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Designing of high entropy alloys 
with high hardness: a metaheuristic 
approach
Ansh Poonia , Modalavalasa Kishor  & Kameswari Prasada Rao Ayyagari *

The near-infinite compositional space of high-entropy-alloys (HEAs) is a huge resource-intensive 
task for developing exceptional materials. In the present study, an algorithmic framework has been 
developed to optimize the composition of an alloy with chosen set of elements, aiming to maximize 
the hardness of the former. The influence of phase on hardness prediction of HEAs was thoroughly 
examined. This study aims to establish generalized prediction models that aren’t confined by any 
specific set of elements. We trained the HEA identification model to classify HEAs from non-HEAs, the 
multi-labeled phase classification model to predict phases of HEAs also considering the processing 
route involved in the synthesis of the alloy, and the hardness prediction model for predicting hardness 
and optimizing the composition of the given alloy. The purposed algorithmic framework uses twenty-
nine alloy descriptors to compute the composition that demonstrates maximum hardness for the 
given set of elements along with its phase(s) and a label stating whether it is classified as HEA or not.

Keywords Composition optimization, Phase prediction, High entropy alloys, Differential evolution, 
Hardness prediction

HEAs are a new set of materials that surpass conventional metallic alloys with extraordinary mechanical 
 properties1. Since their introduction in 2004, these materials have been developed and adapted as key focus 
areas due to their vast compositional space compared to conventional alloys. Later, HEAs were referred to as 
complex concentrated alloys, multi-complex alloys, multi-principal alloys, and compositionally complex alloys. 
The applications of HEAs in aerospace, marine, cryogenic, space, and transportation have increased over the 
past 2 decades due to their exceptional properties such as high strength with ductility, high hardness, tough-
ness, high-temperature resistance, thermal stability, good wear resistance, and magnetic  properties2,3. Multiple 
investigations are underway for the development of HEAs such as refractory alloys, transition metal HEAs, and 
HE-bulk metallic alloys. Even though studies on HEAs are increasing at a rapid pace, the infinite possibilities of 
elemental compositional space led to time and resource consumption. A little variation in the composition of 
multi-principal elements results in different properties. To overcome this problem, the development of compu-
tational techniques to optimize the composition of HEAs and decrease the number of experiments is necessary. 
Methods such as density functional theory (DFT), empirical relations, calculations of phase diagrams (CALPAD), 
and molecular dynamics provide solutions to phase predictions and composition optimization. However, their 
predictions are limited to a given alloy system at a given time making them resource and time-intensive. This has 
led to the development of machine learning (ML) methods with higher prediction accuracy to come in play. Over 
the past few years, phase predictions and optimization of descriptors have been developed in parallel, using ML 
researchers have probed deeply into the interrelationship between phases and key thermodynamic and physical 
descriptors to improve prediction  accuracy4–9. Yan et al.10 developed nine different classification models with 70 
appropriate descriptors using a genetic algorithm (GA). Their study provided a comprehensive framework for 
descriptor subset selection in phase prediction. Zhang et al.11 model considers four relevant descriptors, includ-
ing  He (elastic energy of the alloy),  Hl (liquid phase mixing enthalpy), ΔSmix (mixing entropy of the alloy), and 
atomic size difference (Δ), which were found to have a significant impact on phase prediction. By taking these 
descriptors into account, the model was able to accurately predict the phase behavior of HEAs, which is important 
for developing new materials with desirable properties. Jain et al.12 developed artificial neural network (ANN) 
models to predict the microhardness of cast  FeCoNiCrMnVNbx eutectic HEAs. The developed algorithms were 
found to be generic and applicable for predicting other mechanical properties as well but limited to a particular 
system of alloy. Roy et al.13 proposed an algorithmic framework using Generative Adversarial Networks (GANs) 
to generate novel compositions based on available data of MPEAs with higher hardness values. This is followed 
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by identification of alloy with the highest hardness through a hardness predictor. While this approach enables 
discovery of new alloys, it is constrained to specific number of elements.

According to the literature, there is still a significant scope for research in the field of HEAs prediction. Pre-
vious studies have primarily focused on single-phase and multi-phase predictions, with limited exploration of 
other phases. Moreover, the development and validation of mechanical properties, such as hardness and yield, 
have largely relied on experimental approaches. However, there is a need to enhance the efficiency of ML models 
in predicting these properties by encompassing all possible scenarios. A particular area that remains underde-
veloped is the optimization of alloy composition with respect to mechanical properties. This is mainly due to the 
vast compositional space of HEAs and the lack of nonlinear solving ML models that can effectively tackle this 
complexity. Therefore, the present study aims to address these gaps and develop ML models. We have successfully 
developed artificial neural networks that achieve an impressive Hamming accuracy score of 95% in predicting 
both single and multi-phases. This accuracy is reported to be the highest among previous studies focusing on 
multi-phase prediction. The primary objective of this research was to address the existing gaps in the literature 
by creating more accurate and generalized models for predicting the phases and mechanical properties of HEAs. 
Additionally, the authors developed a classifier to distinguish between Low and High Entropy Alloys, which 
can be further used for reduction in HEA search compositional space. Regressor models have been trained for 
predicting the hardness using alloy descriptors and predicted phase data. To advance HEA prediction, the study 
developed an algorithmic framework that optimizes the composition of HEAs to achieve higher hardness values.

Results and discussions
Alloy descriptors
In order to utilize alloys as input for machine learning models, it is crucial to transform their properties into 
mathematical representations. Previous studies have commonly employed compositional  representations14–16, 
focusing on specific elements; we found out that it constrains the model to only process alloys made up using 
selected elements rather than generalizing across the entire compositional space of HEAs.

To address the issue of generality, this study employed a set of 29 thermodynamic, physical and semi-empirical 
properties as alloy descriptors to facilitate the identification, and prediction of phases and hardness in HEAs. 
Initial studies majorly relayed on thermodynamic properties including the entropy and enthalpy of equiatomic 
alloys for the phase stability. The mixing enthalpy and configurational entropy directly provide the relation for 
Gibb’s free energy as shown in Eq. (6). However higher configurational entropy stabilizes single phase solid solu-
tions in the equiatomic alloy and vice versa with lower configurational  entropies17. Similarly, Zhang et al.18 intro-
duced a 3D graphical axis that incorporates ΔSmix, ΔHmix, and Delta to analyze different phases of MHEAs and 
bulk metallic glasses. In this study, the significance of ΔHmix and δr phase descriptors, in addition to ΔSmix, was 
proposed for classifying various phases, including intermetallic, amorphous structures, and crystalline solid solu-
tions. To enhance the prediction efficiency in different phases, studies started developing prediction models with 
physical and other descriptors. The rule of mixtures was used to transform basic material properties into these 
descriptors. These descriptors include average of atomic radius, melting point, Pauling electronegativity, Allen 
electronegativity, Valency Electron Concentration (VEC), itinerant electron per atom, atomic weight, density, 
molar heat capacity, and thermal conductivity. The basic rule of mixtures model equation is described in Eq. (1) in 
Table 1. Correspondingly, the standard deviation of the aforementioned descriptors was determined using Eq. (2). 
Shen Gue et al.19 demonstrated the importance of other parameters used in phase stability of HEAs apart from 
mixing entropy and proposed new parameters including electronegativity and VEC in this study for distinguish 
phases of FCC and BCC. Simultaneously, Zeng et al.20 utilized CALPAD and ML algorithms to derive multiple 
descriptors for phase prediction. Specifically, they derived Pauling electronegativity, Allen electronegativity, and 
VEC in their study. Later, Yang et al.21 developed the Ώ parameter for predicting solid-solution formation in 

Table 1.  Mathematical equations and symbols of chosen alloy descriptors.

S.no. Descriptor Formula

1 Average values of elemental descriptors p =
∑n

i=1 XiPi
Xi = elemental composition of ith element, Pi = elemental properties of ith element

2 Standard deviation δ =

√

∑

Xi(1− Pi
P )

2

3 Atomic  volume24 Vm =
∑n

i=1 Xi(
4
3
πr3)

4 Mixing  entropy17 Smix = −R
∑n

i=1 XilnXi R = 8.31*  10–3 kJ/Mol

5 Mixing  enthalpy25 Hmix = 4
∑n

i=1,j �=1 �HijXiXj

6 Gibbs free energy Gmix = Hmix − TavgSmix

7 Average  temperature21 Tavg =
∑n

i=1 XiTmi

8 Combination effect-121
� =

TavgSmix
|Hmix|

9 Combination effect-2 ( �)23
� = Smix

(δr )
2

10 ϒ22 ϒ = (1−

√

(min{ri}+r2)−r2

(min{ri}+r)2
√

(max{ri}+r2)−r2

(max{ri}+r)2

)

11 Valency electron  difference20
�VEC =

√

∑n
i=1 Xi(VEC − VECi)2
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MPEAs. The study developed the Eq. (8), and its boundary conditions of the Ώ for forming solid solution ability 
at MPHEA’s. Wang et al.22 introduced the ϒ parameter as a means to quantify lattice distortion, which differs 
from δr by comparing the average atomic size with the largest and smallest atoms among the constituents. In a 
similar manner, Singh derived the � parameter as shown in Eq. (9) for understanding the differences between 
disordered solid solutions and  compounds23. Efforts are underway to improve the efficiency of parameters usage 
in understanding the phase stability and its impact on final alloy properties. Similarly, this study conducted a 
vast parameter tunning operation for better phase and hardness predictions. Detailed analysis of the parameter 
correlation and its influence on mechanical properties were discussed in the subsequent sections.

HEAs identification
Most research studies in the field of HEAs modeling primarily focus on predicting phases or physical 
 properties4–12,14,16. However, an inherent issue with these prediction models is that they are constructed based 
on the assumption that the input alloy will be a HEA. The input alloys may not necessarily conform to this 
constraint. Consequently, if a known non-HEA is provided as input, the resulting predictions of phases or 
physical properties will likely be incorrect, given the domain. Therefore, the identification of alloy is a crucial 
task preceding subsequent prediction.

Minh et al.15 developed a recommender system for generating new and identifying a given alloy as HEA 
based on the presence or absence of specific element combinations in the alloy. Their system is constrained by the 
allowable number of elements for alloy formation and focuses solely on equiatomic alloys, without considering 
different elemental concentrations for sets of elements. This highly restricts the exploration of new HEAs. Their 
system, when evaluated using a supervised learning approach, achieves an average accuracy of 80%.

Utilizing the same datasets as Minh et al.15, we curated a comprehensive dataset comprising of 1156 alloys. 
This dataset comprises 471 and 685 equiatomic low entropy alloys (LEAs) and HEAs, respectively. We systemati-
cally eliminated all conflicts inherent in the dataset present within their study. We computed the above-specified 
29 alloy descriptors for each equiatomic alloy. Now alloys are going to be represented in the form of 29-dimen-
sional vector, irrespective of the elements used in the system of alloys. This will help us in the generalization of 
our classification model, as our model will be trained to recognize patterns in these dimensions, which rather 
than being affected by the presence or absence of an element will focus more on the concertation of constituent 
elements and their atomic properties. Pearson’s correlation coefficients were calculated for these alloy descriptors 
and their probability of being a HEA, to find the existence of any relation between them. In Fig. 1, we can see 
that Delta VEC, Average Thermal Conductivity, and Average Allen electronegativity show high negative, and 
average melting and boiling point show a high positive correlation with the probability of an alloy being HEA. 
This positive correlation attributes the ability of HEAs to withstand higher temperatures in the melting and 
boiling processes. HEAs are formed with higher interatomic bond strengths and phase stability, allowing them 
to withstand higher melting  points26. Due to the various substitutional phases formed in the HEAs with varied 
temperature ranges, melting and boiling temperature parameters are positively  correlated26,27. The decrease in the 
Delta VEC, average thermal conductivity, and average Allen electronegativity show higher possibilities of being 
HEA, which is in good agreement with the literature. Ji et al.28 demonstrated the influence of the electronegativ-
ity difference and delta (δ) values on the SS phases in the multi-principal alloys. The study provided a rule that 
lower electronegativity and δ are simple ways to demonstrate effective HEAs. Lower electronegativities compared 
to the consistent elements promote the solid solution, followed by a rise in mixing  entropy29. Higher mixing 
entropy stabilizes the SS phases formed in the HEAs. Similarly, VEC and thermal conductivity are the most vital 
parameters in HEA  formations30,31. Lowering the VEC promotes the disorderedness of the HEAs, allowing them 
to bond rather than be ordered. Additionally, VEC is simplistic and effective to use in HEAs.

For the identification of HEAs, 13 different ML algorithms including gradient boosting algorithms and several 
architectures of neural networks have been tested. The performance of these models can be directly compared 
using accuracy and other metrics. However, our emphasis was directed toward the recall, specifying the ratio of 
true positives to the total number of actual positives. As HEAs being misclassified as LEAs could result in the 
rejection of alloys that might show desirable properties, a heightened recall score effectively reduces the likeli-
hood of such instances occurring. We performed K-fold validation with 10 splits on each model so that we can 
better access their generalization capabilities. The outcomes of model testing are presented in Fig. 2, wherein 
the Light Gradient Boosting  Machine32 (LightGBM) gave the highest accuracy and recall score of 91.9% and 
0.94, respectively.

Despite exhibiting remarkable advancements compared to previous studies, this model is not exempt from 
limitations. Primarily, the dataset’s confinement to equiatomic alloys imparts a constraint that potentially cur-
tails the model’s ability for generalized application, particularly when addressing alloys with diverse elemental 
compositions. Given that numerous datasets concerning phase or physical properties of HEAs predominantly 
encompass varied elemental compositions, this model’s utility should not extend to compositional space reduc-
tion, as such an application might result in the undesired exclusion of promising alloys. Instead, its purpose 
should be aligned with furnishing researchers with a classification label regarding whether an alloy aligns with 
LEAs or HEAs, based on established literature.

Multi-labeled phase classification
The mechanical and physical properties of HEAs exhibit variation according to their phase formations. Essential 
mechanical properties like hardness and tensile strength experience significant variations tied to distinct phase 
formations, making the need for phase prediction necessary. Different crystal structures, including FCC, BCC, 
HCP, and others, give rise to diverse properties contingent upon their respective arrangements. Furthermore, 
both single-phase and multiphase formations contribute to the alteration of mechanical properties. Therefore, 
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there has been a surge in the pursuit of virtual alloy design, employing tools such as CALPHAD, ML, and AI. 
The prediction of phases and their correlation with mechanical properties serves to curtail the need for a large 
number of experimental trials, thereby fostering advancements in HEA applications. This approach accelerates 
HEA development by reducing empirical testing and facilitating its integration into real-world  applications1.

Multiclass classification limits the exploration of new inputs by constraining to a given set of single or mul-
tiphase classes, given the fact that HEAs have vast search compositional space of existence. Multi-label classifi-
cation tries to bridge this gap by providing some degree of freedom for the possibility of the existence of a new 
combination of phases rather than being constrained to the predefined set of single and multi-phases. Shrey 
et al.33 included the processing route followed during the synthesis of alloy along with thermodynamic prop-
erties as an input. To achieve better results, we decided to increase the number of descriptors and expand the 
dataset used to train the model. A list of phase data for 1049 alloys along with their respective processing route 
has been compiled for this study. This dataset was further expanded up to 1184 to adjust for the bias for phases 
BCC1 + BCC2 and FCC1 + FCC2. The analysis of the relation between the alloy descriptors and the phases has 
been performed by computing Pearson’s correlation coefficient, presented in Fig. 3. Most of the properties show 

Figure 1.  Pearson’s Correlation between alloy descriptors and High/Low entropy alloy label.
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a positive or negative correlation with one or another phase, except Omega. Similar findings have been reported 
in previous  studies33. However removing it didn’t have any positive effect on the performance of models during 
testing. Average atomic radius, average boiling point, and atomic volume showed a positive correlation with 
the BCC phase. These results are in good agreement with Shen  Guo34. Similarly, the FCC phase has a higher 
correlation with average VEC, average Allen, and Pauling  electronegativity35. Delta Allen electronegativity and 
Lamda showed positive influence on IM phase prediction and simultaneously, average atomic radius, boiling 
and melting points showed positive correlation in predicting the SS phase. Interestingly, Allen electronegativity 
showed a higher correlation with the greatest number of phases, followed by  VEC28–30.

In this study, we developed a range of artificial neural network (ANN) models aimed at phase prediction. The 
primary distinction among these models lies in the number of layers and neurons within each layer. By train-
ing these models across varying epochs, we aimed to ascertain the potential occurrence of overfitting, thereby 
ensuring the robustness of our model selections. The final output layer of each model consists of 10 neurons, 
each representing a distinct phase, namely: B2, BCC, FCC, IM, SS, Sigma, BCC1, BCC2, FCC1, and FCC2. To 
interpret the output, we applied the Sigmoid activation function to obtain probabilities indicating the presence 
of a particular phase within the alloy.

The evaluation of models’ performance is conducted through K-fold cross-validation with 10 splits on each 
model and Hamming accuracy is calculated for the same. The comparative analysis of Hamming accuracy scores 
across various model architectures is present in Fig. 4. As models are trained at different epochs, this only includes 
the best results achieved by each model for all the epochs. Notably, the model designated as ’nn1-model-500’ 
demonstrates the highest Hamming accuracy score of 95%.

Hardness prediction
Previous studies on hardness prediction for HEAs have primarily concentrated on utilizing thermodynamic 
properties or elemental compositional representations. While these investigations have yielded remarkable pre-
dictive outcomes, they are often restricted to particular alloy types or a fixed number of elements. Jain et al.36 
proposed an artificial neural network (ANN) model for the prediction of hardness of HEA. They were able to 
achieve a remarkable, R2 score of 0.95 but were limited to the prediction of said properties of alloys consisting of 
Al–Co–Cr–Fe–Mn–Nb–Ni−V. Consequently, the scope for exploring novel HEAs remains significantly limited.

Pearson correlation analysis is conducted to assess the relationship between the predicted phases using 
our Multi-label Phase Prediction model taking “Arc Melting” as the processing route and the experimentally 
determined hardness values of 759 alloys, presented in Fig. 5. The B2 and BCC phases showed a higher positive 
correlation on hardness prediction. B2 phases are ordered phase formations in the HEAs with higher atomic 
bonding strength compared to other phases. Ordered structures allow restrictions on dislocations in HEA’s, 
which allows them to enhance strain hardening. The authors have demonstrated the role of Al additions on B2 
phase formation in subsequent sections with  validation37–39. Similarly, the BCC phase showed a higher positive 
correlation with hardness because of its lower atomic packing density, solid solubility, and lower slip planes. 
Strain hardening of the HEA’s increases with a lower number of slip planes flowed by restricting the dislocation 
movement, which raises the hardness of the alloys. Simultaneously, the FCC phase showed a negative correla-
tion with hardness properties. This can indicate that FCC has higher slip planes, causing it to deform rather 
than resist loads. Correspondingly, the Sigma and IM phases showed a moderate correlation with hardness as 
they formed with multiple elements with varying compositions and microstructures. Later phases, including 
the FCC1, FCC2, BCC1, and BCC2, showed minimal correlation with the hardness of the HEAs. This finding 
highlights the significance of the presence of phase in contributing to the alloy’s mechanical properties. In addi-
tion to 29 alloy descriptors, we incorporated phase values as input for a set of regression models in our study.

In order to identify the optimal algorithm, nine machine learning algorithms were trained on the dataset, 
namely Linear Regression, Lasso Regression, Ridge Regression, Elastic Net Regression, SGD Regression, Ran-
dom Forest, Categorical Boosting (CatBoosting), Extreme Gradient Boosting (XGBoosting), and Light Gradient 
Boosting Machine (LGBoosting). Performance evaluation was conducted using R2 score and root mean square 
error (RMSE), Fig. 6a,b, respectively. K-fold cross-validation with 10 splits was employed for calculating these 
metrics. Among the models, CatBoosting  Regressor40 exhibited the highest R2 score of 0.933 and the lowest 
RMSE value of 53.12.

Figure 2.  (a) Accuracy score and (b) Recall score of various models for identification of HEAs. The 
performance of the best model is highlighted in blue.
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In addition to K-fold validation, the model exhibiting the highest R2 score undergoes validation using experi-
mental data. The tabulated results in Table 2, provide a comprehensive overview, detailing the experimentally 
derived hardness (HV) values, the corresponding predicted values, and the associated percentage errors in the 
predictions.

Owing to the limited accessibility of experimental hardness data for HEAs, our model’s capabilities remain 
constrained. The dataset comprises 17 elementals: Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Sn, Ta, Ti, V, W, 
Zn, and Zr. Notably, a disproportional abundance of Al, Co, Cr, Cu, Fe, and Ni within the dataset could render 
our model particularly responsive to alloys incorporating these constituents. The predominant distribution of 
hardness values (HV) within the 300–800 HV range implies heightened predictive accuracy for alloys situated 
within this interval.

Figure 3.  Pearson’s Correlation between alloy descriptors and predicted phases.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7692  | https://doi.org/10.1038/s41598-024-57094-y

www.nature.com/scientificreports/

Composition optimization
The exploration of HEAs poses a significant challenge due to their vast compositional space, making the search 
for alloys with desired properties computationally expensive. In particular, the optimization of hardness in HEAs 
presents additional difficulties. The predicted hardness landscape is characterized by non-continuity and non-
differentiability at numerous points, further complicating the task of identifying optimal alloy compositions. 

Figure 4.  Hamming Accuracy Score achieved by various architectures of neural network models. The 
performance of the best model is highlighted.

Figure 5.  Pearson’s Correlation between predicted phase and Hardness (HV) values.

Figure 6.  (a) R2 Score and (b) mean squared error of the models tested for hardness prediction. Performance 
of best model is highlighted.

Table 2.  Validation of Hardness prediction model against experimentally calculated hardness values of HEA.

Alloys Experimental hardness Predicted hardness Relative error (%)

Co10Cr20Fe30Ni4041 126.5 121.31 4.10

Al44.38Cr31.79Fe11.67Ni12.1716 771.27 779.71 − 1.09

Al1.2Cr17.42Fe25.42Ni28.32Ti27.6216 869.88 757.54 12.91

Al44.18Cr18.58Fe12.08Ni11.38V13.7816 898.18 790.52 11.99

Ti32Nb9Ta1Cr19Co3916 856 743.17 13.18

Al20Cr5Cu15Fe15Ni5Ti10V3042 650 693.37 − 6.67

Al32Co13Cr33Fe2241 735.5 730.24 0.72

Al41Co20Cr19Fe15Ni541 762.8 814.63 − 6.79

Co6W9Al36Mo38Ni1116 725 659.06 9.10
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Such complexities demand advanced computational approaches and algorithms capable of efficiently navigating 
the intricate landscape of hardness predictions in HEAs.

We conducted the hardness analysis of a system of alloy consisting of 6 elements, AlCoCrCuFeNi. The 
concentration in terms of mole fraction of each element is varied incrementally by 0.0001 within the range of 
0.05–0.5 taking one element at a time. The concentration of other elements is changed equiatomically to adjust 
for the incremental change in concentration of the element in question, to maintain a combined concentration 
of 1.0. This analysis serves as an illustrative demonstration, the concentration of elements apart from the selected 
element is altered in an equiatomic manner, thereby focusing solely on a restricted subset of potential elemental 
concentrations. The graph presented in Fig. 7, shows the change in hardness with the change of concentration. 
Each line in the graph shows an overall pattern of change in hardness values. The hardness of the alloy increases 
with the increase in the concentration of Al and Cr, and is vice-versa in the case of Co, Cu, Fe, and Ni. When 
observed locally, hardness changes erratically at many points and shows no pattern whatsoever.

We present an algorithmic framework for optimizing the composition of alloys to achieve higher hardness 
values, targeting the objective of maximizing hardness while considering specified constraints. To accomplish 
this, we employ the Differential Evolution  algorithm43 in our approach. To guide the algorithm effectively, we 
design a cost function that directs the evolutionary process towards the desired outcome. Additionally, we utilize 
a Multi-Labeled Phase prediction model to forecast the initial phase, which, along with alloy descriptors, aids 
in predicting the hardness of any given alloy. The flowchart presented in Fig. 8, shows a pictorial representation 
of the proposed algorithmic framework. However, we encounter a challenge: alterations in the concentration of 
one element, expressed as a mole fraction, should lead to corresponding changes in the concentration of other 

Figure 7.  Hardness (HV) variation with the change in elemental concentration of the system of alloy 
AlCoCrCuFeNi.

Figure 8.  Flowchart of the proposed algorithmic framework for composition optimization for higher hardness 
values.
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elements in different directions. Given the numerous potential combinations of how these changes affect other 
elements, maximizing hardness becomes a challenging search problem. To address this, we augment our cost 
function by penalizing deviations from the combined concentration of one element. This ensures that changes 
in one element’s concentration result in proportionate adjustments in other elements, along with maximizing 
hardness.

To map out the path followed by the proposed algorithm during the optimization of the above-mentioned 
system of alloy, AlCoCrCuFeNi, we plotted all the concentration values considered for each element and the 
corresponding hardness values as the iteration progresses, in Fig. 9. At the initial stages, all the concentrations 
in the given limits of 0.05–0.35 are considered, as iteration progresses, points start to localize at a particular 
concentration space for all elements. For Al and Cr, at later stages of iteration, more of their higher elemental 
concentration values are considered in order to achieve better hardness. This is verified by the hardness analysis 
that we conducted for this system of alloy, Fig. 7, that the system of alloy tends to show higher hardness with 
the increase in the elemental concentration of Al and Cr. The same is true in the case of Co, Cu, Fe, and Ni. The 
algorithm favors lower elemental concentration for these elements as the hardness values decrease with the 
increase in their concentration.

Increasing the Al and Cr concentrations showed a hardness enhancement in the AlCoCrCuFeNi HEA because 
it promoted the formation of ordered B2 and disordered BCC phases in the alloy. The lattice mismatch between 
the B2 and BCC phases demonstrated the morphology of the following HEA, as shown in Fig. 9. Ma et al.37 inves-
tigated the formation of B2 and BCC phases in the AlxNiFeCoCr HEAs. The difference in the lattice mismatch 
in the BCC and B2 phases influenced the mechanical properties of the  AlxNiFeCoCr38. Higher or lower lattice 
mismatches showed spherical or wavi-like morphology, and moderate lattice fits showed cuboidal particles with 
enhanced mechanical  properties39. Similarly, increasing the Fe, Co, Cu, and Ni showed a drop in hardness, as 
shown in Figs. 7 and 9. Jain et al.36 confirmed a similar understanding with the feature importance and correla-
tion on the hardness prediction. This investigation revealed that increasing the Fe, Cu, and Ni concentrations 
showed a negative correlation with the hardness of the AlCoCrFeNiVMoNb alloy.

We tested the proposed algorithm to optimize some systems of alloys. The system of alloys chosen for this 
purpose shows the least positive Relative Error in Table 2. The optimized concentration and the hardness value 
along with the predicted phase are mentioned in Table 3. The hardness values demonstrated are higher than the 
experimentally reported hardness value of the alloys.

Figure 9.  Hardness (HV) variation with change in concentration of (a) Al, (b) Co, (c) Cr, (d) Cu, (e) Fe, and (f) 
Ni during composition optimization of the system of alloy, AlCoCrCuFeNi.
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Methods
Data collection
To gather relevant data, this study reviewed a wide range of research articles and data analytics. For HEA iden-
tification purposes, the  AFLOW44 and  LTVC45 datasets, which were already classified as LEA and HEA, were 
considered. This data was then compiled into a dataset named dataset-1, consisting of 471 LEA and 685 HEA, 
conflicting data points were eliminated. After reviewing numerous papers, we focused on research that explored 
the phases formed by HEA along with the processing route taken to synthesize that alloy. Conflicting and 
duplicated data was excluded, resulting in a final dataset of 1049 phase data points, which is referred to as data-
set-233,46. This dataset includes 30 different phases such as B2, B2 + BCC, B2 + BCC + FCC, B2 + BCC + FCC + IM, 
B2 + BCC + FCC + Sigma, B2 + BCC + Sigma, B2 + FCC, B2 + FCC + Sigma, B2 + FCC1 + FCC2, B2 + Sigma, BCC, 
BCC + FCC, BCC + FCC + IM, BCC + FCC + Sigma, BCC + FCC1 + FCC2, BCC + IM, BCC_SS, BCC + Sigma, 
BCC1 + BCC2, BCC1 + BCC2 + FCC1 + FCC2, FCC, FCC + IM + Sigma, FCC_SS, FCC + Sigma, FCC1 + FCC2, 
IM, IM + BCC1 + BCC2, IM + FCC1 + FCC2, and Sigma + FCC1 + FCC2. This study obtained experimental hard-
ness values for hardness prediction from the research papers, resulting in a collection of 759 hardness measure-
ments of 17  elements35,47,48, referred to as dataset-3.

Data pre-processing
The elemental compositions and elements are extracted from alloy representations in string form using regular 
expressions (Regex). To facilitate generalization, both molar ratio and percentage concentration representations 
are converted to mole fractions, indicating the respective element amounts in the alloy. Prior to deriving the alloy 
descriptors of the alloys, an atomic properties database is created, including attributes such as Atomic Radius, 
Melting Point, Boiling Point, Pauling Electronegativity, Allen Electronegativity, Valance Electron Concentration, 
Itinerant Electron Per Atom, Atomic Weight, Density, Molar Heat Capacity, and Thermal Conductivity. The 
computation of the descriptors is facilitated using vectorized matrix multiplication, after selecting the atomic 
properties from the database based on the constituent elements of the alloy. As each property exhibits highly 
variable ranges based on the underlying atomic property, all properties are standardized by subtracting the mean 
of the respective property after which they are divided by their standard deviation. This transformation promotes 
faster convergence during the learning phase of machine learning models. Within dataset-2, phases assume 
distinct classes, such as BCC + FCC or BCC + B2. These phase classes have been encoded as labels, facilitating 
their representation as a composite of 10 individual phases: B2, BCC, FCC, IM, SS, Sigma, BCC1, BCC2, FCC1, 
and FCC2. Therefore, each phase is now expressed as a 10-dimensional vector, fostering a more comprehensive 
and standardized representation.

Neural network architecture for multi-labeled phase classification
The neural network model was constructed using the Keras library in Python. The model consisted of an input 
layer with 42 neurons, of which 29 neurons represent alloys descriptors and 13 neurons represent different routing 
processes involved in alloy synthesis, encoded as a one-hot vector. The model consists of only 1 fully connected 
hidden layer consisting of 64 neurons. It is followed by the Rectified Linear Unit Activation layer to introduce 
non-linearity and decrease the likelihood of vanishing gradient. Binary cross entropy is used as the loss function 
for training the model, so that each individual neuron in the last layer which represents the probability of the 
presence of a phase in the alloy, can be trained to function independently without being affected by the other 
neuron in the output layer. The model is trained for 450 epochs with Adam optimizer which, intuitively, is a 
combination of gradient descent with momentum algorithm and RMSProp optimization algorithm, for faster 
convergence.

Hamming accuracy
The performance of the phase classification model is assessed in terms of Hamming accuracy. It considers the 
accuracy of the prediction of each label independently, i.e., the number of labels being predicted accurately. 
Mathematically, Eq. (1) represents the formula used to calculate Hamming accuracy.

The output layer of the phase classification model produces output within the (0, 1) interval, attributed to the 
utilization of a Sigmoid activation function. These values are converted into binary form by way of thresholding. 

(1)HammingAccuracy = 1−
1

N · L

N
∑

i=1

L
∑

j=1

XOR
(

yij , ŷij
)

Table 3.  Demonstration of composition optimization algorithm.

Experimental alloy Optimized alloy Predicted phases (optimized alloy)

Al32Co13Cr33Fe2241

(HV 735.5)
Al34.08Co17.92Cr34.46Fe13.54
(HV 748.85) B2 + BCC

Co10Cr20Fe30Ni4041

(HV 126.5)
Co22.86Cr34Fe34.99Ni8.15
(HV 269.91) FCC

Co6W9Al36Mo38Ni1116

(HV 725)
Co19.87W16.13Al34.34Mo16.48Ni13.18
(HV 731.41) B2 + FCC + σ
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The threshold value is calculated using the trial-and-error method. A function iterates through all possible values 
of threshold up to a precision of 3 decimal places, and the chosen threshold corresponds to the point yielding 
the minimum Hamming score, indicative of the least labels incorrectly classified. This iterative procedure is 
replicated for each model subsequent to training.

Differential evolution
Differential  evolution43 (DE), a metaheuristics algorithm employed for optimizing the composition of HEAs, has 
been implemented in our approach using the  SciPy49 package. Metaheuristic algorithms are able to obtain an opti-
mal solution for very complex problems like HEA compositional search  space50. They offer satisfactory outcomes 
with reduced computational demands when compared to exhaustive iterative procedures that involves testing all 
conceivable elemental compositions. DE initially generates a set of compositions, which expands proportionally 
with the number of elements, serving as the initial candidate solutions. Subsequently, these candidates undergo 
mutation and crossover operations with the existing set to generate a new set of candidates. Should the solutions 
of the new candidates surpass the existing ones, they replace the latter based on the evaluation of a designated 
cost function. We conducted an evaluation of various hyperparameters, including optimization strategies and 
mutation-recombination constants. This exploration aimed at identifying optimal parameter configurations that 
facilitate enhanced exploration and faster convergence within the compositional space of HEAs for hardness 
optimization. The default population size and recombination constant, i.e., 15 times the number of elements in 
the alloys, and 0.7 performs best, respectively. The mutation constant is randomly changed between the range 
(0.0, 1.0), and ‘Sobol’ method is used to generate the initial population for DE. “best2bin” strategy is used to 
improve the candidate solutions, and tolerance is chosen to be 0.01 which terminated the optimization when 
the standard deviation of the population falls below a certain limit. We have implemented the algorithm in a 
way to exploits the vectorization capabilities of DE. This allows for faster computation, as the cost for the whole 
population is predicted in a parallelized manner (Supplementary Information).

Cost function
The cost function which is at the core of composition optimization for higher hardness, consists of two essential 
components. In mathematical form, the cost function can be represented by the formula given in Eq. (2).

Here “PH” is the predicted hardness (HV) value for an alloy in question. “CD” represents the amount of 
deviation in the elemental concentration of the alloy from the total of 1.0, i.e., if the sum of the concentration 
of all the elements is equal to 0.97 then the value of “CD” is going to be 0.03. The parameter alpha, a constant 
multiplier, typically assumes a higher value to prioritize the sum total of elemental concentrations equating to 
1.0. This strategic selection is crucial to prevent the algorithm from generating outcomes that are impractical or 
unforeseen. At a relatively lower alpha value, the algorithm can attain high hardness values; however, it might 
deviate from the concentration constraint, possibly yielding an alloy with substantially heightened hardness 
but impractical elemental concentrations. Conversely, opting for a relatively higher alpha value ensures that the 
concentration constraint is followed but will limit the algorithm’s capabilities of exploration.

Data availability
The codebase associated with the reported work is available at: https:// github. com/ anshp oonia/ Design_ of_ HEAs
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