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Prediction of compressive strength 
of concrete based on improved 
artificial bee colony‑multilayer 
perceptron algorithm
Ping Li , Yanru Zhang *, Jiming Gu  & Shiwei Duan 

There are many factors that affect the compressive strength of concrete. The relationship between 
compressive strength and these factors is a complex nonlinear problem. Empirical formulas commonly 
used to predict the compressive strength of concrete are based on summarizing experimental data of 
several different mix proportions and curing periods, and their generality is poor. This article proposes 
an improved artificial bee colony algorithm (IABC) and a multilayer perceptron (MLP) coupled model 
for predicting the compressive strength of concrete. To address the shortcomings of the basic artificial 
bee colony algorithm, such as easily falling into local optima and slow convergence speed, this article 
introduces a Gaussian mutation operator into the basic artificial bee colony algorithm to optimize 
the initial honey source position and designs an MLP neural network model based on the improved 
artificial bee colony algorithm (IABC‑MLP). Compared with traditional strength prediction models, the 
ABC‑MLP model can better capture the nonlinear relationship of the compressive strength of concrete 
and achieve higher prediction accuracy when considering the compound effect of multiple factors. The 
IABC‑MLP model built in this study is compared with the ABC‑MLP and particle swarm optimization 
(PSO) coupling algorithms. The research shows that IABC can significantly improve the training and 
prediction accuracy of MLP. Compared with the ABC‑MLP and PSO‑MLP coupling models, the training 
accuracy of the IABC‑MLP model is increased by 1.6% and 4.5%, respectively. This model is also 
compared with common individual learning algorithms such as MLP, decision tree (DT), support vector 
machine regression (SVR), and random forest algorithms (RF). Based on the comparison of prediction 
results, the proposed method shows excellent performance in all indicators and demonstrates the 
superiority of heuristic algorithms in predicting the compressive strength of concrete.

Keywords Concrete, Compressive strength prediction, Improved artificial bee colony algorithm, Multilayer 
perceptron

Concrete is one of the most commonly used materials in construction engineering, and its compressive 
strength is an important reference index for structural design and construction. As a multiphase composite 
material, the complex and diverse composition of concrete, differences in curing time and environment, and 
nonlinear coupling relationships between its constituent materials pose many challenges to the establishment 
of compression strength prediction models. Currently, in engineering applications, engineers mostly conduct 
mechanical performance tests on concrete materials and establish empirical-type compression strength prediction 
models based on the test data. However, such models are often based on the empirical summaries of test data for 
one or two types of concrete. When changing one of the constituent materials or curing time, the accuracy of 
this prediction model will greatly reduce. Therefore, these concrete strength prediction models based on specific 
constituent materials and curing conditions are often one-sided.

With the development of artificial intelligence, machine learning has drawn the attention of civil engineers. 
Machine learning methods, due to their ability to identify patterns or judgment rules hidden in extensive data 
sets and construct models with the aid of manual experience adjustment, are a new path for overcoming the 
limitations of empirical regression models in traditional mix design and predicting the relationship between 
concrete mix and  performance1–5. Artificial neural networks (ANNs) are an important algorithm in machine 
learning, and more and more scholars are using neural networks for engineering prediction and damage 
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 identification6–12, especially multilayer perceptron (MLP) networks. Nguyen et al.13 used four machine learning 
algorithms, SVR, MLP, GBR, and XGBoost, to predict the compressive and tensile strength of HPC. Comparative 
studies showed that based on the GBR and XGBoost training models, the performance was better than that of 
the models based on SVR and MLP for this specific prediction problem. Imran et al.14 compared MLR, DT, 
SVM, BR, and GPR, and found that the GPR model had the highest performance and the smallest prediction 
error in compressive strength prediction. Wang et al.15 trained the artificial neural network through the beetle 
antenna search algorithm to establish the BAS-MLP concrete strength prediction model, and compared and 
analyzed it with the SCE-MLP, MVO-MLP coupled algorithm, ANN, and SVM individual learning algorithms. 
The results showed that combining artificial neural networks with metaheuristic algorithms could better solve 
such problems. Kovačević et al.16 comprehensively reviewed machine learning methods that could be used to 
estimate SCRC compressive strength, including MLP-ANN, ensemble of MLP-ANN, regression tree ensemble 
(random forest, boosting, and bagging regression trees), SVR, and GPR. Moodi et al.17 studied the effectiveness 
of three different machine learning methods, RBNN, MLP, and SVR, in predicting the ultimate strength of square 
and rectangular concrete columns. The results showed that MLP and RBNN obtained higher accuracy and best 
model prediction performance. Ghunimat et al.18 selected three models, MLP, Random Forest Regression, and 
k-nearest neighbor regression, to estimate the compressive strength of concrete mixtures. By comparing the 
accuracy and stability of the three methods in predicting compressive strength, it was found that compared with 
KNN, RFR and MLP had better performance and were the closest to the results. Although the above research has 
made certain achievements, the initial parameter setting of the neural network has a significant impact on the 
result. When facing a large or complex nonlinear dataset, the neural network algorithm still has shortcomings 
such as overfitting and dependence on initial values, and often needs to use optimization algorithms to further 
improve the accuracy of the prediction results.

Artificial intelligence optimization algorithms are popular parameter optimization algorithms, such as genetic 
algorithm, particle swarm optimization algorithm, ant colony optimization algorithm, artificial bee colony 
algorithm, etc. In the research by Karaboga D et al.19–21, it has been shown through numerous experiments that 
the optimization performance of the artificial bee colony algorithm is better than the other aforementioned 
algorithms, with the characteristics of less control parameters, strong local optimization ability, and fast 
convergence speed. Currently, scholars have applied this modeling method of using the artificial bee colony 
algorithm to optimize neural network parameters to predict the mechanical behavior of civil engineering 
materials and components. Zhou Hao et al.22 applied the ABC algorithm and SVM algorithm to optimize the 
concrete mix proportion, establishing a concrete mix proportion optimization model and verified the rationality 
and applicability of the model through concrete slump and strength tests. Imran, M et al.23 used artificial bee 
colony (ABC) and cascade forward neural network (CFNN) to optimize and develop a new hybrid model for 
predicting concrete compressive strength, and model validation using performance indicators showed that the 
proposed hybrid model was superior to other models in all performance indicators. However, as a random 
optimization algorithm, the ABC algorithm, similar to other evolutionary algorithms, also has defects of slow 
convergence speed and easy to fall into local optima. In recent years, various improvement strategies have been 
proposed for the basic ABC algorithm. Shao Guangcheng et al.24 introduced a Gaussian mutation operator in the 
basic artificial bee colony algorithm to optimize the initial honey source position, designing and establishing an 
RBF neural network model (IABC-RBF) based on the improved artificial bee colony algorithm, comprehensively 
improving the prediction ability of neural networks. Leng Xin et al.25 improved the artificial bee colony algorithm 
by introducing global optimal solutions and adaptive judgment factors in two aspects of search method and 
following bee selection probability. The improved algorithm showed that its convergence speed and accuracy were 
improved compared to the previous version in three function test results. Yao G et al.26 improved the algorithm 
from three aspects of bee colony initialization, fitness function, and position update formula, overcoming the 
randomness and easy local optimal solution defects of the initial algorithm. Zhu G et al.27, inspired by the particle 
swarm optimization algorithm, introduced the global optimal solution (gbest) information into the solution 
search equation, proposing an improved ABC algorithm—GABC algorithm, which improves the algorithm’s 
development rate. Gao W et al.28 first used the chaos-based oppositional population initialization method to 
improve the global convergence, and then combined DE with GABC through evaluation strategies, attempting 
to use more prior search experience and designed a new method called DGABC to improve the performance of 
the ABC. These improved ABC algorithms have improved the performance of the algorithm to a certain extent, 
but have not achieved the adaptive learning of the material’s mechanical properties by engineering material test 
data while avoiding premature convergence of the algorithm, in order to improve the efficiency and accuracy of 
the material strength prediction model.

Therefore, this paper conducts research on the prediction of compressive strength of concrete and proposes 
an improved artificial bee colony algorithm. This algorithm improves the two aspects of the bee colony, namely, 
initialization and honey source update formula. It overcomes the randomness of honey source initialization and 
the drawback of easily falling into local optimal solutions. The artificial bee colony algorithm is combined with 
the MLP neural network to enhance the global search capability of the MLP algorithm. Through simulation 
experiments on two strength prediction datasets, the effectiveness of the algorithm is confirmed, significantly 
improving optimization efficiency and performance. This algorithm has certain practical value in the actual 
application of engineering projects.

Model and optimization algorithm
MLP neural network
The multilayer perceptron (MLP) is a feedforward supervised learning neural network that includes an input 
layer, an output layer, and at least one hidden layer. In the MLP model, each layer contains several neurons, 
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and there is no direct connection between neurons in the same layer. The neurons between adjacent layers 
are fully connected through the addition of weights. Except for the input layer, each layer’s neurons have a 
nonlinear activation function. The multilayer perceptron inputs data through the input layer, and the hidden 
layer neurons analyze and process the data, and finally, the output layer outputs the results, which achieves 
multi-layer optimization processing of data.

MLP has excellent capabilities for nonlinear mapping, high parallelism, and high fault  tolerance29,30. 
Compared to other machine learning algorithms, it performs well in the presence of noise, nonlinearity, and 
high-dimensional data. At the same time, it can adapt to specific problem requirements by adjusting the number 
of layers and nodes in the model. In the research problem of concrete strength prediction, it can predict the 
compressive strength of concrete by learning the nonlinear mapping relationship between input features and 
outputs. During the training process, known concrete mix proportions, water-cement ratio, age, and other 
feature parameters are used as input, and their corresponding compressive strength is used as output. The 
backpropagation algorithm is used to optimize the network parameters, resulting in a more accurate prediction 
model. Therefore, compared to other neural network models, the multilayer perceptron has outstanding 
advantages in nonlinear modeling, training speed, and handling of input variable correlations in concrete strength 
prediction. Its model structure is shown in Fig. 1. Circles usually represent neurons or nodes, and the connecting 
lines represent connections between neurons, with arrows on the connecting lines indicating the direction of 
signal transmission from one neuron to another.

MLP determines the number of neurons in the input and output layers based on the target requirements, 
while the number of neurons and layers in the hidden layer are determined based on the error requirements set. 
In the MLP model, the output formula for the j − th neuron in the i − th layer is:

In the equation, W (i)
j  is the weight vector of the j − th neuron in the i − th layer, with direction from the 

( (i − 1)− th layer to the i − th layer and the j − th neuron; y(i−1) is the output vector of the (i − 1)− th layer; b(i)j  
is the bias vector of the j − th neuron in the i − th layer; and f (i)j  is the activation function of the j − th neuron 
in the i − th layer.

All the parameters of the MLP model are the weights and bias quantities between each layer. The selection 
of these parameters affects the prediction performance of MLP to a certain extent. Therefore, it is necessary to 
optimize the weights and bias quantities of MLP, to make the output of the MLP model closer to the true value, 
thus improving the prediction accuracy of the model.

Basic artificial bee colony algorithm
There are currently many algorithms inspired by the behavior of insect colonies in nature, simulating the foraging 
behavior of insect colonies under the "survival of the fittest" rule. Artificial Bee Colony Algorithm is one of them, 
evolved from the foraging behavior of bees in nature. In 2005, Professor Karaboga first modeled the behavior 
and division of labor of bee colonies in foraging in literature and proposed the Artificial Bee Colony Algorithm 
model. Due to its ease of implementation, few control parameters, and strong stability, the algorithm performs 
both global and local searches in each iteration, which increases the likelihood of finding the optimal solution. 
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Figure 1.  Structure diagram of MLP model.
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Compared to other swarm intelligence algorithms, it converges faster and quickly gained attention and research 
from many researchers.

The Artificial Bee Colony Algorithm can simulate the actual honey bee foraging behavior, with the location 
of the food source representing the solution to the problem, the quality of the pollen representing the fitness 
of the solution, and the spatial position of a food source representing a set of feasible solutions. The colony is 
divided into three types of bees: employed bees, which are responsible for randomly searching for food around 
the hive and carrying information on food sources; follower bees, which follow employed bees to collect nectar; 
and scout bees, which randomly search for other food sources when a food source has been over-exploited. 
The individual behavior of bees in the colony is simple, but they coordinate with each other, communicate and 
cooperate to make the system run smoothly. The workflow is shown in Fig. 2.

The basic model of the ABC algorithm includes four stages: the initialization stage, the employed bee stage, 
the onlooker bee stage, and the scout bee stage. Below is a detailed introduction to each stage of the artificial 
bee colony algorithm.

Stage 1: Initialization Phase: set the dimension of the solution space d , the size of the bee colony NP , the 
number of leading bees NP/2 , the control parameter “ limit ” for abandoned food sources, and the maximum 
number of algorithm iterations Max Iterations. The ABC algorithm randomly generates NP/2 initial solutions 
xi , i = 1, 2, ...,NP/2 , each of which is a d-dimensional vector, and constructs the fitness function to evaluate the 
goodness of each food source.

Stage 2: Employed Bee Phase: each honey source represents a solution to the problem being solved. At the 
beginning, the honey source vi = (vi1, vi2, ..., vid) can be randomly generated according to the following equation:

where vij represents the j − th variable of the i − th honey source, i ∈ (1, 2,...,NP/2),j ∈ (1, 2,...,d) , Uij and Lij 
are the upper and lower bounds of gij , and r1 is a random number between 0 and 1, which is used to control the 
range of the neighborhood.

Stage 3: Follower Bee Phase: Follower bees select the honey source to search next based on the fitness of the 
honey source, using roulette wheel selection. The selection probability for honey source i is calculated according 
to the following equation:

where fiti represents the fitness of the i − th solution, which is the amount of nectar of the i − th honey source, 
and " pi " represents the probability of the i − th honey source being selected. As can be seen from the equation, 
the probability of selecting a food source increases as its fitness increases. Once a follower bee selects a employed 
bee to follow, it searches in the neighborhood of the food source using Eq. (2) to find a better food source, which 
corresponds to the optimal fitness.

(2)vij = Lij + r1 ×
(

Uij − Lij
)

,

(3)
pi =

fiti
NP/2
∑

j=1

fitj

,

Figure 2.  Workflow diagram of the bee colony.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6414  | https://doi.org/10.1038/s41598-024-57131-w

www.nature.com/scientificreports/

Stage 4: Scout bee stage: In the bee algorithm, if a local optimum is reached after t  iterations of search and 
the threshold limit for the number of attempts is reached without finding a better quality honey source, the bee 
responsible for that source becomes a scout bee. The scout bee generates a new honey source according to Eq. (4).

It can be seen that the ABC algorithm has excellent global search capability and adaptability, and has a wide 
range of applications in scientific research and industry. It is suitable for predicting the strength of concrete. 
However, it has weaknesses in terms of slow convergence speed and a tendency to get stuck in local optima.

Improvements to the artificial bee colony algorithm
In order to enhance the optimization accuracy and convergence speed of the ABC algorithm, this study 
proposes improvements in two aspects: the optimization of the initial solution space and the honey source 
search mechanism.

(1) Honey Source Initialization.
The initialization of honey sources has a significant impact on the speed and quality of the solution. In the 

basic Artificial Bee Colony algorithm, the positions of honey sources are randomly initialized, resulting in an 
uneven distribution of honey sources in the entire target space. However, chaotic sequences based on chaotic 
theory possess the properties of traversing the entire space and dynamism. Therefore, using chaotic sequences 
to improve the initialization of honey sources in the ABC algorithm overcomes the disadvantages of uneven 
distribution caused by random initialization.

A logistic mapping equation is used to generate chaotic sequences, as shown below:

In the equation: µ represents the growth rate, and when µ = 4, the system is in a fully chaotic state. x0 is the 
initial value, and xk represents the value of the algorithm at iteration k . According to chaotic theory, when the 
initial value x0 is not equal to 0, 0.25, 0.5, 0.75, or 1.0, the sequence is in a chaotic state, which can expand the 
search range of the algorithm.

After introducing the chaotic sequence, the Eq. (1) can be improved as follows:

where i ∈ (1, 2,... , NP/2),Ui , and Li are the upper and lower bounds of gi ; xi represents the d-dimensional chaotic 
sequence after a certain number of iterations.

(2) Honey Source Search Mechanism:
In order to improve the local search ability of the artificial bee colony algorithm, a Gaussian mutation 

mechanism is introduced. After each iteration, the fitness function values of the honey sources are sorted, and 
the worst n× η honey sources are selected for Gaussian mutation, where n is the number of honey sources and η 
is the mutation ratio. Empirically, η is set to 1/12; µ is the mean, and σ is the standard deviation. After the worst 
n× η honey sources have been subjected to the Gaussian mutation, the formula for generating a new honey 
source is as follows:

where vti  and vtnew are the positions of the bee colony before and after mutation, respectively.
The improved artificial bee colony algorithm flow is shown in Fig. 3.

Strength prediction model based on IABC‑MLP
Model framework for prediction
MLP is a feedforward artificial neural network that has the advantage of processing complex nonlinear 
relationships and is therefore introduced for predicting the strength of concrete. In the research of predicting 
the compressive strength of concrete, its prediction results are easily affected by the model structure and fitting 
ability, which may lead to problems such as underfitting or overfitting, resulting in inaccurate prediction 
results. Therefore, in this paper, an improved artificial bee colony algorithm is used to search for the optimal 
initial weights and thresholds of the MLP neural network, which is then applied to the pre-defined network 
to construct the final algorithmic training model. In this paper, we propose an integrated model for concrete 
strength prediction which optimizes the Multilayer Perceptron neural network using an improved Artificial Bee 
Colony algorithm. Compared to MLP neural networks, the proposed IABC-MLP algorithm exhibits advantages 
in addressing issues such as poor network stability and susceptibility to local optima. In IABC-MLP, the IABC 
algorithm is used to find the best weights and biases to minimize prediction errors, so that the new model has 
stronger global search capability and can search for optimal solutions from a wider range of areas, while avoiding 
the limitations of traditional multilayer perceptron network that rely on the selection of initial weights and 
gradient descent, thereby improving the accuracy and stability of the model.

Specifically, in the ABC algorithm, individual bees optimize the weights and biases of the MLP through search 
and selection operations. Each bee represents a solution, which includes a set of values for weights and biases. 
Bees evaluate solutions based on the performance of the objective function (i.e., prediction error) and perform 
search and exploration based on a certain probability. The "employed bees" phase in the ABC algorithm is used 
to improve the current solution through information exchange with other worker bees. The "follower bees" phase 

(4)vt+1
i =

{

Li + r1 × (Ui − Li), t ≥ limit
vti t < limit

.

(5)xk = µxk−1

(

1− xk−1

)

.

(6)vi = Li + xi × (Ui − Li),
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(
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is used to search for new solutions and compare them with the current solution for selection. By optimizing the 
weights and biases of MLP using the ABC algorithm, the performance and prediction accuracy of the model can 
be improved, thereby achieving more accurate prediction of concrete strength.

The specific flow of the IABC-MLP prediction model is shown in Fig. 4.

Model evaluation index
The evaluation of the accuracy of the model established in this paper is comprehensively assessed using mean 
absolute error ( MAE ), root mean square error ( RMSE ), and correlation coefficient ( R2 ) as performance indicators 
for model prediction.

Figure 3.  Improved artificial bee colony algorithm flowchart.
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MAE represents the average absolute error between the predicted value and the actual value, reflecting the 
average size of the predicted value error. The smaller the MAE value, the more accurate the prediction of the 
model. Its expression is as follows:

RMSE represents the square root of the mean of the sum of squares of the difference between the predicted 
value and the true value, and is more sensitive to outliers because it amplifies the square of larger prediction 
errors. The smaller the value of RMSE , the more accurate the prediction of the model. Its expression is as follows:

R2 indicates the correlation between the predicted result and the true value. The value of R2 ranges from 0 
to 1, indicating the correlation between the predicted result and the true value. The closer the value is to 1, the 
better the model effect is. Its expression is as follows:

where: yi is the measured value; ∧yi is the predicted value; y is the mean; n is the number of measured values.

Case study analysis
Data acquisition
Concrete, as a composite material, its compressive strength depends mainly on two factors. Firstly, it depends 
on the proportion of various materials added during the mixing process, such as cement, slag, ash, water, 
superplastic, coarse aggregate, and fine aggregate, etc. Secondly, the mixed concrete needs to undergo chemical 
reactions in the natural environment after mixing in order to harden, so there is a significant correlation between 
the age of the concrete and its compressive strength.

Based on previous research and analysis of a large number of relevant literature and engineering experience, 
this paper chooses to consider the influence of concrete material proportion and age on its compressive strength 
and constructs a compressive strength regression prediction model based on MLP. The computer configuration 
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Figure 4.  Flowchart of ABC-MLP algorithm.
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used in this experiment is as follows: 16 GB of memory, AMD R7 processor, CPU frequency of 3.2 GHz, operating 
system Windows 11 (64-bit), and Python 3.9 as the programming language.

Dataset 1 is sourced from the Concrete Compressive Strength dataset of the UCI Machine Learning 
Repository. This dataset consists of 1030 samples, with each sample having 8 influencing factors: cement content, 
fly ash content, blast furnace slag content, superplasticizer content, water content, coarse aggregate, fine aggregate, 
and concrete age. Additionally, there is one target output value, which is the compressive strength of the concrete. 
Table 1 provides descriptive statistical data for Dataset 1.

Input variable selection and data preprocessing
In order to reveal the extent of correlation between each type of input variable and the final output variable, 
and thereby optimize the input variables to achieve better predictive performance, we selected 8 initial variables 
from Dataset 1 and calculated their importance indices for the output variable using a random forest algorithm 
via Python software. The results and importance index rankings are shown in Table 2.

As shown in the table, it can be observed that among the input variables, the age of the concrete has the 
highest correlation with the output variable, which means that the duration of the age has the greatest impact 
on the compressive strength of the concrete. This is consistent with the empirical experience in engineering. The 
influence of cement content and water content on the output is secondary, as the cement content, water content, 
and water-cement ratio, which is one of the important indicators affecting concrete strength, are closely related. 
Therefore, the relationship between the calculated inputs and outputs based on this method is reasonable.

Meanwhile, the correlation between input variables and the compressive strength of concrete was analyzed 
using the heatmap method in Python. This analysis aims to validate the importance scores of input variables 
calculated based on the random forest algorithm. The results are shown in Fig. 5. The variable correlation 
heatmap describes the correlation between different variables using different coefficient sizes and color depths. 
The coefficient size indicates the strength of the correlation between two variables, with a larger coefficient 
indicating a stronger correlation. The color depth represents the direction of the correlation, either positive or 
negative. A darker color indicates a stronger correlation, while a lighter color indicates a weaker correlation.

As shown in Fig. 5, the correlation coefficient between cement and concrete compressive strength is 0.5, 
and the color is relatively light red, which indicates that a higher content of cement leads to a higher concrete 
compressive strength. The correlation coefficient between water and concrete compressive strength is -0.29, and 
the color is a relatively dark blue, indicating that an increase in water content leads to a decrease in concrete 
compressive strength. In addition, the effects of cement content, high-efficiency water reducer, water content, 
and concrete age on concrete compressive strength are apparently higher than those of other variables, which is 
broadly consistent with the variable importance scores calculated based on the RF algorithm in Table 2, which 
proves that these four variables have a greater impact on concrete compressive strength.

By implementing feature selection based on importance ranking on the training set using GridSearchCV 
method in Pycharm, with RF parameters n_estimators = 500 and max_depth = 9, a trend graph of root mean 
squared error (RMSE) is obtained for different variable combinations after tenfold cross-validation, as shown 
in Fig. 6.

Table 1.  Descriptive statistics of concrete compressive strength and key factors in Dataset 1.

Parameters

Descriptive indicators

Mean Median Standard deviation Variance Minimum Maximum Skewness

Cement (kg  m−3) 281.17 272.90 104.46 10,910.98 102.00 540.00 0.51

Slag (kg  m−3) 73.90 22.00 86.24 7436.90 0.00 359.40 0.80

Ash (kg  m−3) 54.19 0.00 63.97 4091.64 0.00 200.10 0.54

Water (kg  m−3) 181.57 185.00 21.34 455.56 121.80 247.00 0.07

Superplastic (kg  m−3) 6.20 6.40 5.97 35.65 0.00 32.20 0.91

Coarse aggregate (kg  m−3) 972.92 968.00 77.72 6039.81 801.00 1145.00 -0.04

Fine aggregate (kg  m−3) 773.58 779.50 80.14 6421.95 594.00 992.60 -0.25

Age (d) 45.66 28.00 63.14 3986.56 1.00 365.00 3.26

Strength (MPa) 35.82 34.45 16.70 278.81 2.33 82.60 0.42

Table 2.  Feature importance ranking.

Serial number Features Importance score Serial number Features Importance score

1 Age 0.335511 5 Superplastic 0.071511

2 Cement 0.321780 6 Fine aggregate 0.036973

3 Water 0.106932 7 Coarse aggregate 0.029245

4 Slag 0.081184 8 Ash 0.016864
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From Fig. 6, it can be observed that as important influential factors are sequentially selected from the variable 
combinations, the overall trend of the model’s RMSE shows a gradual decrease. This indicates that the RF 
algorithm effectively removes some unimportant and redundant influential factors, reduces the deviation between 
predicted values and actual values, and improves the accuracy of the model’s predictions.

After traversing all feature variables, the optimal combination of variables is determined to be 8. At this 
point, the root mean square error is minimized and the predictive accuracy of the model is highest. Therefore, 
all 8 influencing factors in Dataset 1 are used as input variables for the concrete compressive strength prediction 
model.

From the statistical description of the data, it can be observed that there are significant differences in concrete 
compressive strength and the physical values of various key factors, and the units are not standardized. Therefore, 
it is necessary to normalize the samples in order to improve the accuracy of the model training. In this paper, the 
(0, 1) normalization method is selected as the normalization technique, with the following expression:

Figure 5.  Heatmap of variable correlation.

Figure 6.  RMSE trend chart of different variable combinations.
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In the formula: Y  represents the result of normalization; Xmin is the minimum value in the sample; Xmax is 
the maximum value in the sample; X is the sample value that needs to be normalized.

Parameter settings
For the MLP model in the IABC-MLP model, the initial weights and thresholds are obtained using the most 
widely used random initialization method. The transfer functions for the hidden layer and output layer are 
ReLU function and linear function, respectively. In this study, cross-validation is used to determine the number 
of hidden layers and nodes in the MLP model. By conducting multiple trainings and tests on the training set, 
the optimal situation is determined where the test mean squared error (MSE) is small. The calculation results 
show that when the number of hidden layers in the MLP model is 2, and the number of nodes are 50 and 
25, respectively, the test error is smaller. To determine the optimization effects of the PSO, ABC, and IABC 
algorithms on MLP, the number of hidden layer nodes for the PSO-MLP model, ABC-MLP model, and IABC-
MLP model remain unchanged. Therefore, the structures of the three prediction models are determined to be 
8-50-25-1. The detailed parameters of the MLP model are shown in Table 3.

Particle swarm optimization is a heuristic optimization algorithm in which the position and velocity of 
particles are gradually updated to find the optimal solution to the problem. In this algorithm, the number of 
particles is specified as 50, indicating that there are 50 particles in the algorithm. The maximum number of 
iterations for the PSO algorithm is set to 100, which means that the algorithm will terminate after 100 rounds of 
iteration. In addition, the learning rate and inertia factor are also set to 0.5 and 0.3, respectively, to control the 
influence of global best position and personal best position on the particle velocity in the algorithm.

Artificial bee colony algorithm is a heuristic algorithm based on the biological characteristics of bee colonies. 
In this algorithm, the number of bees is set to 50, indicating that 50 bees are used in the algorithm. At the same 
time, the maximum number of iterations is set to 100, which means that the algorithm will also stop after 100 
iterations. The improved artificial bee colony algorithm improves the algorithm in two aspects: optimizing the 
initial solution space and honey source search mechanism, and the parameter settings are the same as those for 
the standard ABC algorithm.

Model comparison
Comparison with the coupled model
The particle swarm optimization (PSO) algorithm is a swarm intelligence algorithm that imitates the collaboration 
between particles to search for optimal solutions. Each particle updates its position and velocity continuously 
by interacting with other particles until the optimal solution is found. In the PSO algorithm, the interaction 
information between particles includes the current position, velocity, and the optimal position. Similar to the 
artificial bee colony (ABC) algorithm, the PSO algorithm can simultaneously consider global and local optimal 
solutions, and converge to the optimal solution quickly. Therefore, to verify the effectiveness of the IABC-MLP 
coupled model, we compared the IABC algorithm proposed in this paper with the basic ABC algorithm and 
the PSO algorithm.

The normalized concrete strength training set was input into the MLP for training, and three concrete strength 
prediction models were established by optimizing the weights and biases of the MLP using the particle swarm 
algorithm, artificial bee colony algorithm, and improved artificial bee colony algorithm, respectively. In order to 
select the best strength prediction model with a clearer comparison, this study used a Taylor diagram to evaluate 
and select the models. Figure 7 displays the Taylor diagram of the three prediction models evaluating the accuracy 
of the training and test sets, providing an intuitive comparison of the performance of the three machine learning 
models in concrete strength prediction tasks. The scatter points in the figure represent the machine learning 
models, the red dashed line represents the observation line, the circular arc centered on the origin represents the 
standard deviation SD, the radiating line represents the correlation coefficient R, and the circular arc centered on 
the observation point represents the root mean square error RMSE. The coordinates of the training set and test 
set observation points reach the ideal state, i.e., R = 1, RMSE = 0. The standard deviation SD of the training set 
is 16.539, which is consistent with the standard deviation of the compressive strength sample of the verification 
set. The standard deviation SD of the test set is 15.356, which is consistent with the standard deviation of the 
compressive strength sample of the test set.

Based on the distribution of the training and test set models displayed in the Taylor diagram (Fig. 7), the 
following results can be observed: the validation set and test set R values of the three models are all above 0.9, 
indicating that there is a strong correlation between the predicted output of the model and the actual output. By 

(11)Y =
X − Xmin

Xmax − Xmin

.

Table 3.  MLP model parameters.

Parameter name Parameter value Parameter name Parameter value

Number of layers 4 Learning rate 0.01

Number of hidden layer neurons 50, 25 Batch size 32

Activation function ReLU Number OF Iterations 800

Optimization algorithm Stochastic gradient descent Train-test split ratio 8: 2
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comparing the rays between each scatter point and the coordinate origin, as well as the angles formed between 
the scatter points and the vertical coordinate axis, it can be concluded that  RIABC-MLP >  RABC-MLP >  RPSO-MLP. By 
comparing the straight-line distances between each scatter point and the observation point in the diagram, it can 
be concluded that the IABC-MLP model has the closest distance to the observation point, followed by ABC-MLP, 
and then PSO-MLP, indicating that  RMSEIABC-MLP <  RMSEABC-MLP <  RMSEPSO-MLP. Therefore, in this analysis, the 
IABC-MLP model performed the best, and the PSO-MLP model performed the worst.

To further analyze the prediction evaluation indicators of various coupling models and ensure the reliability 
of the results, this study adopted the method of multiple runs and carried out 30 independent computations, and 
provided the average statistical results. In order to further verify the quality of the research, this study compared 
the predictive performance of our constructed model with representative concrete strength prediction models 
published in the literature. Specifically, we chose the TSO-ELM model constructed by Zhang et al.31 and the 
CS-AdaBoost-CART model constructed by Xue et al.32 for comparison. The evaluation indicator results for the 
prediction set are shown in Fig. 4.

According to the evaluation indicators shown in Table 4, all types of machine learning models constructed 
in this article have been tested and fully reflect their predictive performance. It is worth noting that the IABC-
MLP model exhibited the best predictive ability in all indicator evaluations, specifically with a goodness of fit 
above 97%, resulting in a 1.5% and 4.2% increase in fitting ability compared to the ABC-MLP and PSO-MLP 
models, respectively. In addition, the IABC-MLP also performed well in performance indicators such as mean 
absolute error and root mean square error, making it better suited to meeting the requirements of fitting accuracy 
for concrete strength prediction. It is worth mentioning that compared with the evaluation indicator results of 
two models proposed by other research results, the IABC-MLP model is the best model for predicting concrete 
compressive strength, achieving the optimal level in indicators such as MAE, RMSE, and R2 . In conclusion, in 
this research field, the IABC-MLP model exhibited outstanding fitting ability and is expected to provide highly 
valuable references for related research.

Convergence speed is an important indicator of the performance of optimization algorithms. Figure 8 shows 
the convergence curves of PSO-MLP, ABC-MLP, and IABC-MLP algorithms. In the figure, epoch represents 
the iteration times and loss represents the loss value. Comparing the loss values of the three coupled model 
algorithms after each iteration, it can be seen that the original ABC algorithm has a certain degree of slow 
convergence speed and is prone to getting stuck in local optimal solutions. Compared with the original algorithm, 
the PSO algorithm has faster convergence speed and fewer iterations, but weaker global optimization ability. This 
paper’s IABC algorithm adopted the optimization of initial solution space and honey source search mechanism 

(a) Training set (b) Test set

Figure 7.  Taylor diagram for model comparison.

Table 4.  Results of evaluation indicators for each coupling model.

Model

Evaluation metrics

MAE/MPa RMSE/MPa R
2

IABC-MLP 2.504 3.408 0.973

ABC-MLP 3.053 4.070 0.958

PSO-MLP 3.799 5.070 0.931

TSO-ELM 5.240 6.050 0.870

CS-AdaBoost-CART 3.996 4.987 0.914
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to avoid problems such as the randomness of initialization of food source positions and being prone to getting 
stuck in local optimal solutions. The algorithm enables bees to quickly move to the region where the optimal 
food source is located through the Gaussian mutation operator. Therefore, the IABC algorithm has significantly 
improved in both iteration speed and global optimization ability. After about 100 iterations, the test error tends to 
stabilize. Compared with the ABC-MLP algorithm and the PSO-MLP algorithm, the IABC-MLP neural network 
algorithm is superior in both optimization accuracy and convergence speed in the same number of iterations 
and can well predict the compressive strength performance of concrete.

Comparison with single model
To further observe the prediction effect of the IABC-MLP model, this study also selected four single models for 
concrete strength prediction experiments: Multi-Layer Perceptron (MLP), decision tree (DT), Support Vector 
Regression (SVR), and Random Forest (RF). Figure 9 shows the fitting effect of the predicted values and actual 
values of each model, where it can be visually seen that the DT model has the worst fitting effect compared to 
other models, and the sample points are not concentrated on the regression line. The performance of all models 
was measured using evaluation metrics such as mean absolute error, root mean squared error, and correlation 
coefficient. The calculation results of all models are shown in Table 5.

From Table 5, it can be seen that the goodness of fit values of the four single models from highest to lowest 
are: MLP > RF > SVR > DT. Compared to the single MLP model, the ABC-MLP model increased the R2 value by 
8.35%. This means that ABC adapts and optimizes the model based on the characteristics of the data, overcoming 
the curse of dimensionality and improving the prediction accuracy and stability of the MLP model.

In addition, compared to the other three classical models, the IABC-MLP model shows significantly better 
prediction performance. The reason is that DT, SVR, and RF are individual learning algorithms, which require a 
large number of weights and thresholds when dealing with a large number of samples, resulting in low accuracy. 
On the other hand, IABC-MLP is a coupled metaheuristic algorithm that does not require excessive parameter 
tuning. It has a fast convergence speed and strong global optimization ability, enabling accurate prediction of 
concrete compressive strength.

Model performance verification
In order to further validate the generalization performance of the IABC-MLP neural network model and test its 
feasibility in practical construction, a new Dataset 2 is selected for validation. It is applied to the dataset publicly 
available in the paper by Al-Shamiri33, which consists of 324 sets of concrete samples obtained in their laboratory. 
This dataset has fewer types of input variables, so there is no need for variable optimization. The input variables 
are the cement, superplastic, water, coarse aggregate, fine aggregate, with the concrete compressive strength as 
the output variable.

This dataset is used to verify the generalization of the proposed model in this paper, and its descriptive 
statistical data are shown in Table 6.

The training sample fitting and test sample prediction are shown in Fig. 10.
From Fig. 10, it can be seen that for the training set, the data points in the scatter plot of the MLP model 

optimized by the improved artificial bee colony algorithm are closely distributed around the regression line, 
indicating that the model can fit the training data well. For the test set, the data points of the model further 
converge, indicating that the model not only performs well on the training set, but also has higher accuracy and 
generalization ability on the unseen test data. According to the IABC-MLP evaluation index results in Table 7, 
it can be analyzed that the model for predicting the compressive strength of concrete performs well. Firstly, the 
value of the MAE evaluation index is small, indicating that the average error between the predicted value and the 
actual value is small, and the model has good fitting effect. Secondly, the value of the RMSE evaluation index is 
also small, indicating that the dispersion degree of predicted values and actual values of the model is small, and 
the prediction accuracy is high. Finally, the results of the R2 evaluation index are 0.977 and 0.986, showing high 
accuracy in both the training set and the test set, indicating that the model has good fitting ability and strong 
prediction ability. In conclusion, by observing the IABC-MLP strength fitting effect diagram and analyzing 

Figure 8.  Loss iteration graph.
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(a) MLP Model                         b RF Model

c DT Model                        d SVR Model

Figure 9.  Fitting diagram of predicted values and actual values of each model.

Table 5.  Evaluation metrics results of each single model.

Model

Evaluation metrics

MAE/MPa RMSE/MPa R
2

MLP 3.837 5.183 0.898

DT 4.340 6.151 0.860

SVR 3.901 5.814 0.872

RF 3.738 5.472 0.884

Table 6.  Descriptive statistics of concrete compressive strength and key factors for Dataset 2.

Parameters

Descriptive indicators

Mean Median Standard deviation Variance Minimum Maximum Skewness

Cement (kg  m−3) 417.81 411 76.91 5914.77 284 600 0.41

Water (kg  m−3) 170 170 8.16 66.67 160 180 0

Superplastic (kg  m−3) 0.90 1.0 0.56 0.32 0.00 2.0 0.09

Coarse aggregate (kg  m−3) 898.51 898.00 43.75 1914.08 845.00 989.00 0.02

Fine aggregate (kg  m−3) 767.63 769.5 85.39 7291.25 552.00 951.00 − 0.19

Strength (MPa) 51.93 48.90 9.43 88.95 37.5 73.6 0.44
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the evaluation index results, it can be clearly seen that the established model has high prediction accuracy and 
reliability in the study of predicting the compressive strength of concrete, can effectively predict the compressive 
strength of concrete, provide important reference for engineering design and construction, and is expected to 
improve engineering quality and safety.

Conclusion
Given the high requirements for real-time and accuracy in predicting the compressive strength of concrete 
at construction sites, this study uses the multilayer perceptron with higher predictive fitting quality as the 
modeling method. Due to the significant impact of parameters on the prediction performance of MLP, the 
process of optimizing hyperparameters is time-consuming. In this study, the basic artificial bee colony algorithm 
is improved by introducing a Gaussian mutation operator and optimizing the initial solution space, and an MLP 
neural network model based on the improved artificial bee colony algorithm is established. Through simulating 
and modeling the data, the proposed IABC-MLP is validated, and the following conclusions are drawn:

(1) To explore the parameter optimization problem of the MLP neural network, we used three metaheuristic 
algorithms, namely PSO, ABC, and IABC, and analyzed them using three evaluation indicators for the three 
coupled models. The results show that the fitting quality of IABC-MLP can reach above 97%. Compared 
to ABC-MLP and PSO-MLP, it is 1.5% and 4.2% higher, respectively, enabling a quicker completion of the 
prediction process and a more accurate prediction of the compressive strength of concrete.

(2) Comparing the IABC-MLP algorithm with four common individual learning algorithms, namely MLP, 
DT, SVR, and RF, the study found that the IABC-MLP model improved the R2  value by 8.35% compared 
to the single MLP model. In other words, IABC achieves an adaptive adjustment and optimization of the 
model based on the characteristics of the data, overcomes the curse of dimensionality problem in high-
dimensional data, and enhances the prediction accuracy and stability of the MLP model.

(3) The newly established IABC-MLP prediction model for the compressive strength of concrete is 
experimentally simulated on another publicly available dataset. The fitting accuracy reaches 99.2%, 
demonstrating the good generalization ability of the model and its suitability for predicting the compressive 
strength of concrete in actual construction sites.

In summary, the proposed IABC-MLP model in this study can quickly complete the prediction process, 
accurately predict the compressive strength of concrete, and has good generalization ability, making it suitable 
for predicting the compressive strength of concrete in actual construction sites. However, the prediction study 
in this paper mainly focuses on predicting the compressive strength of concrete under standard conditions at 
room temperature. It is also important to further research the practical application of predicting the compressive 
strength of concrete under different temperatures, water contents, and other conditions.

(a) Training sample fitting graph            (b) Test sample prediction graph

Figure 10.  IABC-MLP strength fitting and prediction graphs.

Table 7.  Evaluation indicator results for IABC-MLP.

Evaluation metrics Training set Test set

MAE/MPa 1.215 0.796

RMSE/MPa 1.553 1.211

R
2 0.977 0.986
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Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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