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Enhanced gorilla troops optimizer 
powered by marine predator 
algorithm: global optimization 
and engineering design
Mohamed H. Hassan 1, Salah Kamel 1 & Ali Wagdy Mohamed 2*

This study presents an advanced metaheuristic approach termed the Enhanced Gorilla Troops 
Optimizer (EGTO), which builds upon the Marine Predators Algorithm (MPA) to enhance the search 
capabilities of the Gorilla Troops Optimizer (GTO). Like numerous other metaheuristic algorithms, 
the GTO encounters difficulties in preserving convergence accuracy and stability, notably when 
tackling intricate and adaptable optimization problems, especially when compared to more advanced 
optimization techniques. Addressing these challenges and aiming for improved performance, this 
paper proposes the EGTO, integrating high and low-velocity ratios inspired by the MPA. The EGTO 
technique effectively balances exploration and exploitation phases, achieving impressive results by 
utilizing fewer parameters and operations. Evaluation on a diverse array of benchmark functions, 
comprising 23 established functions and ten complex ones from the CEC2019 benchmark, highlights 
its performance. Comparative analysis against established optimization techniques reveals EGTO’s 
superiority, consistently outperforming its counterparts such as tuna swarm optimization, grey wolf 
optimizer, gradient based optimizer, artificial rabbits optimization algorithm, pelican optimization 
algorithm, Runge Kutta optimization algorithm (RUN), and original GTO algorithms across various 
test functions. Furthermore, EGTO’s efficacy extends to addressing seven challenging engineering 
design problems, encompassing three-bar truss design, compression spring design, pressure vessel 
design, cantilever beam design, welded beam design, speed reducer design, and gear train design. The 
results showcase EGTO’s robust convergence rate, its adeptness in locating local/global optima, and 
its supremacy over alternative methodologies explored.
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Optimization is widely recognized as the most effective approach for identifying optimal solutions within com-
plex domains and for various real-world problems. Over the past few decades, numerous advanced optimiza-
tion techniques have been developed to address a wide range of optimization  challenges1. These techniques 
can be broadly classified into two categories: deterministic approaches and stochastic approaches. Determin-
istic approaches, including Newton’s  method2 and the conjugate gradient  method3, typically utilize gradient 
information to guide the search process. While these methods are effective for functions with a single peak, 
they often struggle to escape local minima when confronted with complex nonlinear problems. On the other 
hand, metaheuristic algorithms, which fall under the category of stochastic methods, have emerged as success-
ful alternatives to exact methods for solving real-world optimization  problems4. Metaheuristics offer several 
benefits, including simplicity, problem independence, flexibility, and the ability to operate without requiring 
gradient  information5. Stochastic methods treat the problem as a black box, relying solely on input and output 
states without the need for derivative information. This characteristic enables them to address various types of 
optimization problems without fundamentally altering the algorithm’s main structure. One notable distinction 
between traditional deterministic methods and metaheuristic algorithms is that the latter typically employ mul-
tiple initial solutions. Importantly, the choice of the early solution does not significantly impact the optimiza-
tion performance of the technique. This property has garnered significant attention from researchers due to its 
implications for optimization problem-solving. In summary, metaheuristic algorithms possess desirable qualities 
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that make them highly appealing to researchers. These algorithms are characterized by their generality, enabling 
them to tackle diverse optimization problems without altering their fundamental framework. Additionally, they 
exhibit robustness, allowing them to operate effectively without relying on gradient information and utilizing 
multiple initial solutions.

Metaheuristic algorithms draw inspiration from various sources (as illustrated in Fig. 1), such as Human 
behavior, physical phenomena, swarm-based, and evolutionary  concepts6. Evolutionary-based algorithms, such 
as Genetic Algorithm (GA)7, Differential Evolution (DE)8, Evolutionary Programming (EP)9, Starling murmu-
ration  optimizer10, and quantum-based avian navigation optimizer  algorithm11, simulate Darwinian biological 
evolution. Physics-based algorithms, such as Equilibrium Optimizer (EO)12, Artificial Electric Field Algorithm 
(AEFA)13, Henry Gas Solubility Optimization (HGSO)14, Slime Mould Algorithm (SMA)15, and others, are 
inspired by the laws of physics. Swarm-based algorithms, including Particle Swarm Optimization (PSO)16, Arti-
ficial Bee Colony (ABC)17, and many more, simulate the collaborative behavior of biological groups in nature. 
Human- based algorithms, such as Tabu search (TS)18, Teaching–Learning-Based Optimization (TLBO)19, Alpine 
skiing optimization (ASO)20, and Harmony search (HS)21, derived from some human activities in the community. 
These nature-inspired metaheuristic algorithms exhibit distinct characteristics, but they all incorporate two 
crucial phases in the search process: exploration and  exploitation6. During the exploration phase, the search 
agents endeavor to cover the entire target space extensively in order to identify areas that may contain the opti-
mal solution. Subsequently, in the exploitation phase, more focused local searches are conducted to refine the 
quality and precision of the obtained optimal solution. Maintaining a suitable balance between exploration and 
exploitation is of paramount importance for a well-designed optimizer. By striking this balance, the algorithm 
can effectively navigate the search space, ensuring both comprehensive exploration and fine-grained exploitation. 
This balance enables the optimizer to avoid getting stuck in suboptimal solutions while efficiently converging 
towards the global optimum. In recent years, various optimization algorithms have been extensively utilized to 
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Figure 1.  Classification of meta-heuristic algorithms.
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address several optimization problems such as the multidisciplinary design optimization  problem22, the semi-
submersible platform boom  problem23, and economic load dispatch in large scale power  systems24, optimizing 
the artificial neural network for disease  diagnosis25, detecting coronavirus disease 2019 (COVID-19)  disease26,27.

It is important to note that the No Free Lunch (NFL) theorem asserts that no single technique can perform 
optimally on all  problems28–30. This motivates academics to suggest new techniques or enhance present ones 
to address specific optimization challenges. Each algorithm possesses its own strengths and weaknesses, and 
applying them to different real-world problems can lead to improved results.

One noteworthy algorithm is the Gorilla Troops Optimizer (GTO)31, which has demonstrated superior 
performance and has been applied in various fields. For instance, it has been used in parameter estimation 
of solar PV  cells32, feature selection for biomedical  data33, the probabilistic optimal integration of renewable 
distributed generators considering the time-varying  load34, optimal power flow (OPF) integrating thyristor-
controlled series  capacitors35, optimal parameters extracting of fuel  cell36, automated settings of overcurrent 
relays considering transformer phase shift and distributed  generators37, and more. Despite its successes, GTO 
still has certain limitations, such as imbalanced exploration and exploitation, a tendency to get trapped in local 
optima during late iterations, and stronger exploitation capabilities than exploration capabilities. Therefore, 
many scholars have begun updating and enhancing the performance of the GTO algorithm and applied it to 
solve many optimization problems and to generate higher-quality solutions from different aspects such as hybrid 
arithmetic optimization algorithm and GTO (AOA-GTO) algorithm for Micro-Robotics  Systems38, opposition-
based learning and parallel strategies GTO (OPGTO) for 3D node localization of wireless sensor  networks39, 
Quantum GTO (QGTO) for the optimum tuning of power system stabilizer (PSS) of different  structures40, and 
Memory-based Improved Gorilla Troops Optimizer (MIGTO) for The parameter extraction of the PV  model41.

To address the drawbacks of the original GTO and improve its performance, this work proposes a modified 
version called EGTO. In EGTO, the exploration and exploitation update operators are adjusted to enhance 
exploration at the beginning of the iteration and convergence to the current optimum at the end. a high and 
low-velocity ratios strategy is introduced to help escape local optima. To evaluate the efficiency of EGTO, it is 
compared against TSO, GWO, GBO, ARO, POA, RUN, and original GTO algorithms on 23 benchmark functions 
with different dimensions and CEC2019 benchmark functions. Furthermore, it is used to 9 challenging real-
world constrained engineering problems and compared against seven techniques from the literature. Obtained 
results demonstrate that EGTO achieves exceptionally well, offering advantages such as low time complexity, 
fast convergence, high solution precision, generality competence, and strength. The main contributions of this 
paper can be summarized as follows:

• EGTO, an enhanced optimization algorithm based on the Marine Predator Algorithm (MPA) and Gorilla 
Troops Optimizer (GTO), is proposed to solve global optimization problems and Engineering Design 
Problems.

• The proposed algorithm (EGTO) is tested on several optimization problems, including twenty-three classical 
benchmark functions, the IEEE CEC2019 test suite, and seven engineering design problems, and compared 
with different recent MAs.

• Experimental results suggest that the EGTO technique has a more reliable performance than other 
comparison optimization algorithms.

The rest of the article is organized as follow: section "The proposed optimization algorithm" presents a brief 
overview of the basic GTO and the proposed EGTO techniques. Section "Experimental results and discussion" 
evaluates the performance of the proposed EGTO algorithm on benchmark functions and analyzes the obtained 
experimental results. In section "EGTO for engineering design problems", the EGTO technique is used to solve 
seven real-world engineering design problems. Finally, section "Conclusion" concludes the paper and discusses 
potential research directions.

The proposed optimization algorithm
This section presents the process of the enhanced GTO (EGTO) based on MPA algorithm. The proposed EGTO 
algorithm.

Artificial gorilla troops optimizer (GTO)
Exploration phase
During the exploration phase, three distinct operators were employed to advance the investigation: one involved 
moving to an unfamiliar location, aiming to delve deeper into the GTO  algorithm31. The second element, 
transitioning to other gorillas, enhances the equilibrium between exploration and exploitation. Meanwhile, the 
third element pertains to the exploration phase, where migrating to a familiar position significantly boosts the 
GTO algorithm’s capacity to explore diverse developmental spaces. These distinct operators can be symbolically 
represented by the following equation:
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where GX(t + 1) denotes the gorilla candidate location in the next iteration.lb and ub denote the lower and 
upper bounds of the variables, respectively. r1 , rand,r2,r3 , and r4 refer to random values ranging from 0 to 1.  z 
is a parameter that has a range from 0 to 1.X(t) is the current vector of the gorilla position while Xr(t) denotes 
a member of the gorillas randomly selected from the entire gorillas and also GXr(t).k denots a random value 
ranging from -1 to 1.

Exploitation phase
During the exploitation phase, two behaviors or strategies are utilized. The first strategy, known as "Follow the 
silverback," is employed when a certain condition C ≥ W is met. Here, W represents a predefined parameter set 
before the optimization process. Mathematically, the first strategy can be computed as  follows31:

where GX(t + 1) represents the updated position of the gorilla in the search space at the next iteration,  Xsilverback 
is the best solution, N denotes the total number of gorillas. By incorporating this strategy into the optimization 
process, the algorithm aims to exploit promising regions of the search space by leveraging information from the 
best solution encountered thus far. This approach enhances the algorithm’s ability to converge towards optimal 
solutions, particularly during the exploitation phase of the optimization process. Overall, Eq. (2) plays a crucial 
role in guiding the exploration and exploitation of the search space, thereby influencing the algorithm’s perfor-
mance in finding optimal solutions.

The second mechanism is the Competition for adult females and it is used when C < W . This mechanism 
is calculated as follows:

where β refers to a parameter to be given value before the optimization operation.r5 denotes a random value 
ranging from 0 to 1.

Proposed EGTO algorithm
The enhanced is called the high and low-velocity ratios based on the MPA  algorithm42. This way was planned 
to solve the possibility of the optimum value may drop into local optima. Several recent techniques have been 
developed based on this strategy and they have been applied for several optimization problems including the 
parameters of the controller combine proportional-integral-derivative (PID) and fractional order control 
methods using Enhanced Runge Kutta  Optimizer43 and optimal size and location of several FACTS devices to 
achieve minimizing fuel costs and minimizing power losses using Enhanced Tuna Swarm  Optimization44. This 
improvement depends on two stages. The first stage is the high-velocity ratio situation. The mathematical model 
of this stage is as follows:

(1)

GX(t + 1) =
{

(ub− lb)× r1 + lb, rand < z
(r2 − C)× Xr(t)+ D × B, rand ≥ 0.5
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where −→RB denotes a vector of random integers from the Normal distribution that reflect Brownian motion. The 
notation ⊗ refers to entry-by-entry multiplications. The new location is simulated by multiplying −→RB by the 
previous position, P = 0.5 represents a constant, and −→RB represents a vector of uniform random values in the 
range [0,1]. This condition happens during the first third of iterations when the step size is large, representative 
a high level of exploratory ability. The fittest solution (E) is designated as the best location to form a matrix by 
the following  equation42:

where Xb is the best solution, which is copied n times to create the E matrix. n is the number of search agents, 
whereas d denotes the number of dimensions.

The second stage is the low-velocity ratio. This stage happens near the end of the optimization procedure, 
which is typically related to high exploitation capability. Lévy is the best approach for low-velocity ratios. This 
stage is represented as:

In the Lévy process, multiplying RL and E, whereas adding the step size to location assistances in the updating 
of position. An extra feature of EGTO is increasing the chances of escape from local minima. The flowchart of 
the proposed EGTO technique is shown in Fig. 2. The place of high and low-velocity ratios in the EGTO tech-
nique are displayed in this figure. This modification leads to enhancing the exploration of the EGTO technique. 
Furthermore, Algorithm 1 defines the EGTO technique’s pseudocode.

(4.3)Xi(t + 1) = Xi(t)+ P · −→RB ⊗ S

(5)E =







Xbt1.1 · · · Xbt1.d
...

. . .
...

Xbtn.1 · · · Xbtn.d







(6.1)it >
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3
Maxit
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(−→
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)

(6.3)Xi(t + 1) = E + P · CF ⊗ S
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% EGTO setting
Set the control parameter (Dimension of problem (d), maximum iteration, population size), and 
parameters β and p
% Initialization

Initialize the population randomly 
Evaluate the fitness values of the new solution 
Obtain the best solution 

% Main Loop
While it ≤ Maxit

Update the C and D using Eq. (1).
% Exploration phase 

For each Gorilla 
Update the position of the Gorilla using Eq. (1). 

End For
% Create group

Evaluate the fitness values of the Gorilla 
Obtain the best solution 

% Exploitation phase 
For each Gorilla 

If | | ≥ 1

Update the position of the Gorilla using Eq. (2). 
Else If

Update the position of the Gorilla using Eq. (3). 
End If

End For
% Create group

Check the limits of the new locations Evaluate the fitness values of the Gorilla 
Obtain the best solution 

% High and low-velocity ratios
If it<1/3 Maxit

Update the new location of the rabbit using Eq.(4.3)
Else If it≥1/3 Maxit

Update the new location of the rabbit using Eq.(6.3)
End If

Check the limits of the new locations and evaluate the fitness values
Find the new solution if the fitness is better

i t=it+1
End while 
Output the best solution

Algorithm 1.  Pseudocode of the EGTO algorithm.

Computational complexity analysis of the proposed EGTO algorithm
Computational complexity serves as a valuable tool to evaluate the efficiency of algorithms in addressing opti-
mization problems. Several factors influence the complexity of an algorithm, such as the number of individuals 
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engaged (n), the dimensionality of the problem’s variables (d), and the maximum number of iterations (Maxit). 
For EGTO, the overall computational complexity can be expressed as follows:

O(EGTO) = O(problem definition) + O(initialization) + O(function evaluation) +

O(Position updating in Exploration phase) + O(Position updating in Exploitation phase) +

O(Position updating inHigh and low − velocity ratios) = O
(

1+ n+ Tn+
1
2Tnd +

1
2Tnd + Tnd

)

∼=

O(2Tnd + Tn+ n) .
Compared with the basic techniques, the computational complexity of the EGTO algorithm increases to 

some extent as a consequence of the introduced High and low-velocity ratios. However, these extra time costs 
can greatly improve the search performance of the algorithm, which is acceptable based on the NFL  theorem6.

Experimental results and discussion
In this section, we utilize a collection of well-known benchmark functions to assess the performance of the pro-
posed EGTO method described in this paper. These benchmark functions encompass three categories: unimodal, 
multimodal, and multimodal functions with fixed dimensions. The set of unimodal functions consists of seven 
functions, namely F1–F7. Each of these functions possesses only one global optimal solution. Consequently, they 
are commonly employed to evaluate the algorithm’s ability to exploit local solutions effectively. On the other hand, 
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Figure 2.  The flowchart of the proposed EGTO technique.
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the multimodal functions F8–F23 not only possess a globally optimal solution but also contain multiple locally 
optimal solutions. Thus, they serve to challenge the technique’s capacity for global exploration and avoidance of 
local optima. The mathematical formulas and characteristics of these benchmark functions are given in Table 
A in Supplementary Material.

Performance of the proposed EGTO algorithm
In this subsection, we assess the effectiveness and performance of the proposed EGTO technique on various 
benchmark functions. The evaluation involves using statistical measurements, such as best values, mean values, 
worst values, and standard deviation (STD) to analyze the solutions obtained by the EGTO technique, the origi-
nal GTO algorithm, and seven other recent optimization algorithms, including the Tuna Swarm Optimization 
(TSO)45, Grey Wolf optimizer (GWO)  algorithm46, Gradient-based optimizer (GBO)  algorithm47, Artificial rab-
bits optimization (ARO)48, Pelican Optimization Algorithm (POA)49, RUN  algorithm50, and MPA  algorithm42. 
The codes of these algorithms implemented in this study have been provided in Supplementary Material. The 
results attained with the EGTO algorithm is compared with these recent techniques. To ensure a level playing 
field, all algorithms, including the proposed one, were evaluated under identical conditions. Specifically, each 
algorithm was executed for the maximum number of iterations set at 500, with a population size of 50 for 20 
independent runs. These computations were conducted using MATLAB R2016a on a Windows 8.1, 64-bit sys-
tem, with a Core i5-4210U CPU running at 2.40 GHz and 8 GB of RAM. By maintaining consistency in these 
parameters across all evaluations, we aimed to provide a fair basis for comparison, enabling an objective assess-
ment of algorithmic performance. The parameter settings of the optimization algorithms are shown in Table 1.

In this section, we present a comprehensive assessment of the proposed algorithm’s exploitation and explora-
tion capabilities using the previously described unimodal, and multimodal benchmark functions. Tables 2 and 
3 display the best values, mean values, worst values, and STD results attained by the EGTO algorithm and other 
competing algorithms for each function F1–F13 in dimension Dim = 30. The comparison of algorithms in these 
functions is based on their average values. The Tied rank (TR) technique is utilized to rank these functions, where 
each technique is assigned, a rank based on its average value, with the algorithm having the smallest average 
value receiving rank 1, and so on. The algorithm with the lowest TR value is considered the most effective when 
compared to the other  techniques28.

Upon examining Table 2, it is evident that the EGTO algorithm outperforms its peers on the majority of 
the test problems. Specifically, for the unimodal functions (F1–F7), EGTO effectively searches for the global 
optimum (0) on F1–F4. These results confirm the competitive local exploitation potential of EGTO, particularly 
for unimodal functions. Moving on to Table 3 (the multimodal functions (F8–F13)), The statistical results of 
the tied rank on 13 benchmark functions are summarized in these tables. For the multimodal functions, the 
performance of the proposed algorithm significantly outperforms TSO, GWO, GBO, ARO, RUN, POA, MPA and 
original GTO. Multimodal functions serve to assess the exploration ability, and thus these results demonstrate 
the excellent global exploration capability of EGTO. The effectiveness of EGTO in global exploration can be 
attributed to the designed high and low-velocity ratios, which efficiently expands the unknown search region, 
enabling the algorithm to bypass local optima and find higher-quality solutions.

In conclusion, the comprehensive assessment reveals that the proposed EGTO algorithm excels in both 
exploitation and exploration capabilities across various benchmark functions. It outperforms other algorithms 
on most test problems, indicating its efficacy in finding global optima for unimodal and multimodal functions. 
The innovative high and low-velocity ratios play a crucial role in enhancing exploration and helps the algorithm 
in efficiently navigating through the solution space to find high-quality solutions.

Additionally, the average ranks for all algorithms are presented in Figs. 3 and 4. It is evident from these Fig-
ures that the proposed EGTO obtains the lowermost average rank value, indicating that it ranks first among all 
techniques. Thus, the EGTO technique emerges as the top-performing optimizer in this comparison, according 
to the tied rank approach. To visualize the ranking of all compared techniques for each function, a radar chart 
(Fig. 5) is used. This outcome further validates the efficiency of our algorithm in discovering global optima for 
various problems.

In the early iterations, search agents in optimization algorithms often undergo dramatic changes to explore 
promising areas in the search space extensively, and then they gradually converge as the number of iterations 

Table 1.  Parameter settings of optimization algorithms for comparison and evaluation of the EGTO.

Algorithms Parameters setting

GWO θ (= 2 to 0)

GBO Pr = 0.5, z = [0,1]

ARO

No such parameter

RUN

TSO

POA

MPA

GTO
β = 3,W = 0.8, P = 0.03

EGTO
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increases. To analyze the convergence behavior of the proposed technique in the quest for optimal solutions, 
Fig. 6 illustrates the convergence curves of TSO, GWO, GBO, ARO, RUN, POA, original GTO, and EGTO on 
13 benchmark functions throughout the iterations.

From the figure, it is evident that the proposed EGTO exhibits superior and competitive convergence perfor-
mance compared to other state-of-the-art algorithms. For the unimodal benchmark functions (F1–F7), EGTO 
rapidly converges to the global optimum during the initial phases of functions F1–F4, displaying the fastest decay 
rate in its convergence curve. In contrast, other algorithms experience significant lag and are slower in their 
search process. This phenomenon arises due to the designed high and low-velocity ratios mechanism, which 
provides better randomness and population diversity during the initial stage, effectively expanding the search 
range of EGTO. Despite the multimodal benchmark functions (F8–F13) being more challenging due to several 

Table 2.  The statistical Results of unimodal benchmark functions using the proposed EGTO technique and 
other well-known algorithms (Dim = 30). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN MPA

F1

Best 0 1.7E−175 2.4E−115 4.47E−12 9.06E−52 1.59E−26 1.18E−45 9.07E−86 1.68E−07

Mean 0 1.1E−160 6.2E−99 3.12E−11 4.1E−46 1.07E−21 1.62E−37 5.02E−77 5.11E−07

Median 0 7.8E−169 3.4E−106 2.46E−11 1.73E−49 4.68E−23 1.86E−41 1.06E−82 3.6E−07

Worst 0 2.3E−159 1.24E−97 8.73E−11 4.79E−45 7.08E−21 3.09E−36 1E−75 1.81E−06

Std 0 5.1E−160 2.76E−98 2.31E−11 1.27E−45 2.18E−21 6.9E−37 2.24E−76 4.1E−07

Rank 1 2 3 8 5 7 6 4 9

F2

Best 4.4E−211 5.76E−87 2.49E−57 1.42E−07 2.03E−28 1.34E−14 3.79E−23 1.04E−47 2.28E−05

Mean 3.1E−200 5.7E−78 4.67E−48 2.77E−07 1.95E−24 1.15E−12 3.15E−20 1.87E−43 0.000156

Median 9.7E−206 5.78E−83 4.53E−53 2.66E−07 1.77E−25 1.22E−13 5.04E−21 1.2E−44 0.000135

Worst 6.2E−199 1.13E−76 9.33E−47 4.78E−07 1.95E−23 1.78E−11 1.67E−19 2.3E−42 0.00043

Std 0 2.53E−77 2.09E−47 9.9E−08 4.64E−24 3.94E−12 4.9E−20 5.35E−43 9.51E−05

Rank 1 2 3 8 5 7 6 4 9

F3

Best 0 5E−166 2.3E−106 0.008462 3.42E−42 4.28E−21 1.74E−43 5.75E−77 0.274034

Mean 0 1.7E−144 1.11E−90 0.610441 2.56E−38 5.08E−15 8.76E−39 2.33E−62 3.940563

Median 0 3.2E−156 3.67E−97 0.185412 5.51E−40 6.99E−17 3.91E−41 1.5E−69 3.263723

Worst 0 2.9E−143 2.2E−89 3.567009 2.05E−37 6.41E−14 1.19E−37 4.54E−61 8.369983

Std 0 6.5E−144 4.91E−90 0.827115 5.68E−38 1.51E−14 2.76E−38 1.01E−61 2.31658

Rank 1 2 3 8 6 7 5 4 9

F4

Best 2.3E−203 8.81E−88 2.88E−59 0.002608 1.54E−24 8.35E−13 2.06E−24 1.35E−42 0.001671

Mean 7.4E−193 6.68E−78 1.93E−49 0.008 8.59E−22 2.6E−09 5.73E−20 2.09E−35 0.003476

Median 2.1E−198 4.8E−82 1.14E−50 0.007092 1.22E−22 7.79E−10 4.04E−21 5.61E−39 0.003057

Worst 9E−192 9.11E−77 1.66E−48 0.016667 1.08E−20 2.28E−08 4.68E−19 4.16E−34 0.006615

Std 0 2.2E−77 4.07E−49 0.003845 2.47E−21 5.09E−09 1.29E−19 9.3E−35 0.001289

Rank 1 2 3 9 5 7 6 4 8

F5

Best 4.29E−07 2.65E−06 0.001195 25.92515 24.25387 0.048127 27.59768 23.34961 25.94347

Mean 9.225693 2.582855 0.223669 27.18903 25.13063 2.57084 28.57786 24.73586 26.61776

Median 0.0009 0.00084 0.052472 27.09814 25.117 1.069097 28.75691 24.85999 26.70742

Worst 24.69577 25.7961 2.507327 28.79035 26.10917 16.26736 28.8694 26.52757 27.5016

Std 11.60128 7.929365 0.563388 0.72182 0.565603 3.783419 0.376116 0.832917 0.397519

Rank 4 3 1 8 6 2 9 5 7

F6

Best 1.06E−08 5.79E−08 7.15E−06 0.252254 0.00018 0.009568 2.287489 7.23E−09 0.011749

Mean 6.64E−08 9.98E−05 0.004004 0.647554 0.00108 0.044563 3.220579 1.19E−08 0.068693

Median 6.8E−08 7.3E−05 0.002184 0.611378 0.000875 0.039666 3.076281 1.19E−08 0.063854

Worst 1.33E−07 0.000315 0.03263 1.172757 0.002836 0.098375 4.6641 2.24E−08 0.15925

Std 3.34E−08 0.000101 0.007109 0.280888 0.000702 0.026373 0.548631 3.7E−09 0.037548

Rank 2 3 5 8 4 6 9 1 7

F7

Best 2.72E−06 1.95E−05 0.00013 0.001477 0.000111 3.22E−05 1.74E−05 3.74E−05 0.000655

Mean 0.000114 0.000113 0.000598 0.004433 0.001192 0.001407 0.000404 0.00042 0.002961

Median 0.000102 8.65E−05 0.000531 0.003685 0.000985 0.00115 0.000328 0.000413 0.00246

Worst 0.000293 0.00029 0.001638 0.01033 0.004017 0.003564 0.001649 0.000865 0.006116

Std 8.87E−05 7.49E−05 0.000417 0.002554 0.001008 0.001071 0.000361 0.000268 0.001753

Rank 2 1 5 9 6 7 3 4 8

Average Rank 1.571429 1.857143 2.857143 7.142857 4.571429 5.142857 5.428571 3.142857 6.857143

Final ranking 1 2 3 9 5 6 7 4 8



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7650  | https://doi.org/10.1038/s41598-024-57098-8

www.nature.com/scientificreports/

local optima, EGTO maintains excellent convergence behavior in these test cases. These convergence behaviors 
of EGTO on multimodal functions provide strong evidence that the hybrid operation and high and low-velocity 
ratios mechanism effectively help escape local optima, contributing to the algorithm’s overall robustness and 
performance.

The boxplot is a suitable diagram for visualizing data distribution and describing the agreement between the 
data. In Fig. 7, we present boxplots representing the results obtained from 20 independent runs for 13 representa-
tive benchmark functions, comparing EGTO with other algorithms, as shown in Tables 4 and 5. Each box in the 
figure represents the data distribution for a specific algorithm. The center marker of each box corresponds to 
the median value, while the bottom and top fringes of the box indicate the first and third quartiles, respectively. 
Outliers are denoted by the notation "+". By examining Fig. 7, it becomes evident that the proposed EGTO 
exhibits remarkable consistency and produces no outliers in nearly all test cases during the optimization process.

Furthermore, the values of the median, maximum, and minimum achieved by EGTO are more tightly concen-
trated compared to the competitor algorithms. These results highlight the strong stability of the EGTO algorithm 
proposed in this study. Its ability to consistently perform well across multiple independent runs demonstrates 
its robustness and reliability. The absence of outliers and the concentration of results indicate that the proposed 
algorithm consistently converges to high-quality solutions for the benchmark functions analyzed.

Table 3.  The statistical Results of multimodal benchmark functions using the proposed technique and other 
well-known algorithms (Dim = 30). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN MPA

F8

Best −12,569.5 −12,569.5 −12,569.5 −1495.31 −1872.79 −9902.5 −8611.41 −1660.17 −9098.32

Mean −12,569.5 −12,569.5 −12,569.4 −1245.57 −1743.83 −9268.23 −7526.88 −1580.75 −8329.76

Median −12,569.5 −12,569.5 −12,569.4 −1224.18 −1732.31 −9276.94 −7483.79 −1605.45 −8346.16

Worst −12,569.5 −12,569.2 −12,569 −1123.85 −1659.76 −7798.04 −6352.41 −1397.78 −7695.47

Std 0.000478 0.058006 0.119394 104.0153 58.4135 494.4779 653.4455 78.84949 401.4317

Rank 1 2 3 9 7 4 6 8 5

F9

Best 0 0 0 1.062467 0 0 0 0 4.32E−07

Mean 0 0 0 9.801018 0 0 0 0 0.000143

Median 0 0 0 9.824713 0 0 0 0 2.99E−05

Worst 0 0 0 24.96968 0 0 0 0 0.001393

Std 0 0 0 5.565812 0 0 0 0 0.000307

Rank 1 1 1 9 1 1 1 1 8

F10

Best 8.88E−16 8.88E−16 8.88E−16 20.76487 8.88E−16 3.29E−14 8.88E−16 8.88E−16 4.93E−05

Mean 8.88E−16 8.88E−16 8.88E−16 20.92344 8.88E−16 5.19E−12 2.84E−15 8.88E−16 0.000141

Median 8.88E−16 8.88E−16 8.88E−16 20.94465 8.88E−16 1.26E−12 4.44E−15 8.88E−16 0.000119

Worst 8.88E−16 8.88E−16 8.88E−16 21.06309 8.88E−16 5.25E−11 4.44E−15 8.88E−16 0.000373

Std 0 0 0 0.083433 0 1.17E−11 1.81E−15 0 7E−05

Rank 1 1 1 9 1 7 6 1 8

F11

Best 0 0 0 6.56E−13 0 0 0 0 2.56E−07

Mean 0 0 0 0.009891 0 0 0 0 1.83E−06

Median 0 0 0 4.55E−12 0 0 0 0 1.37E−06

Worst 0 0 0 0.055407 0 0 0 0 5.92E−06

Std 0 0 0 0.015766 0 0 0 0 1.56E−06

Rank 1 1 1 9 1 1 1 1 8

F12

Best 1.27E−09 1.45E−09 7.19E−08 0.006066 5.1E−06 0.000211 0.098769 2.99E−09 0.000793

Mean 5.78E−09 3.31E−06 6.45E−05 0.026151 3.6E−05 0.002555 0.203213 6.93E−09 0.00381

Median 4.92E−09 7.71E−07 6.3E−06 0.023474 2.19E−05 0.002594 0.205077 5.58E−09 0.001677

Worst 1.65E−08 1.97E−05 0.000582 0.047176 0.000217 0.004551 0.359266 1.57E−08 0.01777

Std 3.67E−09 5.82E−06 0.000143 0.013414 4.68E−05 0.001218 0.072077 3.43E−09 0.004928

Rank 1 3 5 8 4 6 9 2 7

F13

Best 7.96E−09 3.35E−09 1.84E−06 0.09955 0.000369 0.005253 1.610985 4.07E−08 0.032728

Mean 7.66E−08 0.002285 0.003481 0.613832 0.014006 0.038605 2.636569 0.00805 0.09402

Median 6.56E−08 2.96E−05 0.000418 0.609981 0.008366 0.020631 2.980898 0.010987 0.08078

Worst 2.26E−07 0.044065 0.021398 1.044 0.052319 0.218513 2.985918 0.021025 0.336438

Std 5.37E−08 0.009836 0.007162 0.280029 0.016889 0.051532 0.482461 0.008325 0.072531

Rank 1 2 3 8 5 6 9 4 7

Average Rank 1 1.666667 2.333333 8.666667 3.166667 4.166667 5.333333 2.833333 7.166667

Final ranking 1 2 3 9 5 6 7 4 8
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Tables 4 and 5 show the statistical results of the EGTO technique and other well-known algorithms when used 
for unimodal benchmark functions, multimodal benchmark functions, respectively with Dim = 50. The statisti-
cal results of the tied rank on 13 benchmark functions are summarized in these tables. After analyzing these 
Tables, the techniques applied are sorted, and it is observed from the ranking order that the EGTO technique 
outperforms all the other compared algorithms across 10 benchmark functions problems. The original GTO and 
TSO also display robust effectiveness as the second and third optimal techniques, respectively.

Moreover, the average ranks for all algorithms are displayed in Figs. 8 and 9. It is obvious from these Figures 
that the EGTO technique achieves the lowermost average rank value, indicating that it ranks first among all 
techniques. Thus, the EGTO technique emerges as the top-performing algorithm in this comparison, according 
to the tied rank approach. To visualize the ranking of all compared algorithms for each function, a radar chart 
(Fig. 10) is used. This outcome further validates the efficiency of our method in discovering global optima for 
various problems.

From this analysis, it can be concluded that the EGTO technique proves to be a strong technique for solving 
these types of problems. Further insights into the convergence curves of these techniques for these functions are 
shown in Fig. 11. For a more in-depth examination into the performance of the EGTO technique, a boxplot of 
outcomes for each technique and fitness function is displayed in Fig. 12. The boxplots of the EGTO algorithm 
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Figure 3.  Mean ranks achieved using tied rank test for unimodal functions using several techniques (Dim = 30).
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for most functions are narrow and among the smallest values, indicating its consistency and effectiveness in 
solving the optimization problems. In summary, the Tied rank comparison displays that the EGTO technique is 
the most effective algorithm among all the compared methods. The visualizations and statistical analyses provide 
strong evidence that EGTO efficiently discovers global optima for various problems, making it a highly effective 
algorithm for solving these types of optimization problems.

This section evaluates the proposed algorithm’s exploration and development capabilities using standard 
test functions with Dim = 100. The above eight well-known techniques are compared mainly from numerical 
analysis, boxplots, and convergence curves. After 20 independent runs of the experiment. The obtained results are 
recorded in Tables 6 and 7 below. It is seen from these tables that the EGTO technique obtained the theoretical 
optimum value in the 100 dimensions of F1–F13 and had a very stable effect.

Additionally, Figs. 13 and 14 present the average ranks for all algorithms. These figures unmistakably dem-
onstrate that the EGTO technique attains the most favorable average rank, signifying its top position among 
all algorithms. Hence, based on the tied rank approach, the EGTO technique emerges as the best-performing 
algorithm in this comparison. For a visual representation of the rankings of all compared techniques concern-
ing each function, a radar chart (Fig. 15) has been employed. This outcome provides further validation of the 
efficiency of our method in discovering global optima for diverse problems.

Figure 16 presents the convergence curves of different techniques on 13 illustrative benchmark functions with 
Dim = 100. From Fig. 16, it is clear that the convergence speed of EGTO is the fastest among all techniques on the 
most of functions and the EGTO technique can quickly reach the global optimal solution at the beginning of the 
search process. In order to better demonstrate the constancy of the EGTO technique, the corresponding boxplots 
of unimodal benchmark functions and multimodal benchmark functions with dimension Dim = 100 are shown 
in Fig. 17. From Fig. 17, it can be seen that the proposed EGTO technique displays remarkable reliability in most 
issues with respect to the median, maximum and minimum values compared with the others. Furthermore, the 
EGTO algorithm generates no outliers during the iterations with the more focused distribution of convergence 
values, thereby confirming the robust strength and superiority of the proposed EGTO technique. On the basis 
of experimental results of boxplot analysis and convergence curves, EGTO has a considerable enhancement in 
convergence speed and permanency compared with the original GTO, which is owed to the good basis of global 
search placed by high and low-velocity ratios.

Table 8 presents the performance of the EGTO algorithm compared to other well-known algorithms in solving 
composite benchmark functions. The table provides statistical results for various functions (F14–F23). For each 
function, the table shows the best, mean, median, and worst values obtained by each algorithm, along with their 
corresponding standard deviations. Additionally, the table includes the ranks assigned to each algorithm based 
on their performance for each function. The EGTO algorithm demonstrates excellent performance, achieving the 
best results (rank 1) for functions F14, F16, F17, F19, F21, F22, and F23. For these functions, EGTO consistently 
obtains the best solutions, as indicated by the best values being equal to or very close to the optimum. Moreover, 
EGTO achieves competitive results (rank 2 and 3) for functions F18 and F20, respectively. Overall, the EGTO 
algorithm exhibits outstanding performance, with an average rank of 1.9, positioning it as the top-performing 
algorithm among the compared techniques.

Figure 18 illustrates the mean ranks attained using the tied rank test for multimodal functions with fixed 
dimensions using the EGTO technique and several other techniques. The tied rank test is a statistical analysis 
that allows for a fair and unbiased comparison of algorithms’ performance on different benchmark functions. A 
lower mean rank indicates better performance, as it suggests that the algorithm achieved more favorable results 
across the various benchmark functions. In the graph, we observe that the EGTO algorithm consistently achieves 
low mean ranks for most multimodal functions. This indicates that EGTO outperforms other algorithms on a 
majority of benchmark functions in terms of finding high-quality solutions. The low mean ranks further highlight 
EGTO’s robustness and effectiveness in handling a diverse set of complex multimodal functions. Comparing 
the mean ranks of EGTO with other algorithms, we can see that EGTO generally outperforms its competitors, 

Figure 5.  Radar chart for ranks among all compared techniques.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7650  | https://doi.org/10.1038/s41598-024-57098-8

www.nature.com/scientificreports/

demonstrating its superiority in solving multimodal optimization problems with fixed dimensions. The graph’s 
overall trend shows that EGTO consistently ranks higher than other algorithms, reinforcing its reputation as a 
powerful and reliable optimization technique for challenging multimodal functions. Moreover, Fig. 19 provides 
compelling evidence of the EGTO algorithm’s exceptional performance across various multimodal functions 
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F5 F6 F7 F8

F9 F10 F11 F12
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Figure 6.  The convergence curves of all algorithms for benchmark functions (Dim = 30).
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with fixed dimensions, making it a valuable and competitive choice for researchers and practitioners seeking 
efficient solutions to complex optimization problems.

Figure 20 displays the convergence curves for each algorithm. Observing these plots, it becomes evident that 
the EGTO algorithm exhibited robust convergence and exploitation capabilities, efficiently reaching optimal 
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Figure 7.  Boxplots for all techniques for benchmark functions (Dim = 30).
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values. Notably, the EGTO algorithm outperformed other methods, demonstrating faster convergence and greater 
stability. Its superior performance surpasses that of the other algorithms significantly.

Boxplots are drawn in this paper to visualize the distribution of the data. It can well describe the consistency 
between data. Figure 21 depicts the boxplot of EGTO against seven other comparison techniques over ten rep-
resentative benchmark functions. As can be seen from this Figure, the EGTO algorithm has better consistency 
than other original algorithms. No outliers were generated during the iteration. The obtained median, maximum 
and minimum values are more concentrated than other comparison algorithms. The above confirms the high 
stability of the EGTO technique.

Table 4.  The statistical Results of unimodal benchmark functions using the proposed technique and other 
well-known algorithms (Dim = 50). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

F1

Best 0 3.60E−179 5.50E−109 8.37E−08 3.73E−51 7.67E−27 2.61E−45 4.23E−89

Mean 0 1.10E−157 1.02E−95 2.79E−07 3.59E−45 1.53E−20 3.25E−37 2.9E−67

Median 0 1.00E−167 6.90E−102 2.02E−07 9.57E−47 5.89E−22 1.99E−39 7.55E−78

Worst 0 2.10E−156 1.60E−94 1.11E−06 6.43E−44 1.52E−19 4.39E−36 5.8E−66

Std 0 4.80E−157 3.65E−95 2.39E−07 1.43E−44 3.52E−20 1.01E−36 1.3E−66

Rank 1 2 3 8 5 7 6 4

F2

Best 8.90E−208 1.63E−86 1.39E−59 3.69E−05 6.85E−28 9.79E−15 2.54E−23 8.69E−49

Mean 3.40E−200 1.55E−78 2.69E−49 5.89E−05 1.37E−24 1.64E−12 3.58E−19 5.67E−39

Median 6.10E−203 4.74E−81 6.83E−53 5.82E−05 1.86E−25 8.64E−13 4.31E−21 4.76E−43

Worst 5.70E−199 2.92E−77 4.67E−48 8.68E−05 8.53E−24 8.85E−12 2.87E−18 1.13E−37

Std 0 6.52E−78 1.04E−48 1.56E−05 2.62E−24 2.31E−12 8.55E−19 2.52E−38

Rank 1 2 3 8 5 7 6 4

F3

Best 0 1.00E−169 2.90E−103 8.247862 3.44E−40 1.46E−19 9.65E−44 3.73E−70

Mean 0 4.10E−149 3.58E−84 69.76243 5.27E−35 9.91E−15 1.83E−36 1.74E−60

Median 0 3.70E−156 6.15E−93 48.49045 7.49E−37 8.75E−16 3.6E−39 3.51E−66

Worst 0 8.10E−148 3.27E−83 261.5955 3.53E−34 7.6E−14 3.23E−35 3.41E−59

Std 0 1.80E−148 9.47E−84 62.21247 9.91E−35 2E−14 7.18E−36 7.63E−60

Rank 1 2 3 8 6 7 5 4

F4

Best 1.80E−199 2.78E−89 2.03E−59 0.061477 9.43E−23 1.96E−10 3.48E−23 3.27E−40

Mean 7.30E−192 1.26E−77 1.49E−49 0.208767 1.41E−20 1.58E−08 5.2E−20 3.72E−34

Median 8.00E−195 2.54E−82 1.39E−51 0.199464 1.50E−21 5.61E−09 4.92E−21 7.91E−37

Worst 9.00E−191 2.51E−76 1.49E−48 0.472416 1.03E−19 1.08E−07 5.08E−19 6.37E−33

Std 0 5.61E−77 4.34E−49 0.112809 2.59E−20 2.98E−08 1.28E−19 1.42E−33

Rank 1 2 3 8 5 7 6 4

F5

Best 3.99E−06 0.000103 0.00077 46.31971 44.84628 0.09285 48.00589 43.80266

Mean 10.79961 6.916665 1.639378 47.90874 45.75012 1.981324 48.62773 45.11744

Median 0.001973 0.020883 0.134052 47.93871 45.82161 1.318025 48.7604 45.03359

Worst 44.76108 46.1957 14.40832 48.76858 47.68453 5.929959 48.846 47.74144

Std 19.17784 16.73978 4.366565 0.819451 0.597878 1.772407 0.261286 0.950988

Rank 4 3 1 7 6 2 8 5

F6

Best 8.04E−07 9.55E−07 0.00079 2.021396 0.028792 0.065586 6.012652 9.36E−08

Mean 3.17E−06 0.003563 0.069931 2.983071 0.063313 0.196088 7.282118 1.35E−06

Median 3.36E−06 0.001455 0.011559 3.004177 0.060214 0.166124 7.262536 2.09E−07

Worst 5.01E−06 0.012374 0.255212 4.765756 0.165966 0.403829 8.48631 2.2E−05

Std 1.10E−06 0.003987 0.09284 0.650338 0.03347 0.097223 0.786929 4.86E−06

Rank 2 3 5 7 4 6 8 1

F7

Best 3.42E−06 1.76E−05 2.14E−06 0.001883 7.76E−05 0.000201 3.58E−05 0.000109

Mean 0.000108 0.000148 0.000542 0.007308 0.001522 0.001566 0.000382 0.000632

Median 4.94E−05 0.000158 0.000463 0.006766 0.001334 0.001402 0.000281 0.000452

Worst 0.000574 0.000419 0.001518 0.012483 0.003514 0.003725 0.001003 0.002252

Std 0.000134 9.63E−05 0.000439 0.002513 0.001003 0.001047 0.000274 0.000523

Rank 1 2 4 8 6 7 3 5

Average Rank 1.57142857 2.28571429 3.14285714 7.7142857 5.2857143 6.14286 6 3.85714

Final ranking 1 2 3 8 5 7 6 4
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The performance of the EGTO technique for the CEC2019 function
The benchmarking of algorithms utilized the CEC2019 function, and their performance evaluation was carried 
out using the challenging benchmark functions from the CEC2019 test suite, as presented in Table B in Sup-
plementary  Material51. This test set comprises highly difficult and complex composition functions, providing a 
rigorous assessment for the algorithms. This test suite encompasses ten intricate and contemporary benchmark 
functions, whose profiles are detailed in Appendix (C). As mentioned in the preceding subsection, the proposed 
EGTO and seven other comparison algorithms were independently executed 20 times on each function, with 
fixed parameters of maximum iteration (300) and population size (50).

The best, mean, median, worst values and standard deviation results obtained from this test are displayed 
in Table 9. The analysis from Table 9 indicates that EGTO outperforms the other seven algorithms in 5 out of 
10 test functions. Furthermore, in comparison to its peers, EGTO achieves the best mean ranking value of 2.3, 
closely followed by the ARO algorithm. These findings underscore EGTO’s capability in tackling a wide range of 
challenging optimization problems. In summary, this section thoroughly verifies the efficiency and superiority 
of the EGTO method through a series of experiments on classical benchmark functions and the IEEE CEC2019 
test suite. Whether dealing with simple or complex numerical problems, EGTO consistently delivers satisfactory 
results. It successfully builds upon the strengths of the basic GTO while incorporating the high and low-velocity 

Table 5.  The statistical Results of multimodal benchmark functions using the proposed technique and other 
well-known algorithms (Dim = 50). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

F8

Best −20,949.1 −20,949.1 −20,949.1 −10,764.1 −18,696 −14,037.4 −12,850 -13,481.6

Mean −20,949.1 −20,949 −20,948.4 −9519.05 −13,997.6 −13,143.8 −10,824.7 -10,484.5

Median −20,949.1 −20,949.1 −20,949 −9600.68 −13,839.4 −13,134.1 −10,870.6 -10,178.8

Worst −20,949.1 −20,948.5 −20,942.6 −7944.41 −11,562.5 −12,051.5 −8903.73 -7577.09

Std 0.014833 0.206536 1.572248 728.5785 1579.347 553.937 1025.562 1481.147

Rank 1 2 3 8 4 5 6 7

F9

Best 0 0 0 6.469408 0 0 0 0

Mean 0 0 0 22.52333 0 0 0 0

Median 0 0 0 22.92349 0 0 0 0

Worst 0 0 0 51.82752 0 0 0 0

Std 0 0 0 10.07971 0 0 0 0

Rank 1 1 1 8 1 1 1 1

F10

Best 8.88E−16 8.88E−16 8.88E−16 4.96E−05 8.88E−16 1.51E−14 8.88E−16 8.88E−16

Mean 8.88E−16 8.88E−16 8.88E−16 8.35E−05 8.88E−16 3.24E−11 2.49E−15 8.88E−16

Median 8.88E−16 8.88E−16 8.88E−16 8.37E−05 8.88E−16 9.76E−12 8.88E−16 8.88E−16

Worst 8.88E−16 8.88E−16 8.88E−16 0.000149 8.88E−16 2.7E−10 4.44E−15 8.88E−16

Std 0 0 0 2.73E−05 0 6.32E−11 1.81E−15 0

Rank 1 1 1 8 1 7 6 5

F11

Best 0 0 0 1.19E−07 0 0 0 0

Mean 0 0 0 0.004675 0 0 0 0

Median 0 0 0 3.01E−07 0 0 0 0

Worst 0 0 0 0.035907 0 0 0 0

Std 0 0 0 0.011678 0 0 0 0

Rank 1 1 1 8 1 1 1 1

F12

Best 2.86E−09 1.24E−06 9.44E−08 0.069288 0.000552 0.001932 0.281402 2.6E−08

Mean 1.49E−07 7.35E−05 0.000288 0.146249 0.004807 0.008179 0.432569 5.98E−08

Median 1.19E−07 4.01E−05 8.92E−05 0.114348 0.001496 0.006111 0.453748 6.28E−08

Worst 6.24E−07 0.000338 0.001448 0.433898 0.065301 0.018554 0.538911 9.42E−08

Std 1.21E−07 9.59E−05 0.000431 0.096519 0.014259 0.005089 0.070605 1.92E−08

Rank 2 3 4 7 5 6 8 1

F13

Best 2.42E−08 8.25E−08 2.37E−06 1.561764 0.088822 0.00266 3.969254 1.17E−06

Mean 0.000551 0.000718 0.00413 2.296977 0.580392 0.087569 4.833977 0.011454

Median 1.94E−06 0.000231 0.002076 2.234445 0.253766 0.094081 4.977986 2.37E−05

Worst 0.010991 0.002836 0.030246 3.183965 3.890083 0.177373 4.983704 0.054779

Std 0.002457 0.000996 0.007126 0.411714 1.128273 0.045101 0.353463 0.017196

Rank 1 2 3 7 6 5 8 4

Average Rank 1.166667 1.666667 2.166667 7.666667 3 4.166667 5 3.166667

Final ranking 1 2 3 8 4 6 7 5
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ratios to address issues related to poor population diversity, falling into local optima, and the balance between 
exploration and exploitation.

Figure 22 displays the mean ranks obtained by the tied rank test for the CEC 2019 benchmark functions 
using various algorithms. The graph provides a comprehensive comparison of the performance of different 
algorithms across these challenging benchmark functions. Mean ranks offer valuable insights into the relative 
effectiveness of each algorithm, enabling a clearer understanding of their overall performance. On the other 
hand, Fig. 23 presents a radar chart that visualizes the ranks achieved by all compared algorithms. This chart 
offers a concise and intuitive representation of how each algorithm ranks in comparison to others across the 
benchmark functions. The radar chart’s multi-dimensional nature allows for a quick assessment of algorithmic 
strengths and weaknesses in tackling the diverse set of problems present in the CEC 2019 benchmark. These 
figures unmistakably demonstrate that the EGTO technique attains the most favorable average rank, signifying 
its top position among all techniques.
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Figure 8.  Mean ranks achieved using tied rank test for unimodal functions using several techniques (Dim = 50).
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Figure 9.  Mean ranks achieved using tied rank test for multimodal functions using several techniques 
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The convergent graph of the implemented algorithms is illustrated in Fig. 24. Observing these curves, it 
becomes evident that EGTO exhibits comparable convergence for the majority of the functions. Figure 25 
presents a box plot depicting a comparison of the algorithms, including the proposed EGTO, for solving the 
functions. The box plot analysis clearly demonstrates that EGTO outperforms the competitor metaheuristic 
algorithms, as it showcases a smaller width and a more efficient center, indicating its superior performance. Addi-
tionally, the results suggest that EGTO achieves more consistent and robust solutions across the tested functions.

EGTO for engineering design problems
In this section, we apply the proposed EGTO algorithm to solve a set of classical engineering problems. These 
problems involve various constraints, both in terms of equalities and inequalities. We compare the performance of 
the EGTO technique against commonly used optimization techniques when applied to these engineering design 
problems. The selected problems for analysis are well-known in the field and include the Three-Bar Truss Design 
(BTD), Compression Spring Design (CSD), Pressure Vessel Design (PVD), Cantilever Beam Design (CBD), 
Welded Beam Design (WBD), Speed Reducer Design (SRD), and Gear Train Design (GTD). Metaheuristic 
algorithms have proven to be effective in addressing such constrained engineering problems. To assess the 
efficacy of the proposed EGTO algorithm, we compare its results with those obtained using other metaheuristic 
algorithms, including the original GTO, TSO, GWO, GBO, ARO, POA, and RUN algorithms. For consistency, 
we assume the same simulation assumptions as outlined in the previous section.

Three-bar truss design problem
The 3-bar truss design (3BTD) is a prominent problem in the field of civil engineering, involving the manipulation 
of two parameters to attain the minimum weight when designing a  truss52. Figure 26 visually represents the layout 
of this problem. The mathematical model of this design is formulated as follows.

where l = 100cm; P = 2kN
cm2 ; σ = 2kN

cm2  ; Variable range: 0 ≤ x1, x2 ≤ 1.00.
This optimization challenge is of great significance in civil engineering applications, as it seeks to achieve 

an efficient and lightweight design for the truss structure. Table 10 shows the performance of several algo-
rithms, such as GTO, TSO, GWO, GBO, ARO, POA, RUN, and the proposed EGTO algorithm for solving the 
problem of the three-bar truss design problem. The results demonstrate that the EGTO algorithm indicates an 
outperformance compared to other algorithms. The minimum weight is 263.895, and the optimal values for × 1 
and × 2 are 0.788675 and 0.408248, respectively. Figure 27 shows the convergence curves and the boxplot of these 
algorithms during solving the problem. Additionally, a comparison of the statistical results is given in Table 11, 
the mean and STD values obtained by the proposed EGTO, GTO, and POA algorithms are the best among all 
other counterparts.

Minimize f (A1,A2) = l ×
(

2
√
2x1 + x2

)

Subject to G1 =
√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0,

G2 =
x2√

2x21 + 2x1x2
P − σ ≤ 0

G3 =
1√

2x2 + x1
P − σ ≤ 0

Figure 10.  Radar chart for ranks among all compared techniques.
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Tension/compression spring design
We also investigated the Tension/Compression Spring Design (TCSD) problem as our second engineering opti-
mization problem. The objective in this problem, as depicted in Fig. 28, is to minimize the weight of a tension/
compression spring  design53. The variables involved in this problem include the wire diameter (d), mean coil 
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Figure 11.  The convergence curves of all algorithms for benchmark functions (Dim = 50).
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Figure 12.  Boxplots for all techniques for benchmark functions (Dim = 50).
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diameter (D), and the number of active coils (N). The problem is subject to constraints related to surge fre-
quency, minimum deflection, and shear stress. The mathematical definitions for this problem are provided below. 
Furthermore, Table 12 presents the results obtained from applying the EGTO algorithm and other compared 
metaheuristic algorithms. Based on the results, the EGTO algorithm outperforms the other metaheuristic algo-
rithms in terms of finding the optimal cost.

Table 6.  The statistical Results of unimodal benchmark functions using the proposed technique and other 
well-known algorithms (Dim = 100). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

F1

Best 0 2.30E−174 8.10E−130 0.000811 1.70E−46 1.29E−21 2.6E−43 7.41E−85

Mean 0 5.90E−158 8.21E−91 0.00183 1.25E−41 6.86E−18 8.19E−36 1.81E−69

Median 0 2.30E−165 2.80E−102 0.001685 1.46E−44 4.01E−20 1.73E−39 3.76E−75

Worst 0 1.20E−156 1.64E−89 0.003033 2.47E−40 1.08E−16 1.57E−34 3.04E−68

Std 0 2.70E−157 3.67E−90 0.00067 5.52E−41 2.43E−17 3.5E−35 6.78E−69

Rank 1 2 3 8 5 7 6 4

F2

Best 9.70E−207 2.14E−84 4.21E−58 0.006512 3.69E−26 1.99E−13 3.28E−23 6.51E−44

Mean 9.60E−194 2.43E−78 3.28E−50 0.009448 9.27E−24 2.32E−11 5.78E−19 5.34E−38

Median 8.60E−200 1.71E−80 2.37E−52 0.009074 3.54E−24 3.92E−12 5.68E−20 1.14E−40

Worst 1.90E−192 1.56E−77 4.40E−49 0.014826 4.49E−23 1.41E−10 3.51E−18 8.75E−37

Std 0 4.77E−78 9.91E−50 0.002153 1.31E−23 4.26E−11 1E−18 1.96E−37

Rank 1 2 3 8 5 7 6 4

F3

Best 0 7.40E−161 1.80E−112 2018.299 6.02E−40 4.55E−18 7.3E−45 1.38E−68

Mean 0 6.00E−143 4.05E−86 6316.698 3.34E−34 6.7E−12 5.38E−38 8.05E−57

Median 0 1.60E−153 1.49E−92 6649.509 5.74E−35 2.96E−13 1.56E−39 3.03E−60

Worst 0 1.20E−141 7.99E−85 10,822.95 2.49E−33 5.27E−11 3.59E−37 7.45E−56

Std 0 2.60E−142 1.79E−85 2716.735 7.51E−34 1.37E−11 1.1E−37 2.24E−56

Rank 1 2 3 8 6 7 5 4

F4

Best 2.50E−199 4.61E−87 4.66E−61 2.293994 5.83E−22 1.66E−09 4.3E−23 1.26E−38

Mean 7.70E−189 8.88E−74 8.47E−48 8.76014 4.78E−20 2.35E−07 5.85E−19 5.15E−34

Median 8.40E−193 2.40E−80 3.45E−51 7.281844 3.33E−20 2.1E−08 3.11E−21 8.66E−36

Worst 1.10E−187 1.77E−72 6.25E−47 19.73786 1.71E−19 3.66E−06 8.17E−18 3.26E−33

Std 0 3.97E−73 1.69E−47 4.548566 4.59E−20 8.1E−07 1.9E−18 1.03E−33

Rank 1 2 3 8 5 7 6 4

F5

Best 0.000584 0.001934 0.007391 97.51116 95.64811 0.070793 98.5131 94.14901

Mean 18.83823 0.14477 7.037977 98.43943 96.88415 3.136644 98.7123 96.03423

Median 0.150628 0.072748 0.240793 98.47466 97.05474 1.680481 98.72147 95.62332

Worst 93.8134 0.587904 97.24398 99.1791 98.27265 19.86147 98.83727 98.23851

Std 38.23449 0.170624 21.68625 0.456708 0.950938 4.426942 0.081622 1.380597

Rank 4 1 3 7 6 2 8 5

F6

Best 5.06E−06 0.00013 6.14E−06 10.70939 0.964525 0.08001 16.11074 0.00093

Mean 0.000493 0.050404 0.290228 12.00791 1.448592 0.608359 18.8955 0.010501

Median 0.000446 0.027816 0.116402 11.93858 1.488376 0.526452 19.19065 0.009442

Worst 0.001413 0.198387 1.282841 13.38338 2.183251 1.72743 20.45441 0.025116

Std 0.000328 0.05592 0.343581 0.810237 0.313971 0.387052 1.0891 0.006585

Rank 1 3 4 7 6 5 8 2

F7

Best 2.35E−06 1.46E−05 0.000123 0.00895 8.15E−05 0.000284 5.94E−05 0.00011

Mean 0.000116 9.84E−05 0.000568 0.020018 0.001734 0.00182 0.000322 0.000694

Median 8.56E−05 8.27E−05 0.000581 0.020111 0.001467 0.00194 0.000233 0.000461

Worst 0.000387 0.000316 0.00137 0.031882 0.00598 0.003555 0.00103 0.002003

Std 0.000101 7.45E−05 0.000404 0.006533 0.001358 0.001006 0.000242 0.000575

Rank 2 1 4 8 6 7 3 5

Average Rank 1.571429 1.857143 3.285714 7.714286 5.571429 6 6 4

Final ranking 1 2 3 8 5 6 6 4
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Variable range: 0.05 ≤ x1 ≤ 2.00 , 0.25 ≤ x2 ≤ 1.30 , 2.00 ≤ x3 ≤ 15.0.

Consider : �x = [x1x2x3] = [dDN],

Minimize f (�x) = (x3 + 2)x2x
2
1 ,

Subject to g1(�x) = 1− x32x3

71785x41
≤ 0,

g2(�x) =
4x22 − x1x2

12566
(

x2x
3
1 − x41

) + 1

5108x21
− 1 ≤ 0,

g3(�x) = 1− 140.45x1

x22x3
≤ 0,

g4(�x) =
x1 + x2

1.5
≤ 0,

Table 7.  The statistical Results of multimodal benchmark functions using the proposed technique and other 
well-known algorithms (Dim = 100). Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

F8

Best −41,898.3 −41,898.3 −41,898.3 −19,825.8 −30,674.8 −21,010.4 −21,752.6 -25,287

Mean −41,897.9 −41,896.6 −41,895.4 −15,859.2 −25,172.9 −19,270.6 −17,968.1 -20,452.5

Median −41,898.1 −41,898.1 −41,896.5 −16,291.2 −24,892.7 −19,063.5 −17,659.7 -19,859.8

Worst −41,896.7 −41,885.4 −41,883 −5262.14 −19,985.3 −17,646.4 −15,643 -17,133.3

Std 0.509267 3.479965 3.850803 2975.467 2569.541 1058.849 1732.901 2290.997

Rank 1 2 3 8 4 6 7 5

F9

Best 0 0 0 34.40649 0 0 0 0

Mean 0 0 0 65.05702 0 0 0 0

Median 0 0 0 58.07168 0 0 0 0

Worst 0 0 0 202.1651 0 0 0 0

Std 0 0 0 34.78852 0 0 0 0

Rank 1 1 1 8 1 1 1 1

F10

Best 8.88E−16 8.88E−16 8.88E−16 0.003076 8.88E−16 3.14E−13 8.88E−16 8.88E−16

Mean 8.88E−16 8.88E−16 8.88E−16 0.004602 8.88E−16 3.2E−11 2.49E−15 8.88E−16

Median 8.88E−16 8.88E−16 8.88E−16 0.004568 8.88E−16 7.26E−12 8.88E−16 8.88E−16

Worst 8.88E−16 8.88E−16 8.88E−16 0.006088 8.88E−16 1.45E−10 4.44E−15 8.88E−16

Std 0 0 0 0.000793 0 4.34E−11 1.81E−15 0

Rank 1 1 1 8 1 7 6 5

F11

Best 0 0 0 0.00058 0 0 0 0

Mean 0 0 0 0.030069 0 0 0 0

Median 0 0 0 0.001257 0 0 0 0

Worst 0 0 0 0.097505 0 0 0 0

Std 0 0 0 0.040877 0 0 0 0

Rank 1 1 1 8 1 1 1 1

F12

Best 5.54E−08 1.21E−08 1.40E−07 0.264418 0.008684 0.000983 0.525096 9.21E−06

Mean 4.52E−06 0.000268 0.000175 0.433465 0.012255 0.012604 0.668981 5.46E−05

Median 4.97E−06 4.38E−05 3.04E−05 0.413089 0.011187 0.011209 0.672402 5.18E−05

Worst 9.11E−06 0.002795 0.001141 0.743387 0.020355 0.028714 0.919196 0.000135

Std 2.67E−06 0.000624 0.000305 0.134712 0.003447 0.007048 0.095364 3.02E−05

Rank 1 4 3 7 5 6 8 2

F13

Best 1.19E−06 2.31E−05 1.93E−06 7.193393 1.211363 0.075641 9.965044 0.010205

Mean 0.001434 0.012835 0.030972 8.221993 4.739807 0.374309 9.97518 0.059776

Median 0.000227 0.010272 0.005917 8.172842 2.365295 0.363753 9.976083 0.049669

Worst 0.012355 0.047149 0.321801 9.433617 9.272248 0.712204 9.983865 0.154541

Std 0.003591 0.013783 0.072832 0.655238 3.616956 0.216487 0.004472 0.041508

Rank 1 2 3 7 6 5 8 4

Average Rank 1 1.833333 2 7.666667 3 4.333333 5.166667 3

Final ranking 1 2 3 8 4 6 7 4
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The proposed EGTO’s performance evaluation on this application is compared with that of TSO, GWO, 
GBO, ARO, POA, RUN, and GTO, as presented in Table 12. The results clearly indicate that EGTO outperforms 
all other comparison algorithms, yielding the minimum weight of 0.01266233 for the optimal solution ( −→x  = 
[0.051684027, 0.356596637, 11.29606918]). This remarkable achievement underscores the effectiveness of EGTO 
in efficiently resolving the tension/compression spring design problem. Its ability to find superior solutions show-
cases the notable merits and potential of EGTO in tackling such complex engineering optimization challenges.

Figure 29 displays the convergence curves and the boxplot of these techniques during solving the tension/
compression spring design problem. Moreover, a comparison of the statistical results is presented in Table 13, 
the mean and STD values obtained by the proposed EGTO, ARO, GBO, and POA algorithms are the best among 
all other counterparts.

Pressure vessel design problem
Within this study, the 3rd optimization problem addressed is the Pressure Vessel Design (PVD) problem. The 
main objective of this problem is to decrease the overall cost associated with a cylindrical pressure vessel, 
encompassing material, welding, and forming  costs54. The vessel consists of a hemispherical-shaped head with 
capped ends. The problem involves variables such as the head thickness (Th), the length of the cylindrical section 
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Figure 13.  Mean ranks achieved using tied rank test for unimodal functions using several techniques 
(Dim = 100).
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Figure 14.  Mean ranks achieved using tied rank test for multimodal functions using several techniques 
(Dim = 100).
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excluding the head (L), the shell thickness (Ts), and the inner radius (R). Additionally, there are four constraints 
in this problem that can be expressed as follows.

Variable range: 0 ≤ x1 ≤ 99 , 0 ≤ x2 ≤ 99 , 10 ≤ x3 ≤ 200 , 10 ≤ x4 ≤ 200.
The pressure vessel design problem is optimized by the proposed EGTO technique, and the results are com-

pared with those of popular traditional and recent algorithms. Table 14 shows the solutions of EGTO and other 
algorithms, namely, TSO, GWO, GBO, ARO, POA, RUN and conventional GTO algorithms. Based on the simu-
lation results, the proposed algorithm exhibited superior performance in comparison to the other algorithms 
utilized in finding the optimal cost. BGWO is superior to all the other algorithms and obtains the best solution −→x  = [0.778168279 0.384649018 40.31961872 200.0000], Minimize f

(−→x
)

 =5885.331251.
The results indicate that the proposed EGTO technique has strong optimization ability and excellent con-

vergence. Figure 30 depicts the convergence curves and box plots of all algorithms while handling the problem. 
Table 15 also lists the statistical data, such as Best, Mean, Median, Worst, and STD. Therefore, it is determined 
that the reliability of the suggested EGTO algorithm is better for the pressure vessel design problem.

Cantilever beam design problem
The goal of the cantilever beam design (CBD) problem is to minimize the weight of a cantilever with five hollow 
blocks, as displayed in Fig. 31 54. Therefore, five variables are involved, and the structural optimization problem 
can be expressed mathematically as:

Variable range: 0.01 ≤ xi ≤ 1.00; i ∈ 1, . . . ., 5.
Table 16 lists the best solutions to this problem achieved by the EGTO method and the results are compared 

with those of recent algorithms. The results show that the EGTO algorithm effectively solves the problem and 
the design with the minimum weight −→x  = [6.01606 5.309151 4.494265 3.501486 2.152698].

Figure 32 depicts the convergence curves and box plots of all algorithms while handling the Cantilever Beam 
Design problem. Table 17 lists the statistical data, including Best, Mean, Median, Worst, and STD. Therefore, it 
is concluded that the reliability of the proposed EGTO algorithm is better for the problem.

Consider : �x = [x1x2x3x4] = [TsThRL],

Minimize f (�x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3,

Subject to g1(�x) = −x1 + 0.0193x3 ≤ 0,

g2(�x) = −x2 + 0.00954x3 ≤ 0,

g3(�x) = −πx23x4 −
4

3
πx33 + 1296000 ≤ 0,

g4(�x) = x4 − 240 ≤ 0,

Consider : �x = [x1x2x3x4x5]

Minimize f (X) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject toG(X) = 61

x31
+ 37

x32
+ 19

x33
+ 7

x34
+ 1

x35
− 1 ≤ 0,

Figure 15.  Radar chart for ranks among all compared algorithms.
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Welded beam design
The objective of this particular engineering problem is to minimize the production cost of a welded  beam55. 
Several optimization constraints need to be considered, including shear stress (τ), buckling load on the bar (Pc), 
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Figure 16.  The convergence curves of all algorithms for benchmark functions (Dim = 100).



26

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7650  | https://doi.org/10.1038/s41598-024-57098-8

www.nature.com/scientificreports/

F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13

Figure 17.  Boxplots for all algorithms for benchmark functions (Dim = 100).
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Function EGTO GTO TSO GWO GBO ARO POA RUN

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Mean 0.998004 0.998004 0.998004 4.76706 1.047705 0.998004 0.998004 2.081493

Median 0.998004 0.998004 0.998004 2.982105 0.998004 0.998004 0.998004 0.998004

Worst 0.998004 0.998004 0.998004 12.67051 1.992031 0.998004 0.998004 10.76318

Std 1.02E−16 1.25E−16 2.04E−16 4.337533 0.222271 2.97E−16 2.94E−13 2.241941

Rank 1 4 4 8 6 2 3 7

F15

Best 0.000307 0.000307 0.000307 0.000329 0.000307 0.000308 0.000307 0.000307

Mean 0.000359 0.000307 0.000335 0.004489 0.001402 0.000441 0.000308 0.00072

Median 0.000307 0.000307 0.000314 0.000517 0.000307 0.000404 0.000307 0.000307

Worst 0.001223 0.000307 0.000464 0.020363 0.020363 0.000694 0.000308 0.001223

Std 0.000205 1.11E−18 4.28E−05 0.008145 0.004472 0.000131 5.89E−08 0.000467

Rank 4 1 3 8 7 5 2 6

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 -1.03163

Mean −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 -1.03163

Median −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 -1.03163

Worst −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 -1.03163

Std 2.04E−16 1.61E−16 1.02E−16 7.33E−08 2.04E−16 2.5E−12 1.44E−16 8.13E−12

Rank 1 1 1 1 1 7 6 8

F17

Best 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887

Mean 0.397887 0.397887 0.397887 0.397891 0.397887 0.397887 0.397887 0.397887

Median 0.397887 0.397887 0.397887 0.39789 0.397887 0.397887 0.397887 0.397887

Worst 0.397887 0.397887 0.397887 0.397899 0.397887 0.397887 0.397887 0.397887

Std 0 0 0 3.61E−06 0 1.28E−10 0 4.27E−12

Rank 1 1 1 8 1 7 5 6

F18

Best 3 3 3 3.000003 3 3 3 3

Mean 3 3 3 3.000076 3 3 3 3

Median 3 3 3 3.000035 3 3 3 3

Worst 3 3 3 3.000272 3 3 3 3

Std 1.83E−15 1.54E−15 3.82E−15 7.77E−05 1.80E−15 1.16E−15 1.53E−15 5.41E−13

Rank 3 3 3 8 3 1 2 7

F19

Best −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 -0.30048

Mean −3.86278 −3.86278 −3.86278 −3.86113 −3.86278 −3.86278 −3.86278 -0.30048

Median −3.86278 −3.86278 −3.86278 −3.86243 −3.86278 −3.86278 −3.86278 -0.30048

Worst −3.86278 −3.86278 −3.86278 −3.8549 −3.86278 −3.86278 −3.86278 -0.30048

Std 2.15E−15 2.22E−15 1.85E−15 0.002706 2.11E−15 3.73E−15 1.49E−10 1.14E−16

Rank 1 4 4 7 4 2 3 8

F20

Best −3.322 −3.322 −3.322 −3.32198 −3.322 −3.322 −3.32199 -3.322

Mean −3.26255 −3.25066 −3.27444 −3.25162 −3.2566 −3.31597 −3.32197 -3.28038

Median −3.26255 −3.2031 −3.322 −3.31169 −3.2031 −3.322 −3.32197 -3.322

Worst −3.2031 −3.2031 −3.2031 −3.08936 −3.2031 −3.2031 −3.32191 -3.20309

Std 0.060991 0.059759 0.059759 0.083677 0.060685 0.026567 2.14E−05 0.058183

Rank 5 8 4 7 6 2 1 3

F21

Best −10.1532 −10.1532 −10.1532 −10.1521 −10.1532 −10.1532 −10.1532 -10.1532

Mean −10.1532 −10.1532 −10.1532 −9.77157 −8.08129 −10.1187 −10.1489 -8.3689

Median −10.1532 −10.1532 −10.1532 −10.1451 −10.1532 −10.1532 −10.1528 -10.1532

Worst −10.1532 −10.1532 −10.1532 −2.68162 −4.40109 −9.81141 −10.1062 -5.0552

Std 2.61E−15 2.61E−15 4.43E−15 1.668806 2.607259 0.090338 0.01199 2.494761

Rank 1 1 1 6 8 5 4 7

F22

Best −10.4029 −10.4029 −10.4029 −10.4028 −10.4029 −10.4029 −10.4029 -10.4029

Mean −10.4029 −10.4029 −10.4029 −10.1316 −7.89296 −10.1364 −10.137 -9.07412

Median −10.4029 −10.4029 −10.4029 −10.3952 −10.4029 −10.4029 −10.4029 -10.4029

Worst −10.4029 −10.4029 −10.4029 −5.11735 −2.7659 −5.07631 −5.08767 -5.08767

Std 3.51E−15 3.87E−15 2.41E−15 1.180232 3.186811 1.191013 1.188484 2.36137

Rank 1 1 1 6 8 5 4 7

Continued



28

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7650  | https://doi.org/10.1038/s41598-024-57098-8

www.nature.com/scientificreports/

end deflection of the beam (δ), and bending stress in the beam (Ѳ). The problem involves four variables: the 
thickness of the weld (h), the length of the attached part to the bar (l), the height of the bar (t), and the thickness 
of the bar (b) (refer to Fig. 33). Mathematically, the problem can be formulated as follows.

Table 8.  The statistical Results of composite benchmark functions using the proposed technique and other 
well-known algorithms. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

F23

Best −10.5364 −10.5364 −10.5364 −10.5327 −10.5364 −10.5364 −10.5364 -10.5364

Mean −10.5364 −10.5364 −10.5364 −9.71635 −6.97401 −10.1522 −10.5363 -9.18443

Median −10.5364 −10.5364 −10.5364 −10.528 −5.12848 −10.5364 −10.5363 -10.5364

Worst −10.5364 −10.5364 −10.5364 −2.42132 −2.80663 −3.83543 −10.5357 -5.12848

Std 3.02E−15 2.70E−15 1.68E−15 2.494843 3.064853 1.502943 0.0002 2.402536

Rank 1 1 1 6 8 5 4 7

Average Rank 1.9 2.5 2.3 6.5 5.2 4.652174 4.608696 4.913043

Final ranking 1 3 2 8 7 5 4 6
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Figure 18.  Mean ranks attained using tied rank test for multimodal functions with fixed dimensions using 
several techniques.

Figure 19.  Radar chart for ranks among all compared algorithms.
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Variable range: 0.1 ≤ x1 ≤ 2.00 , 0.1 ≤ x2 ≤ 10.0 , 0.1 ≤ x3 ≤ 10.0 , 0.1 ≤ x4 ≤ 2.00.

Consider : �x = [x1x2x3x4] = [hltb],

Minimize f (�x) = 1.1047x21x2 + 0.04811x3x4(14.0+ x2),

Subject to g1(�x) = τ(�x)− τmax ≤ 0,

g2(�x) = σ(�x)− σmax ≤ 0,

g3(�x) = δ(�x)− δmax ≤ 0,

g4(�x) = x1 − x4 ≤ 0,

g5(�x) = p− pc(�x) ≤ 0,

g6(�x) = 0.125− x1 ≤ 0,

g7(�x) = 1.10471x21x2 − 0.0481x3x4(14.0+ x2)− 5.0 ≤ 0.

F14 F15 F16 F17

F18 F19 F20 F21

F22 F23

Figure 20.  The convergence curves of all techniques for benchmark functions.
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Table 18 displays the results attained from the analysis, demonstrating that the EGTO algorithm outper-
forms other metaheuristic algorithms by achieving a minimum cost design value. This fact shows that when the 
parameters are set h = 0.20572964, l = 3.470488666, t = 9.03662391, b = 0.20572964, the manufacturing cost of 
the welded beam design problem can reach 1.72485230859736. Therefore, the proposed EGTO algorithm has 
good potential in solving the welded beam design (WBD) problem.

Figure 34 shows the convergence characteristics and box plots of all techniques for welded beam design 
problem. Table 19 presents the statistical data, including Best, Mean, Median, Worst, and STD. Therefore, it is 
concluded that the reliability of the proposed EGTO algorithm is better for the problem.

Speed reducer design
This problem (Fig. 35) represents a well-known design challenge in mechanical systems. It involves optimiz-
ing the speed reducer, a crucial component of the gearbox, for various applications. The goal is to minimize 11 
constraints associated with the weight of the speed  reducer56. Among these constraints, seven are nonlinear, 
while the rest are linear inequalities. The four key parameters affecting the optimization process are as follows: 
bending stress of the gear teeth, surface stress, transverse deflections of the shafts, and stresses in the shafts. To 
solve this optimization problem, seven variables need to be considered: face width (b), module of teeth (m), 

F14 F15 F16 F17

F18 F19 F20 F21

F22 F23

Figure 21.  The boxplots of studied techniques for benchmark functions.
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Function EGTO GTO TSO GWO GBO ARO POA RUN

CEC01

Best 33,618.08 35,594.33 38,367.19 1,423,853 36,588.1 38,274.25 37,259.11 37,559.33

Mean 36,196.98 37,717.69 41,253.04 1.65E + 08 38,473.22 42,195.47 39,295.65 39,673.84

Median 36,249.13 37,702.91 40,989.24 83,361,980 38,168.5 42,720.13 38,853.25 39,357.95

Worst 37,741.19 38,614.65 44,465.01 8.71E + 08 40,520.11 46,664 45,255.64 42,946.15

Std 1025.663 702.0736 1891.972 2.11E + 08 997.8881 2621.721 1984.379 1494.939

Rank 1 2 6 8 3 7 4 5

CEC02

Best 18.34286 18.34286 18.34286 18.34352 18.34286 18.34286 18.34286 18.34286

Mean 18.34286 18.34286 18.34286 18.34413 18.34286 18.34286 18.34306 18.34287

Median 18.34286 18.34286 18.34286 18.34415 18.34286 18.34286 18.34309 18.34286

Worst 18.34286 18.34286 18.34286 18.34474 18.34286 18.34286 18.34357 18.34289

Std 3.05E−15 3.26E−15 8.83E−12 0.000412 4.75E−15 2.2E−07 0.000212 7.04E−06

Rank 1 3 3 8 3 2 7 6

CEC03

Best 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024

Mean 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024

Median 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024

Worst 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024 13.7024

Std 1.95E−15 1.82E−15 2.48E−15 3.72E−08 1.82E−15 2.51E−09 5.69E−09 3.31E−12

Rank 1 1 1 1 1 7 8 6

CEC04

Best 17.91429 17.91429 40.79822 42.06228 2.989918 13.77326 57.46166 30.86298

Mean 74.04839 70.29808 89.50047 65.03689 37.66404 28.58871 564.9421 96.28744

Median 75.81271 51.24516 73.13411 62.73346 34.82852 27.49683 128.3196 94.54379

Worst 163.1759 184.0677 173.1232 90.53712 72.6365 51.15236 2639.438 176.1114

Std 41.2218 44.65757 38.16052 15.88823 20.56157 10.77636 827.6635 35.37281

Rank 5 4 6 3 2 1 8 7

CEC05

Best 2.046796 2.06399 2.044278 2.066691 2.031999 2.008355 2.170759 2.05908

Mean 2.228032 2.273414 2.201004 2.382897 2.145449 2.086208 2.447166 2.261986

Median 2.21787 2.230084 2.151298 2.258665 2.124296 2.084869 2.362915 2.224112

Worst 2.553449 2.586235 2.545979 2.913336 2.376441 2.229521 3.239553 2.689202

Std 0.12872 0.150356 0.128846 0.290806 0.079564 0.049679 0.303748 0.175315

Rank 4 6 3 7 2 1 8 5

CEC06

Best 4.136064 7.664578 10.32064 9.81309 10.92985 5.950698 8.647794 5.621859

Mean 6.998419 9.585144 11.97105 11.71785 12.15042 7.86019 10.13625 9.539735

Median 6.720673 9.533209 12.06164 11.77171 12.03042 7.884115 10.0589 9.301279

Worst 10.74191 11.228 12.88728 12.96769 13.47917 9.334014 11.30344 12.45787

Std 1.483926 1.066953 0.693314 0.913684 0.694779 1.015162 0.683371 1.986566

Rank 1 4 7 6 8 2 5 3

CEC07

Best 46.53208 22.32578 92.34569 27.78967 1.765186 117.0165 38.44678 16.15633

Mean 152.7594 337.7829 438.5803 480.6181 277.2635 195.6447 178.7052 171.6093

Median 99.82271 339.307 327.9422 411.3108 244.1602 170.9214 169.9344 172.8656

Worst 400.9307 802.2705 1089.658 935.489 592.9046 514.1951 521.0228 443.8192

Std 107.193 194.8108 286.7491 267.7199 170.829 85.08222 112.2538 86.01406

Rank 1 6 7 8 5 4 3 2

CEC08

Best 3.444135 3.788167 3.861537 2.955845 3.678619 1.450394 2.847841 2.798637

Mean 4.972668 5.209999 5.676547 4.996896 4.531443 3.797536 4.351537 4.70436

Median 5.159898 5.195812 5.915016 4.885166 4.425442 3.933821 4.408483 4.519055

Worst 6.25621 6.183235 6.781473 6.525674 6.200601 4.846654 5.065779 6.319478

Std 0.726541 0.692929 0.920203 0.994574 0.694315 0.831919 0.531198 1.000729

Rank 5 7 8 6 3 1 2 4

CEC09

Best 3.352172 3.371196 3.45287 3.828936 3.384436 3.419661 4.262487 3.47651

Mean 3.505504 3.660784 3.728926 5.530333 3.488992 3.658246 5.667908 5.254113

Median 3.422031 3.551359 3.682639 5.633096 3.476246 3.606088 5.480828 5.496025

Worst 4.134973 4.443227 4.119344 7.418969 3.758279 4.476398 7.460838 6.460125

Std 0.237965 0.310184 0.180103 0.960602 0.104664 0.227759 0.852676 0.978177

Rank 2 4 5 7 1 3 8 6

Continued
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the number of teeth in the pinion (z), length of the first shaft between bearings (l1), length of the second shaft 
between bearings (l2), diameter of the first shaft (d1), and diameter of the second shaft (d2). The equation rep-
resenting this problem is as follows:

Table 9.  The statistical Results of CEC 2019 benchmark functions by the EGTO algorithm and other recent 
techniques. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

CEC10

Best 3.813597 20.98695 21.27261 21.29007 21.19943 1.190124 6.874329 21.10792

Mean 20.15596 21.10011 21.52002 21.51929 21.45935 19.99603 20.47897 21.43253

Median 21 21.06452 21.55142 21.52565 21.45471 21.06202 21.20879 21.44123

Worst 21.22352 21.42933 21.64499 21.64796 21.62638 21.23736 21.36953 21.68665

Std 3.84692 0.117979 0.107606 0.100104 0.104602 4.445576 3.206165 0.125027

Rank 2 4 8 7 6 1 3 5

Average Rank 2.3 4.1 5.4 6.1 3.4 2.9 5.6 4.9

Final ranking 1 4 6 8 3 2 7 5
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Figure 22.  Mean ranks achieved using tied rank test for CEC 2019 benchmark functions using several 
techniques.

Figure 23.  Radar chart for ranks among all studied techniques.
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Minimize f (b,m, z, l1, l2, d1, d2) = 0.7854x1x
2
2

(

3.333x23 + 14.9334x3 − 43.0934
)

− 1.508x1
(

x26 + x27
)

+ 7.4777
(

x36 + x37
)

+ 0.7854
(

x4x
2
6 + x5x

2
7

)

Subject toG1 =
27

x1x
2
2x3

− 1 ≤ 0;G2 =
397.5

x1x
2
2x

2
3

− 1 ≤ 0;

G3 =
1.93x34
x2x

4
6x3

− 1 ≤ 0;G4 =
1.93x35
x2x

4
7x3

− 1 ≤ 0;

G5 =

√

(

745x4
x2x3

)2
+ 16.9× 106

110x36
− 1 ≤ 0;G6 =

√

(

745x5
x2x3

)2
+ 157.5× 106

85x37
− 1 ≤ 0;

CEC01 CEC02 CEC03 CEC04

CEC05 CEC06 CEC07 CEC08

CEC09 CEC10

Figure 24.  The convergence curves of all algorithms for CEC 2019 benchmark functions.
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Variable range: 2.6 ≤ x1 ≤ 3.6; 0.7 ≤ x2 ≤ 0.8; 17 ≤ x3 ≤ 28; 7.3 ≤ x4; x5 ≤ 8.3; 2.9 ≤ x6 ≤ 3.9; 5 ≤ x7 ≤ 5.5.
The attained results, which are shown in Table 20, prove that the EGTO technique finds a minimum cost 

design value in comparison to other metaheuristic algorithms. Figure 36 depicts the convergence curves and 
box plots of all algorithms while handling the problem. The proposed EGTO algorithm stands first in solving the 
speed reducer design (SRD) problem also. Table 21 lists the statistical results obtained by the EGTO and other 
selected algorithms. From Table 21, it can be seen that the EGTO performed better than all selected methods. 
Therefore, it is determined that the reliability of the suggested EGTO algorithm is better for the engineering 
design problem.

G7 =
x2x3

40
− 1 ≤ 0;G8 =

5x2

x1
− 1 ≤ 0;G9 =

x1

12x2
− 1 ≤ 0;

G10 =
1.5x6 + 1.9

x4
− 1 ≤ 0;G11 =

1.1x7 + 1.9

x5
− 1 ≤ 0;

CEC01 CEC02 CEC03 CEC04

CEC05 CEC06 CEC07 CEC08

CEC09 CEC10

Figure 25.  Boxplots for all algorithms for CEC 2019 benchmark functions.
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Gear train design
As stated in Ref.57, the primary objective of optimizing the gear train design (GTD) is to achieve a gear 
transmission ratio as close as possible to 1/6.931. Let TA, TB, TD, and TF represent the number of teeth on 
gears A, B, D, and F, respectively. Since the number of teeth for each gear must be an integer between 12 and 60, 
the optimization problem is transformed into a constrained optimization problem with discrete variables. The 
formulation of the optimization problem is as follows:

1 2 3

4 A1 =A3

A1

P

A2

A3

D

D

Figure 26.  Schematic of three-bar truss problem.

Table 10.  Results for the three-bar truss problem.

Algorithms

Optimal values for variables

Optimum costx1 x2

EGTO 0.78867513483 0.40824828109 263.89584294121

GTO 0.78867513483 0.40824828109 263.89584294121

TSO 0.788641813 0.408342532 263.89584387695

GWO 0.788829349 0.407813414 263.8959741587

GBO 0.788675135 0.40824828 263.89584294121

ARO 0.7886751295 0.4082482961 263.8958429412

POA 0.788675129 0.408248298 263.8958429

RUN 0.7886644263 0.4082785702 263.8958430255

(a) Convergence curves (b) Boxplots

Figure 27.  The convergence curves and boxplots of all algorithms for three-bar truss problem.
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Variable range: 12 ≤ TA ≤ 60; 12 ≤ TB ≤ 60; 12 ≤ TD ≤ 60; 12 ≤ TF ≤ 60.
The optimal solutions found by EGTO and other techniques are presented in Table 22. From this Table 22, it 

is seen that the results obtained using the proposed EGTO technique are the best, the optimal value is 0, GWO 
gets the worst results. The results display that the EGTO algorithm efficiently solves the problem and the design 
with the minimum fitness −→x  = [59.10865551 35.44113483 13.11941687 54.52139629]. These experimental results 
present that the proposed EGTO technique has a strong exploitation.

The convergence curves and boxplots of the gear train design problem using the EGTO and other algorithms 
are shown in Fig. 37. The proposed EGTO algorithm is evaluated and compared with several other optimization 
algorithms, including GTO, TSO, GWO, GBO, ARO, POA, and RUN. The evaluation is conducted for the Gear 
Train Design Problem. Table 23 presents the statistical results of these algorithms based on their performance in 
solving the Gear Train Design Problem. The metrics used to measure the performance include "Best," "Mean," 
"Median," "Worst," and "Std" for each algorithm. The EGTO algorithm achieved the best result with a fitness 
value of 0, indicating its ability to find an optimal solution for the Gear Train Design Problem. Also, The EGTO 
algorithm achieved an average fitness value of 0, indicating that, on average, it performed exceptionally well in 
finding solutions close to the optimal value. The EGTO algorithm achieved a very low standard deviation of 
0, indicating its consistent performance and stability in finding near-optimal solutions. Overall, based on the 

Minimize f =
(

1

6.931
− TDTB

TATF

)2

Table 11.  Statistical results for the three-bar truss problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 263.8958 263.8958 263.8958 263.896 263.8958 263.8958 263.8958 263.8958

Mean 263.8958 263.8958 263.8972 263.8965 263.8958 263.8958 263.8958 263.8959

Median 263.8958 263.8958 263.8964 263.8964 263.8958 263.8958 263.8958 263.8958

Worst 263.8958 263.8958 263.9027 263.898 263.8958 263.8958 263.8958 263.8961

Std 5.83E−14 5.83E−14 0.001957 0.000504 1.14E−13 5.53E−14 5.83E−14 6.21E−05

L

d

w

Figure 28.  Schematic of tension/compression spring design problem.

Table 12.  Comparison results for the tension/compression spring design problem.

Algorithms

Optimal values for variables

Optimum costd D P

EGTO 0.051684027 0.356596637 11.29606918 0.012665233

GTO 0.051684027 0.356596637 11.29606918 0.012665233

TSO 0.051509705 0.352418212 11.54555779 0.012665821

GWO 0.051439916 0.350750504 11.64906365 0.012667813

GBO 0.051680283 0.356506591 11.30135554 0.012665234

ARO 0.051686854 0.356664511 11.29210027 0.012665248

POA 0.051798996 0.359368092 11.13526982 0.012665466

RUN 0.051356234 0.348763445 11.77100947 0.012667271
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statistical results, the proposed EGTO algorithm demonstrates exceptional performance in solving the Gear 
Train Design Problem compared to the other evaluated algorithms. Its ability to consistently find near-optimal 
solutions and its low variability make it a promising choice for similar constrained optimization problems.

Wilcoxon rank-sum test results
In this subsection, the variances between EGTO and other techniques are additional analyzed statistically using 
the Wilcoxon rank-sum test (WRST), which is a paired assessment is employed to notice significant differences 
between the two algorithms. The attained results of the test between EGTO and each algorithm, conducted 
at a significance level of α = 0.05 are presented in Table 24, where the symbols "+/=/−" show whether EGTO 
performs better, similarly, or worse than the compared technique. Additionally, the table includes statistical 
findings for EGTO across different dimensions and functions, signifying whether EGTO performs better, 
similarly, or worse than the comparison algorithm. EGTO demonstrates superior statistical performance in 
seven real-world constrained engineering design problems including Three-Bar Truss Design, Compression 
Spring Design, Pressure Vessel Design, Cantilever Beam Design, Welded Beam Design, Speed Reducer Design, 
and Gear Train Design when compared to other techniques, affirming its significant dominance across most 
functions. Consequently, it is confidently concluded that the proposed EGTO technique exhibits the best overall 
performance when compared to other methods.

Friedman’s rank test results
Table 25 shows the statistical results achieved using Friedman  tests58 for seven real-world constrained engineering 
design problems using the studied algorithms. A lower ranking value indicates superior algorithm performance. 
According to the results, the ranking order of the six techniques is as follows: EGTO, GTO, GBO, RUN, ARO, 
TSO, GWO, and POA.

Furthermore, Fig. 38 presents the mean ranks obtained from Friedman’s rank test for the seven real-world 
constrained engineering design problems using various algorithms. This visualization provides a clear compari-
son of the algorithms’ performances across the cases, helping to identify any significant differences in their ranks. 
The top-ranking position clearly indicates that EGTO is the most effective algorithm among the eight considered.

(a) Convergence curves (b) Boxplots

Figure 29.  The convergence curves and boxplots of all algorithms for tension/compression spring problem.

Table 13.  Statistical results for the tension/compression spring design problem. Bold values have the best 
performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 0.012665 0.012665 0.012666 0.012668 0.012665 0.012665 0.012665 0.012667

Mean 0.012665 0.012668 0.012695 0.012697 0.012665 0.012665 0.012665 0.01271

Median 0.012666 0.012666 0.012678 0.012699 0.012665 0.012665 0.012665 0.012719

Worst 0.012668 0.012683 0.012856 0.012721 0.012665 0.012665 0.012666 0.012719

Std 1.13E−06 4.67E−06 4.32E−05 1.59E−05 4.08E−08 5.49E−08 1.39E−07 1.65E−05
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Conclusion
In this article, an enhanced GTO technique, namely EGTO, has been proposed to effectively and precisely 
improve the performance of the GTO technique. The EGTO technique has been  tested on a set of 23 bench-
mark functions with different dimensions to evaluate the exploration and exploitation phases for avoiding local 
optimum. Initially, the results reveal that the EGTO algorithm is the best among these well-known algorithms 
such as Tuna Swarm Optimization (TSO), Grey Wolf optimizer (GWO) algorithm, Gradient-based optimizer 
(GBO) algorithm, Artificial rabbits optimization (ARO), Pelican Optimization Algorithm (POA), and RUN 
algorithm. The EGTO algorithm has been tested on thirty-one benchmark functions to analyze the exploration, 
exploitation, local optima avoidance, and convergence behavior. The results of these test functions show that the 
EGTO algorithm is the best optimizer which provides very competitive results as compared to other optimizers. 
The statistical testing has been carried out to demonstrate the superiority of the EGTO algorithm compared to 

Table 14.  Comparison results for the pressure vessel design problem.

Algorithms

Optimal values for variables

Optimum costTs Th R L

EGTO 0.778168279 0.384649018 40.31961872 200 5885.331251

GTO 0.778168279 0.384649018 40.31961872 200 5885.331251

TSO 0.778168279 0.384649018 40.31961872 200 5885.331251

GWO 0.778264091 0.384705416 40.32161451 200 5886.514773

GBO 0.778168279 0.384649018 40.31961872 200 5885.331251

ARO 0.778168282 0.384649018 40.31961873 200 5885.331251

POA 0.778168279 0.384649018 40.31961872 200 5885.331251

RUN 0.778168537 0.384649215 40.31963894 199.9997508 5885.332783

(a) Convergence curves (b) Boxplots

Figure 30.  The convergence curves and boxplots of all techniques for pressure vessel design problem.

Table 15.  Statistical results for the pressure vessel design problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 5885.331 5885.331 5885.331 5886.515 5885.331 5885.331 5885.331 5885.333

Mean 5885.331 5885.331 5885.536 5888.73 5885.331 5885.331 5885.331 6315.424

Median 5885.331 5885.331 5885.331 5888.06 5885.331 5885.331 5885.331 5885.34

Worst 5885.331 5885.331 5888.008 5894.698 5885.331 5885.331 5885.331 7319.006

Std 1.43E−12 1.34E−12 0.623086 1.915396 1.34E−12 3.91E−06 1.76E−12 674.0292
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other metaheuristics. Also, to validate the effectiveness of the proposed EGTO in solving highly difficult and 
complex composition functions, and providing a rigorous assessment of the algorithms, the CEC2019 functions 
were used in this paper, and the results of the proposed algorithm were compared with the results of several opti-
mization algorithms. The simulation results and statistical analysis reveal that EGTO is capable of attaining the 
optimal solutions for maximum benchmark functions while maintaining a good balance between exploration and 
exploitation. In addition, the EGTO algorithm has been employed for seven real-world constrained engineering 

Xi

Xi

54321

Figure 31.  Schematic of Cantilever Beam Design problem.

Table 16.  The obtained results of the Cantilever Beam Design problem.

Algorithms

Optimal values for variables

Optimum costx1 x2 x3 x4 x5

EGTO 6.01606 5.309151 4.494265 3.501486 2.152698 1.339956361

GTO 6.016016 5.309174 4.49433 3.501475 2.152665 1.339956361

TSO 6.014715 5.309505 4.494716 3.502023 2.152701 1.339956416

GWO 6.016387 5.312571 4.496232 3.499537 2.148961 1.339958118

GBO 6.01606 5.309151 4.494265 3.501486 2.152698 1.339956361

ARO 6.016029 5.309241 4.493744 3.501819 2.152827 1.33995638

POA 6.016016 5.309174 4.49433 3.501475 2.152665 1.339956361

RUN 6.015499 5.309524 4.494606 3.501638 2.152394 1.339956379

(a) Convergence curves (b) Boxplots

Figure 32.  The convergence curves and boxplots of all techniques for Cantilever Beam Design problem.
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design problems (i.e., Three-Bar Truss Design, Compression Spring Design, Pressure Vessel Design, Cantilever 
Beam Design, Welded Beam Design, Speed Reducer Design, and Gear Train Design) which demonstrates that 
the EGTO algorithm has high-performance capability in unknown search spaces. This paper puts forward several 
research directions in the EGTO algorithm that may be applied to solve multi-objective optimization problems 
in future work. Also, Binary and multi-objective versions of the EGTO algorithm can be seen as an interesting 
direction for future contribution.

Table 17.  Statistical results for the Cantilever Beam Design problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 1.339956 1.339956 1.339956 1.339958 1.339956 1.339956 1.339956 1.339956

Mean 1.339956 1.339956 1.339957 1.339966 1.339956 1.339956 1.33996 1.339956

Median 1.339956 1.339956 1.339957 1.339966 1.339956 1.339956 1.339957 1.339956

Worst 1.339956 1.339956 1.339957 1.339975 1.339956 1.339957 1.33999 1.339957

Std 6.21E−09 6.34E−09 2.13E−07 4.18E−06 1.62E−08 3.01E−08 7.58E−06 1.12E−07

Ll

b

h
P

t

Figure 33.  Schematic of welded beam design problem.

Table 18.  Results of the welded beam design problem.

Algorithms

Optimal values for variables

Optimum costh l t b

EGTO 0.20572964 3.470488666 9.03662391 0.20572964 1.724852308597360

GTO 0.20572964 3.470488666 9.03662391 0.20572964 1.724852308597360

TSO 0.20572964 3.470488666 9.03662391 0.20572964 1.724852308605790

GWO 0.20561919 3.47268147 9.037531553 0.205740548 1.72521650544121

GBO 0.20572964 3.470488666 9.03662391 0.20572964 1.724852308597360

ARO 0.20573 3.470489 9.036624 0.20573 1.724852309

POA 0.20573 3.470489 9.036624 0.20573 1.724852309

RUN 0.20219 3.548344 9.036624 0.20573 1.729795448
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(a) Convergence curves (b) Boxplots

Figure 34.  The convergence curves and boxplots of all techniques for welded beam design problem.

Table 19.  Statistical results for the welded beam design problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 1.724852 1.724852 1.724852 1.725217 1.724852 1.724852 1.724852 1.729795

Mean 1.724852 1.724852 1.725548 1.725449 1.724852 1.724852 1.724852 1.751008

Median 1.724852 1.724852 1.724852 1.725429 1.724852 1.724852 1.724852 1.744551

Worst 1.724852 1.724852 1.738277 1.725833 1.724852 1.724852 1.724852 1.809223

Std 5.32E−16 7.22E−16 0.002997 0.000163 6.83E−16 6.57E−15 3.12E−08 0.019885
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Figure 35.  Schematic of speed reducer design problem.

Table 20.  Comparison results for speed reducer design problem.

Algorithms

Optimal values for variables

Optimum costb m p l1 l2 d1 d2

EGTO 3.5 0.7 17 7.3 7.715319911 3.350214666 5.286654465 2994.471066

GTO 3.5 0.7 17 7.3 7.715319911 3.350214666 5.286654465 2994.471066

TSO 3.5 0.7 17 7.3 7.715319911 3.350214666 5.286654465 2994.471066

GWO 3.5 0.7 17 7.3 7.769914997 3.350599313 5.286742675 2996.19699

GBO 3.5 0.7 17 7.3 7.715319911 3.350214666 5.286654465 2994.471066

ARO 3.5 0.7 17 7.3 7.71532 3.350215 5.286654 2994.47107

POA 3.5 0.7 17 7.3 7.715321 3.350215 5.286655 2994.471146

RUN 3.5 0.7 17 7.3 7.71534 3.350217 5.286655 2994.472162
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(a) Convergence curves (b) Boxplots

Figure 36.  The convergence curves and boxplots of all algorithms for speed reducer design problem.

Table 21.  Statistical results for speed reducer design problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 2994.471 2994.471 2994.471 2996.197 2994.471 2994.471 2994.471 2994.472

Mean 2994.471 2996.416 2994.471 2999.336 2994.471 2994.471 2995.134 2994.651

Median 2994.471 2994.471 2994.471 2997.794 2994.471 2994.471 2994.472 2994.48

Worst 2994.471 3007.437 2994.471 3009.997 2994.471 2994.471 3007.437 2997.689

Std 9.67E−13 4.749871 8.01E−13 3.762576 9.33E−13 6.42E−11 2.896008 0.715362

Table 22.  Results of the Gear train design problem.

Algorithms

Optimal values for variables

Optimum costTA TB TD TF

EGTO 59.10865551 35.44113483 13.11941687 54.52139629 0

GTO 49.59351278 24.9585507 13.69391961 47.76592194 0

TSO 59.99999629 12 43.16138541 59.83031616 0

GWO 53.95860993 12 22.16042143 34.15815629 2.19246E−17

GBO 58.64588098 41.95268373 12.05514903 59.7710267 2.18986E−25

ARO 55.78268 19.04683 17.77422 42.06392 4.5135E−21

POA 47.4056 17.20186 12.59847 31.68542 0

RUN 55.32222 12.0058 32.81681 49.36097 0
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(a) Convergence curves (b) Boxplots

Figure 37.  The convergence curves and boxplots of all algorithms for Gear train design problem.

Table 23.  Statistical results for Gear train design problem. Bold values have the best performance.

Function EGTO GTO TSO GWO GBO ARO POA RUN

Best 0 0 0 2.19E−17 2.19E−25 4.51E−21 0 0

Mean 0 0 3.91E−27 8.14E−15 5.57E−21 1.13E−17 1.58E−24 2.46E−17

Median 0 0 0 1.02E−15 4.68E−22 9.36E−19 3.53E−27 1.94E−18

Worst 0 0 7.81E−26 6.71E−14 5.42E−20 1.22E−16 2.69E−23 2.12E−16

Std 0 0 1.75E−26 1.59E−14 1.31E−20 2.99E−17 5.99E−24 5.45E−17

Table 24.  Statistical results of Wilcoxon rank-sum test.

EGTO vs GTO TSO GWO POA ARO GBO RUN

Problem P Winner P Winner P Winner P Winner P Winner P Winner P Winner

3BTD NaN  = 8.01E−09  + 8.01E−09  + 8.01E−09  + 8.01E−09  + 5.50E−09  + 8.01E−09  + 

TSCD 6.55E−01  + 7.95E−07  + 1.06E−07  + 6.80E−08  + 1.03E−06  + 1.12E−03 − 1.01E−03  + 

PVD 5.34E−01  = 3.42E−07  + 4.14E−08  + 4.14E−08  + 4.14E−08  + 5.34E−01  = 4.14E−08  + 

CBD 6.75E−01  = 6.78E−08  + 6.78E−08  + 6.78E−08  + 9.15E−08  + 9.20E−04  + 7.88E−08  + 

WBD 6.52E−01  = 2.43E−08  + 2.43E−08  + 2.43E−08  + 2.32E−03  + 4.00E−02  + 1.30E−03  + 

SRD 2.04E−01  + 1.37E−02  + 1.95E−08  + 1.95E−08  + 7.54E−04  + 5.74E−01  = 1.95E−08  + 

GTD NaN  = 3.42E−01  = 8.01E−09  + 8.01E−09  + NaN  = 8.01E−09  + NaN  = 

WRST 
(+/=/−) 2/5/0 6/1/0 7/0/0 7/0/0 6/1/0 4/2/1 6/1/0
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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