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Relationship between prediction 
accuracy and uncertainty 
in compound potency prediction 
using deep neural networks 
and control models
Jannik P. Roth  & Jürgen Bajorath *

The assessment of prediction variance or uncertainty contributes to the evaluation of machine 
learning models. In molecular machine learning, uncertainty quantification is an evolving area 
of research where currently no standard approaches or general guidelines are available. We have 
carried out a detailed analysis of deep neural network variants and simple control models for 
compound potency prediction to study relationships between prediction accuracy and uncertainty. 
For comparably accurate predictions obtained with models of different complexity, highly variable 
prediction uncertainties were detected using different metrics. Furthermore, a strong dependence 
of prediction characteristics and uncertainties on potency levels of test compounds was observed, 
often leading to over- or under-confident model decisions with respect to the expected variance 
of predictions. Moreover, neural network models responded very differently to training set 
modifications. Taken together, our findings indicate that there is only little, if any correlation between 
compound potency prediction accuracy and uncertainty, especially for deep neural network models, 
when predictions are assessed on the basis of currently used metrics for uncertainty quantification.
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Predictions of most machine learning (ML) models including all deep learning  models1 cannot be rationalized 
via human reasoning, which is often referred to as the “black box” nature of such  models2. Hence, as the use of 
ML is increasing in many areas of science, including pharmaceutical  research3,4, there also is increasing interest 
methods for ML model  explanation5–7. In pharmaceutical research, the prediction of various molecular proper-
ties, in particular, biological activity, is a primary application of standard ML and deep  learning4,8 models and 
a major focal point of approaches for model  explanation6. Methods for explaining ML predictions are comple-
mented by approaches for assessing the confidence or uncertainty with which a model reaches predictions. First 
and foremost, “uncertainty quantification” (UQ) of predictions has gained popularity, especially for deep learning 
 models9,10. For instance, UQ helps to better understand inconsistent model performance across different applica-
tion domains and aids in the selection of appropriate metrics for evaluating model  performance9. In medicinal 
chemistry, deep neural network models are increasingly used for different applications, even though their perfor-
mance is often at best on par with simpler ML models, for instance, in molecular property  prediction11. This is at 
least in part due to the situation that medicinal chemistry data sets are typically limited in size, making it difficult 
for data-hungry deep learning techniques to reach high performance  levels12. For computationally complex 
models, UQ techniques such as dropout, deep ensembles, or mean–variance-estimation can be  employed13,14. 
However, the performance of UQ methods also depends on data set features and model  architectures15,16, making 
it often complicated to assess ML model performance in a consistent manner, especially when the performance 
itself displays substantial data set dependence. Some ML approaches yield uncertainty estimates. For exam-
ple, Gaussian process modeling includes calibrated uncertainties, but is not widely applied in pharmaceutical 
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research, due its vulnerability to high-dimensional molecular (descriptor) representations that are commonly 
used in chemoinformatics and medicinal  chemistry12,17. For ML methods such as random forest (RF) and support 
vector machine (SVM) or k-nearest neighbor (kNN) models, which are mainstays in chemoinformatics, a variety 
of model-specific UQ techniques has been  introduced18–23. However, the use of model-agonistic UQ estimates 
is generally preferred to enable direct comparisons of predictions made by different types of ML models. Thus 
far, generally applicable model ensemble-based techniques have predominantly been used for UQ in compound 
property  predictions15,24. To this end, alternative UQ metrics can be employed that conceptually differ and rely 
on specific  assumptions25,26. For example, the frequently used negative log-likelihood (NLL) or miscalibration 
area metrics assume an underlying distribution of prediction errors.

In this work, we have analyzed prediction uncertainty of deep neural networks and simple control methods 
in compound potency prediction and explored relationships between prediction accuracy and uncertainty. For 
the assessment of prediction variance and model confidence, different performance measures and alternative 
models were investigated.

Methods
Compounds and activity data
Compounds and activity measurements were extracted from ChEMBL (version 33)27. Compounds with a 
molecular mass of less than 1000 Da, an assay confidence score of 9, and a numerically specified potency  (IC50) 
value were selected. Only assays with single proteins were considered. Compounds with a potency of less than 
10 μM or more than 10 pM were disregarded. If multiple potency values were reported for the same compound-
target pair, the values were averaged and only retained if the potency values fell into the same order of magnitude 
(tenfold). Undesired pharmaceutical targets such as anti-targets (hERG, cytochrome P450, P-glycoprotein, 
albumin, UDP-glucuronosyltransferase, glutathione S-transferase, N-acetyltransferase, or sulfotransferases), 
were removed prior to filtering for potential assay interference compounds (activity artifacts) using publicly 
available filters including filters for pan assay interference compounds (PAINS)28, as implemented in  RDKit29, Eli 
Lilly Medicinal Chemistry  Rules30, and potential  aggregators31. Only human targets were considered. A total of 21 
curated compound activity classes with more than 1000 qualifying compounds and diverse (functionally distinct) 
pharmaceutical targets were selected, as reported in Table 1, representing some of the largest high-quality activity 
classes that are currently available. All compounds were represented using folded Morgan  fingerprints32 with a 
length of 2048 bits and a bond radius of 2. The fingerprints were generated using  RDKit29.

Training data modification
To explore potential effects of different training data distributions on the performance of UQ methods, the 
activity data were modified in different ways.

Table 1.  Activity classes. For each activity class, the ChEMBL target ID, number of compounds, and target 
name are provided.

ChEMBL target ID Compounds Target

279 2567 Vascular endothelial growth factor receptor 2

220 2337 Acetylcholinesterase

325 2169 Histone deacetylase 1

203 1695 Epidermal growth factor receptor erbB1

1914 1679 Butyrylcholinesterase

4005 1640 PI3-kinase p110-alpha subunit

1865 1565 Histone deacetylase 6

260 1555 MAP kinase p38 alpha

230 1531 Cyclooxygenase-2

2409 1474 Epoxide hydratase

2039 1473 Monoamine oxidase B

284 1437 Dipeptidyl peptidase IV

4822 1373 Beta-secretase 1

3130 1358 PI3-kinase p110-delta subunit

3717 1328 Hepatocyte growth factor receptor

1,163,125 1191 Bromodomain-containing protein 4

3267 1188 PI3-kinase p110-gamma subunit

4296 1178 Sodium channel protein type IX alpha subunit

262 1178 Glycogen synthase kinase-3 beta

2971 1074 Tyrosine-protein kinase JAK2

333 1005 Matrix metalloproteinase-2
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Balanced data
The training set was split into three potency bins:  pIC50 ≤ 5.5, 5.5 <  pIC50 ≤ 7.5, and  pIC50 > 7.5. The data was 
balanced by counting the number of samples in each of these three bins. The number of samples in the smallest 
bin determined how many compounds were randomly selected from the other two larger bins (minority 
sampling). This procedure generated training sets in which the number of compounds per potency bin was 
identical.

Reduced data
A training set was split into three bins, as described above. Compounds in the central bin were removed from 
the training set. Since most compounds in activity classes from medicinal chemistry are active in the micromolar 
range, corresponding to the central bin, this data reduction made it possible to study the effects of removing the 
compounds in the most populated potency sub-range on the performance of UQ methods.

Models
For potency prediction, a variety of regression models were derived. For each activity class, 10 random compound 
splits (70% training data, 30% test data) were carried out. For each split, hyperparameter optimization was 
performed for ML models using training data. Regression model performance was evaluated using the mean 
squared error (MSE) and the coefficient of determination  (R2), which are commonly used metrics for regression 
tasks across different applications domains.

Ensembles of machine learning models
Ensembles of kNN and decision tree (DT) models were implemented using scikit-learn33. DT ensembles represent 
RF models. The following hyperparameters were optimized for all ensembles using tune34: max_samples (from 
0.05 to 1.00), max_features (from 0.05 to 1.00) and n_estimators (100, 150, or 200). For kNN models, the number 
of neighbors (1, 3, or 5) was optimized. Tanimoto  distances35 were used for the kNN models. Five-fold internal 
cross-validation was carried out during optimization and the MSE was used as the loss function.

Feed‑forward neural network with dropout
Feed-forward neural networks (FFNNs) were implemented using  PyTorch36. Two different architectures 
introduced  previously10,16 were employed including FFNNs consisting of four hidden layers with sizes 1000, 1000, 
100, 10, and the final output layer of size 1 (termed FFNN large). In addition, FFNNs with two hidden layers of 
size 300 were generated (FFNN small). The ReLU activation function was used in all hidden layers. The Adam 
optimizer with a learning rate of 1 ×  10–3 was  employed37. A batch size of 32 and a total of 600 epochs were used. 
Dropout layers with rate of 10%, 20%, or 50% were added between all hidden layers. The MSE was used as the 
loss function. For each model, 100 prediction trials were carried out to generate statistically sound predictions.

Mean–variance estimation
Mean–variance estimation networks (MVEs) were also implemented using  PyTorch36. Two different architectures 
were  employed10 including MVEs consisting of four hidden layers with sizes 1000, 1000, 100, 10 and the final two 
output layers of size 1 (MVE large). In addition, MVEs with two hidden layers of size 300 were generated (MVE 
small). The ReLU activation function was used on all hidden layers and the Adam  optimizer37 with a learning 
rate of 1 ×  10–3. A batch size of 32 was applied and the model was trained for a maximum of 4000 epochs using 
an early termination criterion if the error did not decrease over 100 epochs. As a loss function, NLL assuming 
a normal distribution was used.

Single machine learning models
For comparison with neural networks, basic ML models were implemented using scikit-learn33. A single DT and 
kNN were used. Within each split of the kNN models, hyperparameter optimization of the number of neighbors 
(1, 3, or 5) was carried out using  tune34 with five-fold internal cross-validation was performed. The MSE was 
used as a loss function.

Metrics
Negative log likelihood
NLL is a widely applied score in  ML38,39. For a regression task assuming a normal distribution, the NLL is 
calculated as,

where D is the data set containing |D| samples. NLL provides a balance between the actual error of the prediction 
and the corresponding estimated uncertainty.

Miscalibration area
The miscalibration area quantifies how well predicted uncertainties are calibrated with respect to an underlying 
 distribution40. This is accomplished by comparing the fraction of compounds falling within x standard deviations 
of the mean and the expected fraction based on an assumed distribution with the variance equal to the predicted 
uncertainty. As an example, assuming a normal distribution, one expects 68% of the predicted samples to fall 
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within one standard deviation. The miscalibration area calculates the difference between the theoretical and 
observed ratio and for multiple instances of x and integrates over the entire data range. Thus, the miscalibration 
area measures if a model is systematically over- or underconfident. A miscalibration area of zero indicates a 
well-calibrated model.

Notably, this metric has a potential shortcoming. As a consequence of the integration, over- an underconfident 
predictions might cancel out, leading to an overall miscalibration area close to zero, although a model might 
not be well  calibrated10. Therefore, the absolute miscalibration area was implemented, which sums the absolute 
values of deviations over the entire data set. Consequently, the absolute miscalibration area fully accounts for 
deviations but no longer indicates whether a model might be model is over- or underconfident. By comparison 
with the original miscalibration area value, potential error cancellation effects can be identified. In the following, 
the miscalibration area is denoted ‘A’ and the absolute miscalibration area ‘Aabs’ (note that the absolute value of 
‘A’ is not equal to ‘Aabs’). The absolute miscalibration area is related to the calibration error that calculates the 
squared deviation from the assumed  distribution41.

Spearman’s rank correlation coefficient
Spearman’s rank correlation coefficient ρ quantifies the correlation of rankings for two different variables. Its use 
is motivated by the notion that predictions with large uncertainties should also have larger deviations from the 
true value. For two vectors  v1 and  v2, we denote their rankings as  rv1 and  rv2, respectively. The Spearman rank 
correlation coefficient ρ is calculated as

where cov is the covariance and std the standard deviation of the respective vector rankings. Notably, any 
monotonically increasing function applied to these vectors retains the value of ρ. The Spearman’s rank correlation 
coefficient is calculated to quantify potential correlation between the squared prediction error and the predicted 
uncertainty.

Results
Performance of machine learning models
Initially, the performance of the different ML models described above was determined across all activity classes 
in Table 1 and compared. Boxplots in Fig. 1 summarize compound potency predictions over independent trials 
on the basis of  R2 and MSE values respectively.

The models produced overall accurate, stable, and closely corresponding predictions with median MSE 
values ~ 0.6 and  R2 values of ~ 0.6–0.7, with the exception of MVE models and the single DT model that were 
less accurate, albeit by only a small margin, with median MSE values of ~ 0.8–0.9 and  R2 values of ~ 0.4–0.5. By 
contrast, kNN, the simplest of all approaches, essentially met the prediction accuracy of the complex FFNN 
models, consistent with earlier findings for systematic compound potency predictions over a wide range of 
activity  classes11,42. Different FFNN versions displayed very similar performance. While single kNN and kNN 
ensembles displayed only minor differences, with median MSE values of 0.58 ± 0.14 to 0.50 ± 0.12, respectively, the 
DT ensemble (0.50 ± 0.10) improved the accuracy of a single DT (0.87 ± 0.18). However, performance differences 
between all models were confined to small median  R2 and MSN intervals of ~ 0.3 and ~ 0.4, respectively. The 
generally narrow value distributions in Fig. 1 (except for MVE) also indicated very similar predictive performance 
across the different activity classes.

Uncertainty quantification
Next, UQ was carried out for all predictions. Figure 2 shows the results obtained on the basis of NLL,  Aabs, and 
ρ values for the different models. For NLL and  Aabs, a normal distribution of prediction errors is assumed. NLL 
balances prediction errors with corresponding prediction uncertainties (a low value indicates small prediction 
errors and uncertainties) while  Aabs measures differences between the actual error distribution and the assumed 
normal distribution (a value of 0 means that there is no difference).

For UQ, different trends were observed in the presence of overall closely corresponding prediction accuracies. 
For NLL, most values of the kNN and DT ensembles were close to 0 (with very narrow value distributions). 
Similarly low NLL values were obtained for MVEs (with some statistical outliers). By contrast, larger values were 
obtained for FFNNs (small and large) with a dropout rate of 50%, which further increased significantly with 
decreasing dropout rates (with largest median values exceeding 10). For  Aabs, closely corresponding trends were 
observed, except that value distributions for MVEs were in this case much broader than for FFNNs. Given that 
the maximal value of  Aabs is 0.5, some large deviations were detected (with median values of ~ 0.3). Thus, on the 
basis of both metrics, comparably accurate predictions using different methods displayed in part large differences 
in prediction uncertainty, especially for FFNN variants with varying dropout rates.

Rank correlation coefficient ρ was calculated to measure the correlation between the observed prediction 
errors  (R2) and the predicted variance. For kNN and DT ensembles, limited correlation with median ρ values 
of ~ 0.4 was detected. By contrast, for neural network methods, values close to 0 were obtained, indicating the 
absence of rank correlation between actual prediction errors and estimated uncertainties, consistent with the 
findings discussed above.

ρ(v1,v2) =
cov(rv1,rv2)

std(rv1)std(rv2)
,
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Potency interval dependence of predictions
As an alternative to applying the NLL and  Aabs metrics, we also assessed the confidence of a predictive model 
by assuming a normal distribution of prediction uncertainties and monitoring the proportions of compounds 
falling within one standard deviation of the mean. For this analysis, test compounds were assigned to different 
potency intervals (bins) spanning the logarithmic potency range from 4 to 10, and the potency predictions 
reported in Fig. 1 were separately monitored for test compounds falling into each bin. As already indicated by 
the narrow value distributions for the different activity classes in Fig. 1, we found that the results of potency 
interval-based analysis of the predictions were closely corresponding for the different activity classes. Therefore, 
in Fig. 3, representative results are presented for activity class 279 (Table 1) and additional examples are shown 
in Supplementary Fig. S1.

In the presence of a normal distribution, 68.27% of the predicted test compounds are expected to fall within 
1.0 σ. Figure 3 shows the observed ratios for test compounds in each potency bin. If the ratio was smaller for 
a given model than the expected one (68.27%), the model was considered “over-confident” because it under-
predicted uncertainties; if the observed ratio was larger, the model was considered “under-confident” because 
it over-predicted uncertainties relative to the normal distribution. Figure 3 clearly shows that model confidence 
varied across compound potency ranges. Specifically, for kNN and DT ensembles, which yielded overall only 
small  Aabs values (Fig. 2), the models tended to be over-confident, especially for weakly potent, but also highly 
potent compounds. By contrast, the models tended to be under-confident for compounds with intermediate 
potency (representing the largest fraction of compounds per data set). Hence, the overall small  Aabs values 
primarily resulted from averaging over the entire test sets. MVE and FFNN models yielded similar potency 
interval-dependent distribution patterns, but at different compound proportion levels. MVE models exhibited 
much broader value distributions (larger variance) than the ensembles and tended to be slightly over-confident 
across the entire potency range (in the presence of largest prediction errors, Fig. 1). Moreover, FFNN models 
had smaller variance than MVE models, but were strongly over-confident across the entire potency range. 
Thus, monitoring predictions for test compounds in different potency intervals revealed heterogeneity of model 
confidence levels (Fig. 3) in the presence of different UQ characteristics (Fig. 2).

Figure 1.  Performance of different approaches for compound potency prediction. The prediction accuracy of 
kNN and DT ensembles, MVE small, MVE large, FFNN small, FFNN large, with different dropout rates (%), a 
single DT, and kNN is evaluated on the basis of  R2 (top) and MSE values (bottom). Results are reported for all 
activity classes.
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Figure 4 compares the prediction errors and associated uncertainties for different models derived using the 
same training set and reveals consequences of the potency interval-dependent heterogeneity for exemplary pre-
dictions of three test compounds. Here, the best performing MVE and FFNN variants (Fig. 1) were selected (i.e. 
MVE small and FFNN large with 50% dropout, respectively). Although the prediction uncertainties were similar 
for each model and test compound (except for one instance of the FFNN model), the prediction errors increased 
for increasing compound potency (where potency values were consistently underpredicted). Notably, none of 
the models predicted the potency of the highly potent compound with reasonably accuracy, yielding prediction 
errors of one to two orders of magnitude. The difference in calibration quality across the potency range is analo-
gous to results obtained for prediction  quality42. The effect of the data distribution is analyzed in detail below.

Calibration dependence on training data
In light of the findings discussed above, we re-trained all models for two training set variants, in which the com-
pound population was balanced across all potency bins or reduced by omitting training compounds falling into 
the intermediate potency sub-range 5–7. Then, test predictions and model confidence assessment were repeated 
for re-calibrated models. Again, closely corresponding results were obtained for the different activity classes. 
Figure 5 compares the predictive performance of the original and re-calibrated models for class 279 and Fig. 6 
reports the confidence analysis for this class (additional examples are shown in Supplementary Fig. S2). At the 

Figure 2.  Uncertainty quantification for different models. For the predictions reported in Fig. 1, UQ is carried 
out using NLL (top),  Aabs (middle) and ρ (bottom) are shown. Results are reported for all activity classes.
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Figure 3.  Potency interval-dependent model performance. For activity class 279, predictions of selected 
models were monitored for test compounds falling into different potency intervals. The dashed line indicates the 
theoretical ratio of compounds within one standard deviations of the mean assuming a normal distribution of 
prediction uncertainties. The ratio of compounds predicted to be within 1.0 σ by a model is plotted for different 
potency bins.

Figure 4.  Prediction error vs. uncertainty. For activity class 279, the prediction error (x-axis) is reported for 
ensemble of kNNs and DTs, the MVE small, and the FFNN large with 50% dropout rate. Prediction uncertainty 
is indicated by error bars with a width of ± 1.0 standard deviations. Three exemplary test compounds were 
selected from low, intermediate, and high potency intervals (from the left to the right).
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top of Fig. 6, training compound density is shown for the original training set (with predominance of compounds 
having intermediate potency), the balanced, and reduced set.

Figure 5 reveals different changes in the performance of models derived on the basis of modified training sets. 
For kNN and DT ensembles and the FFNN model, prediction errors slightly increased for original over balanced 
to reduced training data sets, indicating that smallest global errors were largely determined by test compounds 
with intermediate potency. Since compounds with intermediate potency were not contained in reduced training 
sets, prediction errors of the resulting models were largest on a relative scale. Nonetheless, even these models 
only yielded limited prediction errors (within one order of magnitude). By contrast, the MVE model departed 
from the prediction characteristics of the others. Here, changes as a consequence of training set modifications 
were much larger, with  R2 values close to 0 for balanced and reduced training sets and overall largest prediction 
errors for the model derived on balanced data, reflecting non-expected model behavior.

Figure 6 compares the potency interval-dependent characteristics of models derived based on the original 
(Fig. 3) and modified training sets. For balanced training sets, kNN and DT ensembles displayed only small 
alterations in model confidence relative to the original models. Hence, compound balancing across different 
potency intervals did not eliminate or reduce the interval-dependent heterogeneity discussed above. Surprisingly, 
however, models derived from reduced data sets essentially retained expected uncertainties in intermediate 
potency intervals although training compounds from these intervals were not available. These findings indicated 
that calibration for ensemble methods was largely a consequence of the global potency value distribution and 
the resulting mean, rather than the predominant population of intermediate potency ranges with training 
compounds; an interesting finding. Notably, for ensemble kNN, the model derived from the reduced training 
set closely matched the expected model variance.

For the neural network models, different effects were observed as a consequence of training set modification. 
While the original MVE models were consistently over-confident, balanced training sets produced consistently 
under-confident models, whereas reduced training sets regenerated over-confident models. These model 
characteristics were consistent with the training set-dependent changes in predictive performance discussed 
above. The FFNN models displayed varying potency interval-dependent distribution patterns as a consequence 
of training set modifications, but remained over-confident (with only one exception for reduced training data). 
Hence, FFNNs were overall more stable than MVE models.

Conclusion
In this work, we have investigated machine learning models of very different complexity for compound potency 
predictions to explore relationships between prediction errors and the uncertainty of predictions. The assessment 
of prediction uncertainty or model confidence complements approaches for model explanation and aids in 
rationalizing predictions. Consistent with earlier findings, models of different complexity including neural 
network variants and DT or kNN (ensembles) produced reasonable predictions of mostly comparable accuracy. 
However, for these predictions, different uncertainties were detected on the basis of commonly used metrics such 
as NLL or the miscalibration area. For simple kNN and DT ensembles, there was detectable correlation between 

Figure 5.  Performance of original and re-calibrated models. For activity class 279, the performance of selected 
models derived on the basis of modified training sets is assessed on the basis  R2 (top) and MSE values (bottom).
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prediction errors and the predicted variance, but for neural network models, no correlation was observed. 
These observations might in part be attributable to approximations underlying commonly used UQ metrics 
assuming normal data distributions. However, there also were a number of unexpected findings contributing to 
substantial variations in prediction uncertainty such as the strong dependence of uncertainties on the dropout 
rates of FFNN models or substantial performance variations of MVE models based on modified training sets. 
Moreover, we detected a generally strong potency interval dependence of model confidence, giving rise to highly 

Figure 6.  Training data dependence. For activity class 279, selected models were derived on the basis of 
different training sets (original, balanced, reduced) and calibrated. The graphs at the top report the compound 
density for different training sets. The potency bin-based data presentation is according to Fig. 3.
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variable value distribution patterns for different methods and over- or under-confident model decisions across 
different potency intervals. This behavior might also be affected by the limited dynamic range of the data sets, 
which represents an inherent property of potency prediction tasks. Additionally, underlying data structures such 
as analogue series have might have an effect on the interplay between prediction performance and uncertainty 
quantification. On a similar vein, ensemble and neural network models responded rather differently to training 
set modifications. Surprisingly, however, test compounds with intermediate potency that generally dominated the 
composition of activity classes were still predicted with reasonable accuracy if such compounds were excluded 
from model derivation. These observations indicated that predictions of ML models (except the kNN control) 
were mostly guided by global data distributions and resulting median potency values, in the presence of varying 
prediction uncertainty. This was also consistent with the in part large errors observed when predicting highly 
potent compounds. Taken together, the findings reported herein revealed an unexpectedly complex interplay 
between the performance of neural network and control models and their prediction uncertainties. In light of 
these findings, care should be taken in the assessment and interpretation of model uncertainty or confidence. 
Given the results of our analysis, future research might focus, for example, on the design and evaluation of further 
advanced UQ metrics or alternative analysis schemes for assessing prediction variance of deep learning models.

As suggested by one of the reviewers, we also note that predictions using deep neural networks and other 
ML methods incorporating uncertainty quantification are also carried out in other pharmaceutically relevant 
research fields that are distantly or unrelated to the topic of our study. For instance, graph neural networks have 
been applied for the prediction of compound  cardiotoxicity43. For drug development, assessing potential risks 
and adverse effects associated with candidate compounds as early as possible is highly desirable. The addition 
of uncertainty quantification methods in ML can guide risk assessment and accelerate experimental evaluation. 
Similar models are applicable to predict the association metabolites and disease  states44. In such application areas, 
uncertainty quantification supports the understanding of applied models based on human reasoning, helps to 
judge the anticipated reliability of predictions for practical applications, and thereby increases the acceptance 
of models in interdisciplinary research settings. The benefits of uncertainty quantification also extend to other 
areas in pharmaceutical and biological research, for example, for time series-based predictions of cell death in 
different biological systems using ML  models45–47. Here, evaluating the uncertainty of different models can aid in 
prioritizing alternative ML approaches and in advancing the understanding of suitable application domains and 
domain-dependent model limitations. Such applications illustrate the potential of uncertainty quantification in 
complementing predictions using deep neural networks and other ML methods in different fields.

Data availability
Calculations were carried out using publicly available software and compound data.

Code availability
Code used for the generation of the models, performance analysis, and generation of figures is freely available 
via the following link: https:// doi. org/ 10. 5281/ zenodo. 10825 202.
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