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Physics‑informed shape 
optimization using coordinate 
projection
Zhizhou Zhang , Chungwei Lin  & Bingnan Wang *

The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering 
novel approaches to material and structural design and analysis. Among various scientific machine 
learning techniques, physics-informed neural network (PINN) has been one of the most researched 
subjects, for its ability to incorporate physics prior knowledge into model training. However, the 
intrinsic continuity requirement of PINN demands the adoption of domain decomposition when 
multiple materials with distinct properties exist. This greatly complicates the gradient computation 
of design features, restricting the application of PINN to structural shape optimization. To address 
this, we present a novel framework that employs neural network coordinate projection for shape 
optimization within PINN. This technique allows for direct mapping from a standard shape to its 
optimal counterpart, optimizing the design objective without the need for traditional transition 
functions or the definition of intermediate material properties. Our method demonstrates a high 
degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as 
training penalties. The proposed approach is tested on magnetostatic problems for iron core shape 
optimization, a scenario typically plagued by the high permeability contrast between materials. 
Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The 
results highlight the framework’s capability as a viable tool for shape optimization in complex material 
design tasks.
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Recent advances in large foundation artificial intelligence (AI) models have demonstrated their potential in 
addressing intricate real-world challenges1,2, consequently drawing an increasing number of researchers to 
apply AI to scientific problems, such as carbon capture3,4, weather forecast5,6, material discovery7,8, simulation 
acceleration9,10, etc. One major characteristic that distinguishes scientific problems from other AI tasks is the 
existence of prior knowledge. Prior knowledge can manifest in various forms in scientific problems, and may 
significantly enhance the performance of ML models, particularly when ground truth data is insufficient11,12. A 
prime example is the incorporation of governing partial differential equations (PDEs) through PINN, into the 
training of machine learning (ML) models for predicting engineering problems13,14.

Originally proposed as a forward solver to PDEs, PINN has been receiving growing research attention recently, 
for its data-free self-supervised training process14,15. The major advantages of PINN over classical numerical 
methods include mesh-free representation, higher parameter efficiency in high dimensional systems, general 
and concise training formulation13,16,17. Researchers have implemented PINN to solve PDEs in various real-world 
engineering systems including solid mechanics18, fluid mechanics16, thermodynamics19, electromagnetism20, etc. 
On the other hand, the following disadvantages of PINN still impede its use in industry, and pose the necessity 
of further exploration: optimization error, intractable integral (can only be approximated)16,21. Most importantly, 
empirical studies suggest that employing PINN as PDE solvers can introduce considerable computational costs, 
both in terms of memory space and processing time, when compared to classical numerical methods22.

Despite its subtle performance as a PDE solver, physics-informed training strategy shows greater potential in 
design exploration tasks, as it converts an equation solving process into an optimization problem. Compared to 
traditional optimization algorithms, for instance adjoint method based sensitivity analysis23, physics-informed 
design optimization is significantly more general and easier for adaptation. Cutting-edge research progress in 
physics-informed design optimization concentrates on two main directions. The first direction is to establish a 
surrogate ML model that learns a response function for the parameterized shape or topology design space24–28. 
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A well-trained surrogate model can typically accelerate the PDE solution process by at least 3− 4 orders of 
magnitude, with negligible prediction error18,29. Recent efforts have discovered novel neural operator architectures 
that allow projection among infinite-dimensional function spaces30,31. The input space of these architectures 
possesses discretization-invariance and is inherently closer to physics fields, thus achieving higher prediction 
accuracy when fed with sufficient data. However, surrogate-model based methods assume relatively simple 
geometry parameterization that is concise enough to be included as part of the model inputs. This assumption 
becomes invalid for general shape representations that may involve hundreds of thousands of parameters. On 
the other hand, the second research direction focuses on direct optimization of some parameterized property 
field32,33. The design space (property field) is typically parameterized explicitly as a density field34–38 or implicitly 
as a level-set function39–41. These parameterization techniques can be applied to numerous design tasks. This 
type of method assumes continuity and differentiability of the material density distribution over space and thus 
introduces transition regions across subdomain interfaces, which may generate inaccurate physics solutions 
when large material property gaps exist (an example shown in SI Appendix). This inaccurate approximation due 
to material field smoothing becomes particularly challenging when neural networks are utilized to parameterize 
material property fields or physics fields, as neural networks are highly smooth, and sometimes possess an infinite 
degree of differentiability like sinusoidal waves.

This work aims to address the discontinuity of material property fields in the context of physics-informed 
design optimization problems. Current solutions to this problem diverge into two paths: The first involves direct 
parameterization of material properties over the computation domain, such as density-based methods or level-set 
methods as detailed in42,43. To retain differentiability, the abrupt material property changes across subdomain 
interfaces are typically approximated through smooth transition functions. These approximations, while offering 
broad adaptability, might yield inaccurate results when subdomains have highly contrasting property values. 
The second path involves domain decomposition44. Exact material properties are assigned to collocation points 
within each decomposed subdomain while the PDE residual loss is replaced with a boundary condition loss 
on subdomain interfacial points, allowing more accurate PINN solutions to PDEs (an example shown in SI 
Appendix). While this ensures precise solutions regardless of property disparities across subdomain interfaces, 
the material properties on collocation points become non-differentiable as they are determined by indicator 
functions (if in a specific subdomain). In this case, an alternate shape parameterization method is essential. In this 
work, we propose to parameterize the property field design space through coordinate projection, in the form of a 
neural network. The proposed method decouples the definition of shapes and material properties, allowing exact 
material property representation through fixed spatially discontinuous functions, while providing differentiable 
parameterization of arbitrarily complex domain shapes. Moreover, the shape projection neural network can be 
smoothly incorporated with PINNs, enabling physics-informed shape optimization which offers significantly 
better adaptability towards practical engineering problems compared to classical methods. However, we want to 
make a note here that the current framework does not allow the change of topology, and should thus be treated 
as a shape optimization method. The proposed framework is showcased in optimizing the shape of iron cores 
in 2D static magnetic fields. The proposed optimization framework includes a domain decomposition PINN 
solver that can properly handle the large permeability contrast between neighboring subdomains. Therefore, 
the training process optimizes the shape and solves for the physics field simultaneously based on loss functions, 
without the aid of ground truth generated by external PDE solvers. The performance of the optimized iron core 
is subsequently validated by finite-element analysis (FEA) using commercial software COMSOL Multiphysics.

To showcase the capability of our proposed physics-informed shape optimization framework, we aim to 
optimize the shape of ferromagnetic iron cores for generating desired static magnetic fields. For simplicity, the 
two case studies are solved in 2D space with governing equations and neural network architectures described 
in the “Methods” section.

Figure 1A illustrates the reference domain shapes of a 2D C-shape iron core problem (the first case study). 
The reference iron core domain �z_in is initialized to be a C-shape with a thickness of 1 and relative permeability 
of 1000. When such an extreme property gap exists, PINN with domain decomposition provides more accurate 
solutions compared to domain smoothing (comparison given in SI Appendix). The iron core rests in a circular 

Figure 1.   Reference domain shapes of two iron core shape optimization case studies: optimize for target 
magnetic flux density under current sources (A), and optimize for target electromagnetic torque subject to a 
uniform magnetic flux density boundary condition (B).
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vacuum domain �z_out of radius 8 with two current sources �z_sc1 , �z_sc2 of density 0.5 and − 0.5 on its sides. 
The goal is to find a projection from �z_in to �x_in that generates some desired magnetic flux density within the 
query domain �z_q.

Figure 1B illustrates the reference domain shapes of a magnetic torque problem (the second case study). 
The reference iron core domain �z2 is initialized to be an ellipse with major axis 1.5, minor axis 0.7, and 45◦ 
inclination. The iron core rests in a circular vacuum domain �z1 of radius 8 with a uniform external magnetic 
flux density on boundary ∂�z . The existence of the iron core may distort the external magnetic field, yielding a 
magnetic torque that can be estimated by performing the integral in Eq. (11) along any close trajectory Ŵ around 
the iron core. In this scenario, we assume infinite permeability on the iron core to examine a slightly different 
physics loss formulation (detailed in Results and Discussion), which yields similar solutions to any large relative 
permeability (e.g. µ = 1000).

Figure 2 illustrates the entire optimization framework that will be implemented to address the case studies 
aforementioned; it consists of a shape neural network NNφ and a physical field neural network NNθ (formal defi-
nitions in the “Methods” section). In this work, shapes are defined using a reference shape and the shape neural 
network NNφ . The reference shape �z is mathematically approximated by a point cloud with fixed coordinates z . 
The coordinates of the reference point cloud are projected by the shape neural network NNφ to new coordinates 
x . This projected point cloud represents the optimized (deformed) shape once the neural networks are trained. 
Meanwhile, the positive Jacobian constraint is required for the entire point cloud to preserve topology and avoid 
any unphysical deformation. A typical PINN NNθ is then responsible for predicting the correct physical field, 
specifically the magnetic vector potential (MVP) field in this work, over the projected spatial coordinates x . 

Figure 2.   General framework for shape optimization using coordinate projection PINN. The shape network 
NNφ projects the coordinates of the reference point cloud to the actual shape with topology preserved. In other 
words, the white ellipse on the projected domain �x is represented by the same set of points sampled within 
the white triangle on �z , but projected by NNφ . The PINN NNθ predicts physical fields on the actual shape 
coordinates. φ and θ are updated to minimize a loss function which is a combination of design objectives, shape 
constraints, and governing equations.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6537  | https://doi.org/10.1038/s41598-024-57137-4

www.nature.com/scientificreports/

Such parameterization incorporates all design information within a neural network NNφ . As a result, it allows 
physics-informed loss functions defined on decomposed computation domains, while keeping all geometry 
features differentiable, including domain, boundary, and interface shapes. It is worth noting that defining shapes 
through boundary parameterization is not advisable. While it’s feasible to parameterize a smooth and closed 
curve, the material properties at domain collocation points become nondifferentiable. This is because they are 
determined by an indicator function determining whether they lie inside the curve.

The proposed physics-informed shape optimization framework is completely self-contained, learning physics 
and searching for better designs all by itself. Therefore, the loss function is composed of multiple components 
including residuals from strong and weak form governing equations, boundary conditions, design constraints, 
and design objectives, whose expressions depend on the actual problem of interest. The training process employs 
self-adaptive weights to effectively balance the contributions of loss functions from different sources. Each loss 
term is prefixed with adaptive weights � . These weights are dynamically updated to maximize the overall loss, 
thereby placing greater emphasis on constraints that are not well met45. This allows user-defined design con-
straints to be added effortlessly as penalty functions, without derivation of Lagrangian multipliers46.

Results
Case study one
To optimize the C-shape iron core in case study one, the MVP field neural network NNθ and NNφ are initialized 
according to the “Methods” section. The training function (Eq. 1) is then calculated on point sets sampled from 
the given reference domains Ze ,Zg ,Zc1 ⊂ �z , Zc2 ⊂ �z_in , Zb,Zc3 ⊂ ∂�z , Zc4 ⊂ �z_sc1 ∪�z_sc2 ∪�z_q , and 
Zd ⊂ �z_q.

NNθ ◦ NNφ represents the composition of the shape and the physics neural networks, projecting a reference 
coordinate z to the predicted MVP value on the corresponding spatial coordinate x . Lb in Eq. (1) calculates the 
strong form PDE residual (Eq. 6) for each collocation point, which is the most commonly seen domain loss in 
PINNs. Le facilitates a Monte Carlo estimation of the magnetic energy (Eq. 7). A Jacobian factor is multiplied 
to Le as the collocation points are no longer uniformly distributed on the projected spatial coordinate x . A valid 
MVP solution should minimize this energy loss. Notice that minimizing the strong form Lg or the weak form 
Le would produce the same MVP field solution. However, incorporating both forms into the final loss function 
proves to be advantageous in navigating local minima, especially when seeking a continuous MVP solution on 
a heavily discontinuous permeability field (more details discussed in SI Appendix). The Dirichlet boundary 
condition is addressed in Lb which penalizes any non-zero boundary MVP. Lc1 preserves topology by constrain-
ing Jacobian within a certain positive range to avoid infeasible or highly distorted shape changes. Lc2 penalizes 
volume change in the iron core. Lc3 and Lc4 prohibit deformation at the outer boundary, current sources, and 
the query region as they are fixed external objects that are not part of the design variables. Ld is the objective 
function with a target value for the vertical component of the magnetic flux density in the query domain. To 
best satisfy the design goal, any Bq values that deviate from Btarget will be penalized. The total training loss L is 
a weighted summation of the abovementioned loss components. Self-adaptive updating is utilized to automati-
cally adjust the loss weights except for �e which has a fixed value of 3.3. This is due to the fact that the minimal 
value of magnetic energy Le isn’t zero. Meanwhile, we notice that all loss terms should ideally stay at 0 values 
regardless of the projected shape, except for Le which should only be minimized given a fixed NNφ . Therefore, ∂Le

∂φ
 

is excluded from the computation graph so that the energy minimization loss Le only affects the physics model 
NNθ without directly deforming NNφ.

To calculate the total training loss, 35,600 random collocation points are sampled over the entire domain �z 
and shared by Ze , Zg ,Zc1 . Another 5000 random collocation points are sampled in the reference iron core domain 
for Zc2 . 6000 uniform boundary points are sampled for Zc3 . 300, 300, and 66 points are sampled for Zsc1 , Zsc2 
and Zq to constrain shape change. The sampled training points together with the neural networks (architectures 
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detailed in the “Methods” section) take approximately 4 GB of GPU memory. NNφ is first initialized to make 
identity prediction z = NNφ(z) over the entire domain �z through 8000 epochs of supervised training. At this 
initialization stage, the ground truth label is identical to the input coordinate z . NNφ and NNθ are then updated 
simultaneously by minimizing the complete loss function L in Eq. (1). Initial learning rates are set as 0.001 for 
φ and 0.002 for θ , where both decay exponentially by a factor of 0.9 for every 1000 epochs, with a total of 60,000 
epochs.

We first solve the magnetic flux density field B for the initial reference C-shape iron core by holding NNφ to 
be the constant identity mapping. The solution is shown in Fig. 3A with a vertical flux density of Bq = − 0.34 at 
the query region. A similar value of Bq = − 0.36 is computed by FEA with COMSOL, validating the formula-
tion of the physics loss. Figure 3B shows the optimized iron core shape projected by the trained NNφ when the 
design objective is set as Btarget = −0.55 . It can be observed that the training process attempts to pull the iron 
core towards the query region to enhance the magnetic flux around the query domain. The training curves are 
plotted in Fig. 4A, including the evolution of magnetic energy, governing equation (PDE) residual Lg , shape con-
straint losses Lc1 − Lc4 , and the queried vertical magnetic flux density. We notice that all zero target constraints 
(including Ld ) in the training curves converge relatively fast within 10,000 epochs, whereas the remaining train-
ing process focuses on correctly resolving the physical fields by minimizing the magnetic energy. The optimized 
iron core contour is exported and validated in COMSOL, providing Bq = − 0.491 . The difference between the 
queried flux density from PINN ( Bq = − 0.55 ) and COMSOL ( Bq = − 0.491 ) is likely caused by two major 
sources: numerical discrepancy between Monte Carlo sampling and shape function approximation (FEA), and 
balance among multiple penalty losses over training.

We also explored optimizing the iron core shape by switching the design objective ( Ld in Eq. 1) to Ld = − |Bq| , 
aiming to directly reduce the vertical flux density within the query area. In this case, the objective function Ld 
lacks a zero minimum. As a result, a fixed value 0.005 is assigned to �d , with adaptive weight update disabled. 
Minimizing Bq without a target value makes the problem more challenging as it permits the violation of physical 

Figure 3.   Comparison of domain shapes and magnetic flux density fields among the reference (A), the 
optimized iron core for Btarget = − 0.55 (B), and the optimized iron core for maximizing magnetic flux density 
(C). The second row shows a point cloud approximation of the reference shape and the optimized shapes. 
Boundaries are highlighted to help distinguish different subdomains. For better visualization, the plots only 
show 10% of the actual point cloud used for training.
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and shape constraints, especially with extreme Bq values. To avoid exhaustive hyperparameter searching, we 
choose to record the training progression at every 500 epochs, subsequently selecting a suitable checkpoint 
model based on the observed training trends.

Figure 4B plots the training progress during the optimization of the iron core to achieve the minimum value 
of −|Bq| . We select the model from epoch 15,000 as the checkpoint, given that it manifests the lowest energy and 
Bq values before the shape constraints and PDE residual begin to evolve sharply. Post the 15,000 epoch mark, the 
shape projection model, denoted as NNφ , appears to either inflate the volume of the iron core or induce unphysi-
cal shape changes (negative Jacobian). This leads to hallucinated readings for magnetic energy and flux density. 
It is worth noting that the direct minimization of −|Bq| enables the two neural networks to adapt more rapidly 
compared to the approach where a target value, |Bq − Btarget|2 , is specified. This acceleration is mainly attributed 
to the small constant weight of 0.005 associated with the direct minimization of objective function. In contrast, 
when a specific target value is present, the use of initially randomized adaptive weights takes additional epochs 
to rectify the physical field prediction. However, the application of adaptive weights in front of a zero-target loss 
can greatly alleviate the efforts required for hyperparameter tuning.

In Fig. 3C, we present the iron core’s optimized shape and the corresponding predicted magnetic flux den-
sity. The deformation observed here is similar to that in Fig. 3B, but with the core tips drawn more proximate 
to the query region. Specifically, while Fig. 3B shows a tendency to “bend” the core tips towards the query area, 
Fig. 3C seems to “extend” the tips by eliminating material from other regions. Parameterizing the shape change 
through a coordinate projection neural network brings huge freedom to the design space and yields infinite 
solutions, which depend both on the form of objective function and hyperparameters, especially fixed weights �e 
and �d . The projected iron core contour is exported and validated in COMSOL, giving Bq = − 0.561 , a stronger 
magnetic flux than the previous targeted optimization. However, the symmetric form of NNφ as outlined in Eq. 
(12), coupled with the penalty on positive Jacobian, prevents the algorithm from extending the iron core further 
towards the query domain. It is not surprising that the shape projection PINN overestimates the design objective 
( Bq is approximately − 0.7 from Fig. 4B), primarily owing to the involvement of multiple penalty constraints.

Case study two
The electromagnetic torque generated by an iron core subject to a uniform magnetic flux density boundary 
condition (illustrated in Fig. 1B) can be calculated by Eqs. (10) and (11) in the “Methods” section based on the 
MVP field solution NNθ . Therefore, to find a proper iron core shape NNφ that generates some target torque, we 
minimize the following training function (Eq. 2) that is calculated on point sets sampled from the reference 
domains Zg ,Zc1,Zc2 ⊂ �z1 , Zb1,Zc3 ⊂ ∂�z , Zb2,Zc4 ⊂ ∂�z2 , and Xd ⊂ Ŵ:

The governing equation residual loss Lg remains the same as in Eq. (1). As we are assuming infinite permeability 
over the iron core domain �z2 (Fig. 1B), both NNφ and NNθ are defined only in �z1 . Therefore, Neumann bound-
ary conditions (Eqs. 8 and 9) are needed on ∂�z2 to correctly solve the MVP field. Although the magnetic flux 
density B isn’t properly defined in a domain with infinite permeability, the tangential component of magnetic 
field strength H should always be 0 due to the infinite denominator as implemented in Eq. (2) Lb1 . Meanwhile, 
the energy loss Le is no longer necessary as the entire computation domain is homogeneous. Lc1 is again added to 
penalize any unphysical deformation, while Lc2 conserves the total volume. Lc3 holds still the external boundary 
of the computation domain so that only the iron core is deformed. Lc4 penalizes any large curvature on ∂�z2 that 
is beyond 5. The design objective function Ld computes the squared distance between the target torque and the 
magnetic torque which is numerically estimated on Ŵ . The total training loss L is again a weighted summation 
of all the loss components in Eq. (2) through the self-adaptive training scheme.

To calculate the total training loss, 30,000 random collocation points are sampled within the vacuum domain 
�z1 and shared by Zg ,Zc1,Zc2 . 6000 uniform boundary points are sampled and shared by Zb1,Zc3 . 1250 uniform 
boundary points are sampled and shared by Zb2,Zc4 . A set of 800 equally spaced query points Xd is sampled 
along Ŵ (a circle of radius 4, centered at the origin) to estimate τ . Notice that Xd (and Ŵ ) is defined on the pro-
jected space x instead of the reference space z to avoid unnecessary design parameters. NNφ is first initialized 
to make identity prediction z = NNφ(z),∀z ∈ Zg through 8000 epochs of supervised training. NNφ and NNθ 
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are then updated simultaneously by minimizing the complete loss function L in Eq. (2). Initial learning rates 
are set as 0.0005 for φ and 0.005 for θ , where both decay exponentially by a factor of 0.9 for every 1000 epochs, 
with a total of 28000 epochs.

Figure 5 shows the evolution of ∂�z2 projected by NNφ over the training procedure, with a zero target torque 
τtarget = 0 . The pronounced permeability disparity between the iron core and the vacuum causes the external 
boundary’s uniform magnetic flux density B = [0, 1]T to distort. This distortion results in the MVP field exerting 
a torque on the initially inclined elliptical iron core. When estimated using FEA simulation and assuming 
a permeability gap multiplied by 1000, this torque amounts to 2.849. The zero torque optimization problem 
technically has infinitely many solutions, including any ellipses whose main or minor axis is aligned with the 
external magnetic flux density. It is observed that the training process eventually converges to the circular shape 
as shown on the bottom left of Fig. 5. This shape seems to be the optimization algorithm’s preference for any 
random seed. The magnetic flux density inside of the iron core is not well-defined and is thus masked from all the 
plots. The final contour (projected Xd ) is exported and verified with FEA, with iron core permeability set to 1000. 
According to FEA result, the optimized iron core produces a minuscule torque of 0.017, a value substantially 
smaller than the original torque. It’s worth noticing that our shape projection parameterization method offers 
a versatile way to incorporate design constraints, like the curvature penalty in Eq. (2). However, it does present 
challenges in converging precisely to an optimal solution, such as a perfect circle.

Figure 6 shows the evolution of ∂�z2 projected by NNφ over the training procedure, under a different sce-
nario with a target torque of τtarget = −3 . As the original shape generates a torque of 2.849, we expect the final 
optimized shape to be similar to the reflection of the original ellipse about the vertical axis. The training process 
eventually converges to the shape as shown on the bottom left of Fig. 6, with a peanut-like shape inclined to the 
left. Owing to the application of Jacobian penalty Lc1 and curvature penalty Lc4 , a smooth shape transition can 
be observed where the iron core gets compressed gradually along its main axis and then extended to the opposite 
direction. The magnetic flux density inside of the iron core is again masked due to infinite permeability. The final 
contour is exported and verified in COMSOL, with iron core permeability set to 1000. The optimized iron core 
reports a torque of −3.105 from FEA simulation, agreeing well with the design objective.

Discussion
The rapid advancement of AI has showcased its capabilities in tackling complex material design challenges. 
Among various methodologies, PINN is notable for its ability to perform self-supervised learning in physics 
problems. Several researchers have demonstrated the feasibility of optimizing material topology using physics-
informed machine learning, showing great promise. Nonetheless, a potential obstacle for the broad adoption of 
PINN is its inherent need for continuity, particularly in scenarios with multiple domains having distinct proper-
ties. Oftentimes, this continuity is achieved by introducing smooth transition functions at domain boundaries. 
However, this approximation can lead to inaccuracies when the property difference is significant.

Figure 5.   Evolution of the projected iron core contour over training, when target torque is set to 0. The final 
optimized contour shape and flux density field are shown on the bottom left.
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In this work, we addressed the field discontinuity challenge in physics-informed material design optimization 
problems by introducing the shape projection neural network NNφ . Unlike a direct shape definition through 
boundary curve parameterization, NNφ parameterizes the shape in an implicit manner, thus requiring a point 
cloud to keep track of the reference shape. However, this approach is very beneficial in the context of physics-
informed machine learning where the geometric features of all training points (including domain collocation 
points and boundary points) should be differentiable from an objective function. Once the reference point cloud 
is projected through NNφ , it can be used as training points to compute the residual loss of any physics field neural 
network NNθ or a design objective. The cumulative loss function is then backpropagated to correct physics ( θ ) 
and shape design ( φ ) simultaneously.

The proposed framework is applied to optimize iron core designs in two benchmark magnetostatic problems: 
shape optimization of a C-shape iron core to generate a concentrated magnetic field in a query region subject to 
current sources, and shape optimization of an elliptical iron core to generate target electromagnetic torque subject 
to a uniform magnetic flux density boundary condition. FEA simulation is used to validate the performance 
of the optimized iron core designs. The following takeaways can be summarized from our results: The shape 
projection method offers robust expressiveness for parameterizing a wide range of shapes with both smooth and 
sharp features; Physics can be solved with domain decomposition, eliminating the need for transition function 
or intermediate material properties; This framework is capable of solving physics and optimizing domain shapes 
simultaneously, operating entirely without the need for external data; The training process is efficient (both case 
studies take approximately 1 hour to train) and accurate (validation result shows a small discrepancy from the 
target value); Classical optimization techniques (either density-based or level-set parameterizations) require strict 
derivation of design sensitivity which is tedious or sometimes intractable, while adding custom constraints and 
design objectives is straightforward (as seen in Eqs. 1 and 2) through the proposed framework by incorporat-
ing penalty functions directly into the self-adaptive training loss. On the other hand, the following perspectives 
should be further studied or improved in the future: The current framework only allows shape optimization on a 
fixed topology; The involvement of constraints as penalty loss functions makes the optimization process difficult 
to converge precisely at the target objective value; The shape neural network tends to learn a projection that’s in 
the vicinity of the reference domain shape, emphasizing the importance of shape initialization (reference point 
cloud). Future work can be dedicated to studying the effect of reference shape, and domain reinitialization to 
address unsatisfactory reference shapes. Besides, a more comprehensive investigation is needed to understand 
how various hyperparameters (such as model architectures, weight initialization, learning rate, optimization 
scheduler, etc.) affect the training performance, especially the density of collocation points which dominates the 
accuracy of shape and physics approximations.

Figure 6.   Evolution of the projected iron core contour over training, when target torque is set to − 3 . The final 
optimized contour shape and flux density field are shown on the bottom left.
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Methods
Governing physics equations
The governing PDEs for a magnetostatic problem in 2D space can be expressed in the following general forms:

where A is the out-of-plane component ( e3 ) of the magnetic vector potential (MVP) field which is treated as a 
scalar field in the 2D plane and B is the magnetic flux density vector. The introduction of MVP field automatically 
satisfies Gauss’s law requiring the divergence of B to be always 047. H is the magnetic field strength vector, µ is the 
magnetic permeability, J is the scalar value current density (perpendicular to the 2D plane), and the subscript x 
of the curl operator indicates the corresponding coordinate system that spatial differentiation is taken. Proper 
Dirichlet or Neumann boundary conditions on ∂� are needed for a unique solution of A or B . When permeability 
is a constant locally, Eqs. (3–5) can be rewritten more compactly as:

One can alternatively obtain the MVP solution to a 2D magnetostatic problem by minimizing the magnetic 
energy EB defined by

Evaluating EB requires the magnetic field over the entire computation domain � . EB is proven to a minimum 
when the weak form of Eqs. (3–5) is solved48.

When domain decomposition is needed, one can use Divergence and Green’s Theorem to rewrite Eqs. (3) 
and (4) as Neumann boundary conditions on the domain boundary (interface):

where the normal component of B and the tangential component of H should always remain continuous across 
any material boundary; the subscript indicates the region where the fields are evaluated. Note that all physical 
quantities are dimensionless in this work.

Given the magnetic flux density field B , one can further calculate the magnetic stress tensor T and magnetic 
torque τ:

where I , r , n , and Ŵ denote the identity matrix, position vector, normal vector, and some integration trajectory.

Neural network architectures
In this work, we use neural networks to define the MVP field as NNθ : �x → R and the shape projection param-
eterization as NNφ : �z → �x . NNθ takes the spatial coordinate x ∈ �x as input and predicts A. As the MVP 
field is always continuous over the space regardless of material properties, it is more suitable to be represented 
as neural networks. For the conciseness of mathematical expressions, the predicted vector form MVP field 
NNθ (x)e3 is abbreviated as NNθ (x) in this work. NNφ takes the material coordinate z ∈ �z as input and predicts 
the corresponding spatial coordinate. This projection helps define the actual optimized shape �x projected from 
a given reference shape �z through φ . In the first case study, the shape projection is defined to be an odd function 
in the vertical coordinate to enforce symmetry:

While in the second case study, the shape function is simply:

Both NNθ and N̂Nφ share the same architecture with 6 hidden layers of width 50 and the hyperbolic tangent 
activation. Note that the network architecture is directly adapted from31 without hyperparameter tuning, as the 
focus of this work is on the general physics-informed shape optimization framework. The training of NNφ and 
NNθ is conducted using Pytorch and DeepXDE on an NVIDIA A40 GPU. Training point sampling, loss func-
tions, and optimization strategies are detailed in the corresponding sections.

(3)B = ∇x × A = ∇x × (Ae3)

(4)∇x ×H = J = (Je3)

(5)B = µH

(6)∇2
xA = −µJ

(7)EB =

∫

�

(
1

2µ
|B|2 − JA)d�.

(8)B1 · n = B2 · n

(9)H1 · t = H2 · t

(10)T =
1

µ

(

BBT −
1

2
I|B|2

)

(11)τ =

∫

Ŵ

r × (Tn)dS

(12)NNφ(z) = [z1, z2]
T + [1, 1]T · N̂Nφ(z1, z2)+ [1,−1]T · N̂Nφ(z1,−z2)

(13)NNφ(z) = [z1, z2]
T + N̂Nφ(z)
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