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Investigation of deep learning 
model for predicting immune 
checkpoint inhibitor treatment 
efficacy on contrast‑enhanced 
computed tomography images 
of hepatocellular carcinoma
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Although the use of immune checkpoint inhibitors (ICIs)‑targeted agents for unresectable 
hepatocellular carcinoma (HCC) is promising, individual response variability exists. Therefore, we 
developed an artificial intelligence (AI)‑based model to predict treatment efficacy using pre‑ICIs 
contrast‑enhanced computed tomography (CT) imaging characteristics. We evaluated the efficacy of 
atezolizumab and bevacizumab in 43 patients at the Nagasaki University Hospital from 2020 to 2022 
using the modified Response Evaluation Criteria in Solid Tumors. A total of 197 Progressive Disease 
(PD), 271 Partial Response (PR), and 342 Stable Disease (SD) contrast CT images of HCC were used for 
training. We used ResNet‑18 as the Convolutional Neural Network (CNN) model and YOLOv5, YOLOv7, 
YOLOv8 as the You Only Look Once (YOLO) model with precision‑recall curves and class activation 
maps (CAMs) for diagnostic performance evaluation and model interpretation, respectively. The 3D 
t‑distributed Stochastic Neighbor Embedding was used for image feature analysis. The YOLOv7 model 
demonstrated Precision 53.7%, Recall 100%, F1 score 69.8%, mAP@0.5 99.5% for PD, providing 
accurate and clinically versatile predictions by identifying decisive points. The ResNet‑18 model 
had Precision 100% and Recall 100% for PD. However, the CAMs sites did not align with the tumors, 
suggesting the CNN model is not predicting that a given CT slice is PD, PR, or SD, but that it accurately 
predicts Individual Patient’s CT slices. Preparing substantial training data for tumor drug effect 
prediction models is challenging compared to general tumor diagnosis models; hence, large‑scale 
validation using an efficient YOLO model is warranted.
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Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and a considerable cause 
of cancer-related deaths. The use of immune checkpoint inhibitors (ICIs) has recently shown promising outcomes 
in HCC  treatment1,2. Additionally, there has been significant focus on integrating medical imaging with predic-
tive models based on AI to improve patient management and treatment  outcomes3.

CT plays a crucial role in diagnosing, staging, and monitoring  HCC4. However, no substantial dataset of CT 
images combined with clinical and outcome data has yet been used to develop AI prediction models for HCC 
prognosis. The integration of AI with HCC prognosis offers numerous advantages. For example, it can help 
identify patients who are highly likely to respond to ICIs therapy in the early stages. Furthermore, AI-predictive 
models can assess the efficacy of treatment and identify patients who require alternative interventions or thera-
pies. This leads to an opportunity to promptly modify treatment plans and contributes to improved outcomes.

Deep learning techniques in the field of hepatocellular carcinoma have been used for lesion detection, liver 
tumor  segmentation5–10, and differential  diagnosis11. However, although outcome prediction after transarterial 
chemoembolization (TACE) treatment for liver cancer has been  reported12–18, there are no reports on outcome 
prediction after ICIs treatment.

Therefore, we trained a deep convolutional neural network (CNN) and a You Only Look Once (YOLO) model 
to predict the outcome of ICIs treatment. Additionally, we utilized the CAMs algorithm to identify the relevant 
morphological features for machine learning predictions and locate image features that the CNN associates with 
HCC treatment efficacy. As a result, we gain insight into the specific parts of the image the CNN examines to 
determine treatment efficacy.

In a previous report, ResNet-18, a CNN model, was found to be effective in predicting microvascular inva-
sion using preoperative CT images of hepatocellular carcinoma (HCC)19. In contrast, the YOLO model, which 
is gaining popularity in object detection, enables real-time discrimination and localization of objects. However, 
no studies have yet been conducted on the efficacy of liver cancer treatment using the YOLO model.

Our research aims to investigate the potential of AI in supporting physicians with treatment decisions and its 
future usability. In this study, multiple images of each patient were used to predict the prognosis of liver cancer 
accurately. Many studies have shown that background liver status, including hepatic spare ability and Child–Pugh 
score, can be a crucial indicator. Interestingly, it is not uncommon to observe different types of malignant liver 
cancer concurrently in a single patient during clinical practice. The YOLO model shows promise in precisely 
predicting the various states of liver cancer and is expected to aid physicians in making informed decisions 
regarding treatment.

One of the most cited issues in AI development for medical use is the lack of adequate data sets. With numer-
ous anticancer treatments available and countless new drugs introduced regularly, it is difficult to obtain enough 
image and data sets to validate a drug’s efficacy, even in cases of common cancers. In real-world clinical practice, 
there is a necessity to perform exploratory studies that can develop models to precisely determine drug effective-
ness from a restricted number of tumor images and treatment efficacy data. Our report details the development 
of an AI-based model that predicts the effectiveness of liver cancer treatment by recognizing contrast-enhanced 
CT scan features before the introduction of ICIs.

Methods
Patients
From 2020 to November 2022, there were 43 (except duplicate cases) patients with unresectable HCC who under-
went CT 3 months prior to treatment initiation. The median age of the sample was 72 years. In addition, they 
were administered atezolizumab plus bevacizumab therapy at Nagasaki University Hospital (Table 1). This study 
included 43 patients allocated to the atezolizumab plus bevacizumab group. Patients with administration period 
of less than 3 weeks and in whom treatment response could not be determined were excluded from the study.

Treatment protocol, evaluation criteria for response, and follow up of HCC
Intravenous atezolizumab (at a dose of 1200 mg) and bevacizumab (at a dose of 15 mg/kg of body weight) were 
administered to the patients every 3 weeks. The treatment was discontinued if unacceptable adverse events or 
clinical tumor progression were observed. Treatment response was evaluated using contrast-enhanced CT or 
MRI with the modified Response Evaluation Criteria in Solid  Tumors20 every 8–12 weeks. The best response 
was adopted as the therapeutic effect.

CT scanning protocols
HCC was evaluated by CT examinations by using one of three CT systems (Aquilion ONE and Aquilion Preci-
sion, Canon Medical Systems, Otawara, Japan; Somatom Definition Flash, Siemens, Erlangen, Germany). The 
scanning protocol was a rotation time of 0.5 s, beam collimation of 80 × 0.5 mm, reconstruction section thickness 
and interval of 1.0 mm, pitch factor of 0.6–1.2, table movement of 65 mm/s, default field of view (FOV) of 40 cm, 
120 kV, and automatic exposure control. Nonionic contrast medium (100 mL of Omnipaque 240, Daiichi‐Sankyo, 
Tokyo, Japan; 100 mL of Oypalomin 300 and 65 mL of Oypalomin 370, Konica Minolta, Tokyo, Japan) at a dose 
of 520–600 mgI/kg was used for CT examination in 48 patients. The arterial, portal, and delayed phase images 
were scanned with the following delays: arterial phase, using a bolus tracking system (threshold attenuation of 
200 Hounsfield units in the descending aorta at the level of the diaphragm; portal phase, 40 s after arterial phase; 
and delayed phase, 180 s after the beginning of contrast agent injection).

Ethical considerations
This study was conducted in accordance with the 1964 Declaration of Helsinki and institutional and national 
ethical standards of the committees responsible for human experimentation. Informed consent was obtained 
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from all the patients prior to the study. The study protocol was approved by the Ethics Committee of Nagasaki 
University Hospital (approval date, April 16, 2019; approval number, 19041523-4).

Deep learning implementation and statistical analysis
ResNet-1821, a Convolutional Neural Network (CNN) model, and YOLOv5,  YOLOv722, YOLOv8 a You Only 
Look Once (YOLO) model, were used for supervised learning to predict treatment effects. Precision, Recall, F1 
Score, Mean Average Precision (mAP) are the metrics that were used to evaluate the detection performance of 
the models. The Recall value describes the sensitivity of the object detection model. The F1 Score is the harmonic 
mean between the precision and the recall value. The mAP value represents the accuracy of the object detection 
model and is computed by calculating the area under the precision-recall curve. Class activation maps (CAMs)23 
were employed to interpret the CNN models. Principal component analysis and 3D t-distributed Stochastic 
Neighbor Embedding (3D-tSNE)24 were used for feature analysis of the entire image. To validate the prediction 
model, 20% of the total data was used as the validation dataset. All training procedures were performed using 
NVIDIA A6000. The CNN model was implemented based on PyTorch.

Results
CNN model training strategy
We implement and optimize our deep convolutional neural network using  fastai25, which is built on PyTorch. All 
choices of CNN hyperparameters or tweaks have been empirically tuned in order to optimize training. The cross-
entropy loss is used to evaluate for multi-class classification tasks. We use the ResNet-18 of CNN architectures, 
which are enhanced versions of the original residual neural  networks21. The ResNet-18 architecture is depicted 
in Fig. 1, with the initial layers accepting an input of an image with dimensions of 224 × 224 pixels and three RGB 

Table 1.  Clinical characteristics of the patients. AFP, Alpha fetoprotein; Alb, albumin; ALT, alanin 
aminotransferase; BCLC, balcelona clinic liver cancer; BMI, body mass index; DCP, des-γ-carboxy 
prothrombin; NBNC, nonBnonC; Plt, platelets; PV, portal vein; T. bil, Tortal bilirubin.

Factor (n = 43)

Age Years 72.0 (48–88)

Sex Male/female 33/10

BMI kg/m2 22.2 (16.9–28.6)

Performance status 0/1/2/3 27/12/3/1

Child–Pugh class A/B 40/8

Tumor size cm 5.8 (1.0–19.0)

Macroscopic PV invasion Vp3/4 7 (16.2%)

Extrahepatic spread + 18 (41.8%)

BCLC stage B/C 18/25

Etiology B/C/NBNC 8/10/25

Plt ×104/µL 16.7 (6.7–45.0)

T.bil mg/dL 0.80 (0.3–2.0)

Alb g/dL 3.50 (2.2–5.4)

ALT IU/mL 26.0 (13–119)

AFP ng/mL 90.9 (2–484,000)

DCP mAU/mL 3016.0 (14–339,137)
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Figure 1.  The architecture of the ResNet-18 convolutional neural network.
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channels. We conducted the initial training using 80% of the available images from the 43 cases, totaling 810 
images. This training was performed 30 epochs and observed that both the training loss and validation loss had 
plateaued, as shown in Fig. 2A and B. The model’s classification output was based on the element with the highest 
probability in the output vector. The validation results using the designated dataset are presented in a confusion 
matrix format in Fig. 2C. Figure 2C and D showed the ResNet18 model had Precision 100% and Recall 100% for 
PD. Figure 3A shows a comparison between the actual predictions and ground truth labels. Figure 3B illustrates 
a slice with a high loss, denoting the magnitude of the difference between the correct and predicted values by 
the model. The interpretation regions of the ResNet18 model were visualized using CAMs (as shown in Fig. 4). 
The CAMs heatmap marked certain areas in red that did not correspond to tumor regions. Subsequently, com-
prehensive feature analysis of the complete dataset was performed using principal component analysis (Fig. 5A). 
Figure 5B and C illustrate that the 3D-tSNE analysis revealed data points tending to cluster for each individual 
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Figure 2.  (A) and (B) show the process of CNN model training by Pytorch, whereas (C) depicts the confusion 
matrix of prediction results from 20% test datasets. CNN, Convolutional neural network.

Figure 3.  (A) Top label shows actual label second label shows the prediction model of each CT slices by 
ResNet-18, while (B) shows the computed loss and probability of each CT slices. CT, Computed tomography.
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case. 3D-tSNE showed that the conventional CNN model tended to concentrate on the specific features of each 
patient’s internal organs, such as the background liver, instead of capturing the essential characteristics of HCC.

YOLO model training strategy
We have optimized and implemented our deep convolutional neural network utilizing the newest versions of 
the YOLO (You Only Look Once) framework, such as YOLOv5, YOLOv7, and YOLOv8, which are all based on 
the Darknet architecture and have been modified for increased accuracy and performance. Each iteration of the 
YOLO model has undergone meticulous configuration, refining hyperparameters and structural tweaks through 
empirical methods to optimize training outcomes. The loss function utilized in these models is an advanced 
variant of the original YOLO loss, which includes separate components for bounding box regression, objectness 
prediction, and class probability estimation. The network architectures for YOLOv5, YOLOv7, and YOLOv8 

Figure 4.  CAMs analysis with heatmap. The color bar to the right quantifies intensity of CAMs prediction site.

C

A B

C

Figure 5.  (A) Principal component analysis was performed on Tensorboad projector 3D-tSNE software. Red 
color represents PD. Blue color represents PR. Pink color represents SD. (B) tSNE analysis by 3D-tSNE. (C) 
shows higher magnificent of 3D-tSNE analysis. Each picture cluster represents CT slices with same patients. 
CAMs, Class activation maps; CNN, convolutional neural network; PCA, principal component analysis; 
3D-tSNE, 3D t-distributed stochastic neighbor embedding.
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are showcased in Fig. 6. Each input layer in the design processes images that meet the specific dimensions of 
the models while maintaining three RGB channels. To ensure accuracy and reliability, our training regimen 
drew from an extensive range of classes, utilizing 80% of the available images and producing a robust dataset. 
Our training ran for 100 epochs. Table 2 was a summary comparison of the results for YOLOv5, YOLOv7, and 
YOLOv8 model in this dataset. YOLOv7 performed well in all categories, so we selected it for verification. YOLO 
model was designed to target the HCC region (Fig. 6). An analysis based on the YOLO model, as illustrated in 
Fig. 7, resulted in Precision 53.7%, Recall 100%, F1 score 69.8%, mAP@0.5 99.5% for PD (Table 3). Finally, Fig. 8 
shows the predictive outcomes. This highlights the accurate localization of tumor regions and corresponding 
predictions of treatment efficacy.
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Figure 6.  The architecture of the YOLO model. YOLO, You only look once.

Table 2.  HCC treatment effect prediction comparison of YOLOv5, YOLOv7, and YOLOv8.

Model Precision (%) Recall (%) F1 score (%) mAP@0.5 (%)

YOLOv5 78.3 31.9 45.3 31.9

YOLOv7 98.3 44.4 61.1 58.4

YOLOv8 62.2 11.1 18.8 9.1

Figure 7.  (A) Precision-recall curve for each prediction. Light blue color shows PD, Orange color shows 
PR, Green color shows SD, Blue color shows all the classes. (B) Depicts the confusion matrix of the YOLO 
prediction. YOLO, You only look once.
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Discussion
The evolution of deep learning has resulted in significant progress in medical imaging, particularly in the seg-
mentation of liver cancer using CT  images26. Despite the widespread use of segmentation models, a gap remains 
in the development of models specifically designed for treatment selection. The primary findings of our study are 
supported by the differentiation between the existing models and what is urgently required in clinical settings.

The aim of our research is to explore the potential of AI in assisting physicians with treatment decisions and 
its future usability. The analysis of the image features in the liver and liver cancer-containing slices of patient 
reveals that all patient slices are clustered according to their respective slice numbers (Fig. 5C). This describes 
a characteristic of CT sequential images and how CNN model can learn image features that approximate slice 
features of different patients, regardless of the presence or absence of hepatocellular carcinoma information. It 
also explains how it is relatively easy to determine which slice belongs to which patient. In other words, CNN 
model is not predicting that a given CT slice is PD, PR, or SD, but that it accurately predicts individual Patient’s 
CT slices. However, this labeling does not serve our goal of identifying tumor therapeutic features. Despite the 
100% accuracy, we chose to use YOLO model instead of CNN model to prevent overestimation and underesti-
mation in future medical AI implementations. This issue could also arise in the development of medical AI for 
other types of medical images.

The YOLO  model22 provided improved accuracy and a twofold clinical advantage. First, it accurately identi-
fied regions that play crucial roles in the decision-making process. Second, it introduces versatility, a crucial trait 
that is often overlooked in clinical settings. Identifying the decision basis is crucial, especially when considering 
imaging biomarkers such as pathological validation. The practical value of AI is maximized when physicians 
comprehend and have conviction in its decision-making process, highlighting the significance of transparency 
in AI  prediction27.

Current paradigms for medical decision making are multifaceted. Doctors manage abundant data ranging 
from the general condition of the patient and performance status to complicated blood biochemistry and tumor 
markers information before determining a treatment modality. The major future challenge is to translate this 
intricate decision-making process smoothly into AI systems. How can AI integrate and operate with a comparable 
range of data as effectively as experienced physicians? We believe that the solution lies in models such as YOLO, 
which concentrate information in advance on relevant sections, such as HCC sites.

However, certain challenges remain. Preparing large quantities of accurately labelled data to predict tumor 
drug efficacy requires more intricate procedures than general tumor diagnostic models. The inherent efficiency 
of the YOLO model makes it a promising tool for large-scale validation applications.

Table 3.  HCC treatment effect prediction summary by YOLOv7.

YOLOv7 Precision (%) Recall (%) F1 score (%) mAP@0.5 (%)

All 98.3 44.4 61.1 58.4

PD 53.7 100 69.8 99.5

PR 16.6 100 28.4 16.6

SD 58.8 58.3 58.5 63.6

Figure 8.  Six examples for the YOLO model predictions. YOLO, You only look once.
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Emulating the complex neural network of an experienced physician’s brain requires a multimodal  approach28. 
An ideal model would combine the relevant CT data extracted using the YOLO model with biological indicators, 
such as blood sample data. Such fusion could enable AI systems to replicate, and perhaps even improve, human 
diagnostic and predictive abilities in the oncology field.

Data availability
The datasets generated and analyzed during the current study are available in the predict ICIs-HCC repository, 
https:// github. com/ yasun akao/ predi ctICI- HCCmo del.
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