on the assumption that 
training sets have a well-balanced distribution, which is not exist in several case studies. Authors  of34 proved 
that class imbalance has an impact on feed-forward neural network performance, particularly as the complexity 
of classes increases.

Moreover, data augmentation has been employed in diverse deep learning applications due to its capability 
of creating new training data from the existing data. This is commonly achieved through applying annotation-
preserving changes to the input data, such as: rotating, deforming, or translation of the image. Data augmentation 
can generate an infinite amount of training data. One of the efficient data augmentation approaches is the elastic 
deformation which has been effectively employed with CNN for medical image  segmentation1.

By overcoming the challenges of insufficient data and unequal distribution, data augmentation can increase 
model performance for tasks including classification, detection, and recognition of these diseases. Most learn-
ing algorithms are based on the assumption that training sets have a well-balanced distribution, which is not 
necessarily the case. The presented work in this paper has overcome the challenge of insufficient images to be 
involved in the training process.

VGG19, ResNet50, and EfficientNetB0 have different classification performance when applied CycleGAN on 
the original data set, therefore the images generated by CycleGAN are quite similar to the original images, while 
CyleGAN based on random noise can generate various images. Furthermore, because healthy and curl were not 
even detected in the initial dataset, the overall classification accuracy for healthy and curl was higher than it had 

Figure 7.  The recall score for the 3 models using the two datasets.

Figure 8.  The F1-score for the 3 models using the two datasets.
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been previously. As a result, the experiment demonstrates that utilizing CycleGAN to produce plant leaf images 
to expand the dataset has practical utility since it can generate a variety of data, thereby resolving the issue of an 
unbalanced data set, and hence improving the classification accuracy for pear leaf disease classification.

Conclusion and future work
In the field of image generation, the CycleGAN architecture is commonly employed for diverse types of applica-
tions. However, most of the existing CycleGANs approaches were utilized to create images with sufficient data. 
The goal of this work was to build and employ the CycleGAN architecture for producing pear leaves in order 
to enlarge the data set and assess the usability of the generated leaves based on classification accuracy. In the 
selected dataset, the Curl and healthy leaves were unbalanced in the pear disease database. Therefore, we uti-
lized the CycleGAN approach to generate 224 × 224 pixels leaf images through utilizing a minimal data source. 
After considering several experiments, the CycleGAN architecture has significantly enhanced the classification 
accuracy for the pear disease classification. In addition, the recall, precision, F1-score metrics have also been 
improved using the CycleGAN leaf dataset. For future works, we aim to investigate additional deep vision 
approaches for the purpose of improving the classification accuracy. Moreover, we aim to develop a reliable 
system using small-size processors (for instance: Raspberry Pi 4 or Jetson Nano) for the purpose of real-time 
plant disease classification.

Plant guidelines
The collection of plant material and the performance of experimental research on the pear plants complied with 
the national guidelines of the Kingdom of Saudi Arabia.

Data availability
The dataset that has been used in this study is available in https:// zenodo. org/ record/ 55573 13.
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