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Automated diagnosis 
of plus disease in retinopathy 
of prematurity using quantification 
of vessels characteristics
Sayed Mehran Sharafi 1, Nazanin Ebrahimiadib 2, Ramak Roohipourmoallai 3, 
Afsar Dastjani Farahani 1, Marjan Imani Fooladi 4 & Elias Khalili Pour  1*

The condition known as Plus disease is distinguished by atypical alterations in the retinal vasculature 
of neonates born prematurely. It has been demonstrated that the diagnosis of Plus disease is 
subjective and qualitative in nature. The utilization of quantitative methods and computer-based 
image analysis to enhance the objectivity of Plus disease diagnosis has been extensively established 
in the literature. This study presents the development of a computer-based image analysis method 
aimed at automatically distinguishing Plus images from non-Plus images. The proposed methodology 
conducts a quantitative analysis of the vascular characteristics linked to Plus disease, thereby aiding 
physicians in making informed judgments. A collection of 76 posterior retinal images from a diverse 
group of infants who underwent screening for Retinopathy of Prematurity (ROP) was obtained. A 
reference standard diagnosis was established as the majority of the labeling performed by three 
experts in ROP during two separate sessions. The process of segmenting retinal vessels was carried 
out using a semi-automatic methodology. Computer algorithms were developed to compute the 
tortuosity, dilation, and density of vessels in various retinal regions as potential discriminative 
characteristics. A classifier was provided with a set of selected features in order to distinguish between 
Plus images and non-Plus images. This study included 76 infants (49 [64.5%] boys) with mean birth 
weight of 1305 ± 427 g and mean gestational age of 29.3 ± 3 weeks. The average level of agreement 
among experts for the diagnosis of plus disease was found to be 79% with a standard deviation of 
5.3%. In terms of intra-expert agreement, the average was 85% with a standard deviation of 3%. 
Furthermore, the average tortuosity of the five most tortuous vessels was significantly higher in Plus 
images compared to non-Plus images (p ≤ 0.0001). The curvature values based on points were found 
to be significantly higher in Plus images compared to non-Plus images (p ≤ 0.0001). The maximum 
diameter of vessels within a region extending 5-disc diameters away from the border of the optic disc 
(referred to as 5DD) exhibited a statistically significant increase in Plus images compared to non-
Plus images (p ≤ 0.0001). The density of vessels in Plus images was found to be significantly higher 
compared to non-Plus images (p ≤ 0.0001). The classifier’s accuracy in distinguishing between Plus and 
non-Plus images, as determined through tenfold cross-validation, was found to be 0.86 ± 0.01. This 
accuracy was observed to be higher than the diagnostic accuracy of one out of three experts when 
compared to the reference standard. The implemented algorithm in the current study demonstrated 
a commendable level of accuracy in detecting Plus disease in cases of retinopathy of prematurity, 
exhibiting comparable performance to that of expert diagnoses. By engaging in an objective analysis 
of the characteristics of vessels, there exists the possibility of conducting a quantitative assessment 
of the disease progression’s features. The utilization of this automated system has the potential 
to enhance physicians’ ability to diagnose Plus disease, thereby offering valuable contributions to 
the management of ROP through the integration of traditional ophthalmoscopy and image-based 
telemedicine methodologies.
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Retinopathy of Prematurity (ROP) is a pathological condition characterized by the abnormal proliferation of 
retinal blood vessels in infants with low birth weight. This condition has significant implications for visual 
impairment, and if not promptly addressed, it can progress to retinal detachment and subsequent blindness1. 
ROP remains a significant and avoidable contributor to the occurrence of blindness and visual impairment among 
children, in both developing and developed nations2. It is estimated that a total of 1.84 million children were at 
risk of developing ROP at various stages. Among these cases, approximately 11% were expected to experience 
complete blindness or severe visual impairment as a direct result of ROP3. The prevalence of ROP in developed 
nations is estimated to be approximately 9%, while in developing nations, it is estimated to be around 12%4. 
In low and middle-income countries, the prevalence of ROP-induced blindness can reach up to 44%, primar-
ily attributed to challenges related to retinal examination, patient follow-up, and the accessibility of neonatal 
intensive care units5.

The term “Plus disease” is used to characterize the most severe vascular alterations observed in ROP, which 
are characterized by a specific degree of vascular dilation and tortuosity.

Screening and treatment
Multiple studies6–8 have demonstrated that ROP, specifically when characterized by Plus disease, can be suc-
cessfully managed through laser photocoagulation6,7 or intravitreal injection of bevacizumab8 when diagnosed 
promptly.

Wide-field retinal imaging, such as the RetCam9, offers the potential to conduct tele-ROP screening in con-
junction with a reading center10,11. This approach enhanced both the availability of ROP screening and the 
impartiality in diagnostic procedures. However, the clinical diagnosis of ROP continues to be subjective, result-
ing in significant variability and inconsistency in diagnosis. This inconsistency has been observed even among 
experts in ROP, as documented in previous studies12,13.

Several research groups have investigated the development of artificial intelligence and computer-based image 
analysis techniques for the purpose of improving the objectivity and automating the diagnosis of ROP with Plus 
disease11,14–23. Nevertheless, little work to our knowledge has done on quantitative analysis of image features that 
are focus of the clinicians during diagnosis and treatments. This study aimed to develop a computer-assisted 
system for detecting Plus disease by characterization of vascular features, with the intention of enhancing diag-
nostic accuracy and enabling quantitative monitoring of treatment progress.

Methods
Ethics
Five ROP experts, conducted the collection of the images and three of them participated in the labeling of fundus 
images. The present study adhered to the principles outlined in the Declaration of Helsinki and received approval 
from the institutional review board of Tehran University of Medical Sciences. Written informed consent was 
obtained from the parents of all patients involved in the study, granting permission for imaging and participation 
in the research. Furthermore, prior to the viewing of images, we took the precautionary measure of removing all 
sensitive information pertaining to the patients. This was done to guarantee the preservation of their anonymity 
and confidentiality.

Subjects and reference standard diagnosis
We compiled a database of 76 wide-angle posterior retinal images, each of which, relates to different individual 
preterm infants acquired during routine clinical care. Participants in the study were 27 female (35.5%) and 49 
male (64.5%) infants with an average birth weight of 1305 g (SD = 427 g) and an average gestational age of 29.3 
weeks (SD = 3 weeks). The infants were examined in a participating neonatal care unit at Farabi Hospital in Teh-
ran, Iran, between January 1, 2019 and December 30, 2020. The criteria for screening of ROP were established 
based on a published guideline. These criteria include a birth weight (BW) below 2000g, a gestational age (GA) 
of 32 weeks or less, or a determination of ROP risk by the pediatrician or neonatologist24. We excluded all exami-
nations performed on eyes that had undergone prior treatment for ROP and any relevant medical conditions, 
such as respiratory distress syndrome, bronchopulmonary dysplasia or any systemic or ocular disease that could 
affect the retinal examination. Using a wide-angle imaging device (RetCam; Clarity Medical Systems, Pleasanton, 
CA), all images were captured. The image has a resolution of 1200 by 1600 pixels. Three ROP expert observers 
independently categorized selected images as “Plus” or “non-Plus”. A reference standard diagnosis (i.e., Plus or 
non-Plus) was defined for each of the images as the diagnosis provided by the majority of the three experts. In 
order to assess inter-expert and intra-expert reliability, each of the three experts submitted their labeling twice 
over the course of 10 days. The final dataset for this study was intended to contain 76 images, consisting of 37 
non-Plus images and 39 Plus images based on the reference standard.

Image selection and preprocessing
The challenges related to capturing retinal images of infant’s stem from inadequate patient cooperation and 
their limited attention span during the image acquisition process. These factors contribute to the production of 
low-quality images characterized by artifacts such as focusing issues, contrast deficiencies, motion blurring, and 
uneven illumination. Regions with low contrast and/or out of focus areas that lack distinct vessel boundaries 
have a detrimental impact on the segmentation of vessels and the precision of subsequent analysis. In order to 
address the concerns regarding image quality, an expert systematically eliminated low quality images from the 
dataset. In order to obtain a more accurate vessel segmentation, the selected images underwent image enhance-
ments to address issues related to uneven illumination and to enhance the contrast between the vessels and the 
background retina.
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This study focuses on the development of algorithms for the characterization of two main vascular image 
features related to Plus disease, namely the tortuosity and dilation of vessels. The performance of these algorithms 
in distinguishing between subjects with Plus disease and those without Plus disease was evaluated. Additionally, 
we conducted a comparison of the density of vessels in the retinal images to determine if there are any statisti-
cally significant differences between the two groups of subjects in relation to this particular characteristic of the 
vessels. The performance of our algorithms was evaluated through cross-validation using a reference standard. 
The reference standard was determined by aggregating the diagnoses provided by a panel consisting of three 
experts in ROP. In brief, the objectives of our study encompass two main aspects. Firstly, we aim to evaluate the 
variability in diagnosing Plus disease among different experts as well as within individual experts. Secondly, we 
seek to develop a computer-assisted system for detecting Plus disease, with the intention of enhancing diagnostic 
accuracy and enabling quantitative monitoring of treatment progress.

Vessels segmentation
Accurate segmentation of vessels is essential for quantifying their characteristics, such as tortuosity, through 
extracting vessels masks. The majority of existing studies have relied on manual creation of vessels’ masks for 
either the entire retinal image or specific vessel segments. This process involves the use of graphical editing soft-
ware, such as Photoshop, which is both time-consuming and heavily reliant on the operator’s skills and expertise.

In this research, the authors employed a combination of the top-hat transform technique proposed by Sharafi 
et al.25,26 for retinal vessel segmentation, along with a method introduced by Strisciuglio et al.27 that utilizes a 
set of B-COSFIRE filters specifically designed for vessel detection. By integrating these two approaches, the 
researchers successfully generated a vessel mask for each ROP image in an automated manner. In light of the 
aforementioned artifacts observed in ROP images and the imperative need for precise segmentation of vessels 
for subsequent analysis, we have devised a graphical user interface (GUI) aimed at rectifying the inaccuracies 
present in the masks generated through automated segmentation. (supplementary file-1) The segmentation of 
optic discs was also performed using the mentioned GUI. Our team is currently finalizing the development of 
a comprehensive approach that combines various methods to achieve a vessel segmentation pipeline for ROP 
images. This pipeline aims to achieve both high accuracy and full automation. The segmentation of vessels in 
ROP images was thoroughly reviewed by a ROP expert (EKP) in this study.

Quantifying vessels’ tortuosity
Arterial tortuosity plays a crucial role in the international classification system for ROP as it is utilized in the 
diagnosis of Plus disease28. There are several studies in the literature to quantify the tortuosity of vessels as a 
primary characteristic for distinguishing between Plus and non-Plus17,19,22,29.

The utilization of distance-based metrics to quantify the tortuosity of vessels simply involves the computa-
tion of the path length traversed by a vessel segment or curve, which is then divided by the distance between the 
two endpoints of the vessel segment. This methodology is alternatively referred to as the Arc-over-Chord ratio 
which is also commonly denoted as the tortuosity index. Nevertheless, the existing body of literature presents 
alternative approaches for calculating tortuosity that rely on curvature, which yield more precise results. The 
study recently published demonstrates that curvature-based methods exhibit greater consistency and intuitiveness 
compared to the tortuosity index. Additionally, it highlights an inherent limitation in metrics like the tortuosity 
index, which fail to account for the entirety of the geometry30.

To achieve a desired level of accuracy, we employed the squared-derivative-curvature method31, which has 
been widely utilized in previous studies to calculate the tortuosity of retinal vessels. The tortuosity is estimated 
by evaluating the integral of the square of the derivative of curvature, divided by the length of the arc of the 
vessel segment (Eq. 1). In this particular instance, the tortuosity of a perfectly linear segment of a vessel is 
approximated to be 0.

κ is the curvature of the vessel segment. In order to determine the curvature of a vessel segment, the centerline of 
the vessel was obtained by applying morphological thinning to the vessel segment (skeletonizing). This process 
involved iteratively removing pixels from the vessel’s boundary. This operation maintains the topological proper-
ties and does not alter the fundamental structure of the vessel segment. Following the process of skeletonization, 
any spur edges that may have been present as small branches alongside the skeletonized vessel segment were 
effectively removed, resulting in the vessel segment having only two endpoints.

Curvature, denoted as κ, refers to the degree to which a curve deviates from a straight line. Curvature is related 
to the tangent vector at each point on a curve, as will be discussed in more detail. From a geometric standpoint, 
the curvature κ can be precisely characterized as the rate at which the tangent vector to a curve alters its orienta-
tion. In order to determine κ, it is necessary to first represent the skeletonized vessel segment using a continuous 
curve. In order to accomplish this, we estimated the skeletonized vessel segment S in our digital image using 
a cubic spline (a continuously differentiable function defined by piecewise polynomials). If S is represented by 
center line pixels located at coordinates (x1, y1), (x2, y2), …, (xn, yn) the spline is actually an interpolation over 
those coordinates. Nevertheless, when employing all the coordinates in set S for the purpose of interpolation, the 
resultant spline exhibits excessive noise and lacks the desired level of smoothness required to accurately represent 
a segment of a vessel. Consequently, it was necessary to down-sample the initial coordinates and approximate a 
more continuous spline function over the sampled data points.

(1)T =
∫
tn
t0

(

κ ′(t)
)2

Lc
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Assuming that a particle is moving along the spline γ, then both x and y are considered as a function of a time 
variable, t, and the spline γ is described as γ(t) = (x(t), y(t)), where γ(t) represents the position of the particle at 
time t. The curvature κ at point t, i.e. κ (t), can be estimated by Eq. 2, where primes refer to derivatives d/dt with 
respect to the parameter t.

Lc, the curve length, is calculated by the formula given in Eq. 3.

Figure 1 illustrates the sequential procedures employed for the computation of tortuosity in an arteriole 
segment within a retinal image obtained from a patient exhibiting Plus disease. The curvature values along the 
vessel segment are visually represented through a color-coding scheme, where regions with high curvature are 
depicted in red and regions with low curvature are depicted in blue. The first and second devivatives of the final 
spline at selected points are also shown as red and yellow arrows respectively.

Vessel dilation
As previously stated, the expansion of blood vessels, known as vascular dilation, is a characteristic feature of 
Plus disease. To determine the diameter of each vessel segment, we employed the methodology outlined by 

(2)κ(t) =

∣

∣x′(t)y′′(t) - y′(t)x′′(t)
∣

∣

(

x′(t)2 − y′(t)2
)
3
2

(3)Lc =
tn
∫
t0

√

1+

(

y′(t)

x′(t)

)2

Figure 1.   (a) Part of a retinal image and a single arteriole segment depicted on it (b) The curvature values along 
the vessel segment are visually represented through a color-coding scheme, where regions with high curvature 
are depicted in red and regions with low curvature are depicted in blue. (c) Centerline pixels, splines, first and 
second derivative at selected points: ‘.’ Shows the segment’s centerline pixels; ‘o’ shows the points after down-
sampling; Black lines depict the first spline fit that passes through all the original pixels; Color-coded curve: 
spline fit after down-sampling and the curvature values along the spline that are represented through a color-
coding scheme; Red arrows illustrate the first derivative of the spline at the selected points i.e. tangent vectors; 
Yellow arrows: second derivatives of the spline at the selected points i.e. acceleration vectors. Color bar shows 
the color map of the curvature values.
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Sharafi et al.25. A random selection was made of one third of the centerline pixels within the vessel segment. 
For each selected pixel, the shortest line connecting it to the border of the vessel segment was determined and 
considered as the diameter of the vessel segment at that particular pixel. The diameter of the entire vessel seg-
ment was determined by taking the average of the diameter values at the centerline pixels that were selected. 
The diameter index at a specific zone was defined as the maximum diameter among all vessel segments within 
that zone, assuming that the venule has the highest diameter in that zone. Vessel dilation measurements were 
performed for entire field of view and at a distance of 5 disc diameters away from the optic disc, as previously 
documented in the previous studies17,20.

Vessel density
Since ROP is a proliferative retinal vascular disease and Plus disease is characterized by vascular tortuosity and 
dilation, it is hypothesized that the vessel density in Plus disease is greater than that of a healthy retina. The 
density of retinal vessels has been extensively discussed in the academic literature as a potential indicator of 
ROP32–36, particularly in relation to Plus disease35. Therefore, in our study, we investigated the density of ves-
sels as a potential indicator of Plus disease, in addition to evaluating tortuosity and dilation. The calculation of 
vessel density involved determining the ratio of the number of pixels located on the vessels of each image to the 
number of pixels located on the remaining portion of the entire vascularized region. The vascularized region 
was acquired through the application of morphological image dilations on the vessel mask.

Results
Inter‑expert and intra‑expert variability and the expert’s agreement
Cohen’s kappa statistics were computed to evaluate the level of agreement between experts and the consistency 
of grades assigned by a single expert across two separate sessions. Tables 1 and 2 present the levels of inter-expert 
and intra-expert variability, respectively. Table 3 presents the concordance between individual experts and the 
reference standard. The average level of agreement among experts was found to be 79% with a standard deviation 
of 5.3%. In terms of intra-expert agreement, the average was 85% with a standard deviation of 3%.

Feature extraction and features impact
In accordance with the preceding section, a total of 10 features were initially extracted to delineate the attributes 
of tortuosity, dilation, and vessel density. In order to prioritize more discerning characteristics, we employed 
the Neighborhood Component Analysis (NCA) technique for feature selection37. Ultimately, we identified and 
selected five features with greater weights. The selected features and their attributes are presented in Table 4. 
To represent some sample images of our data set and the corresponding features’ values calculated for each of 
the samples, Fig. 2 shows two samples of Plus images and two sample of non-Plus images and their associated 
feature values.

Figure 3 presents a comparison between Plus and non-Plus images with respect to the selected features 
outlined in Table 4. Figure 3a presents a comparison between Plus and non-Plus images in terms of the average 
tortuosity values observed in five vessel segments that exhibit the highest levels of tortuosity within the entire 

Table 1.   Inter-expert agreement.

Expert pairs Kappa Absolute agreement (%)

E1E2 0.7105 85.52

E1E3 0.5816 78.94

E2E3 0.5000 75.00

Table 2.   Intra-expert agreements in two different sessions.

Experts Kappa Absolute agreement (%)

E1E1 0.6344 81.58

E2E2 0.7368 86.84

E3E3 0.7057 86.84

Table 3.   Agreement for individual experts with the reference standard.

Expert vs. reference standard Kappa Absolute agreement (%)

E1R 0.8948 94.74

E2R 0.8158 90.79

E3R 0.6822 84.21
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image (F1). There was a significant difference observed between the measure of Plus images and non-Plus images 
(p ≤ 0.0001). Figure 3b presents a comparison between Plus and non-Plus images in terms of the average tortu-
osity of their vessel segments within a region located 5 diameters away from the optic disc border, referred to 
as 5DD (F2). The tortuosity measure of Plus images exhibited a statistically significant difference compared to 
the non-Plus images (p ≤ 0.0001). Figure 3c presents a comparative analysis between Plus images and non-Plus 
images in relation to feature F3, specifically focusing on the average of the top 1% curvature values. There was a 
significant difference observed between the measure of Plus images and non-Plus images (p ≤ 0.0001). Figure 3d 
presents a comparison between Plus and non-Plus images in terms of the maximum vessel diameter observed 
within the 5DD region (F4). The diameter measurements of Plus images exhibited a significantly greater mag-
nitude compared to non-Plus images (p ≤ 0.0001). Figure 3e presents a comparison of vessel density between 

Table 4.   List of the selected features, description, region of the image that the feature calculated for, and the 
method used to calculate the feature.

Feature category Feature name Description Region Calculation method p value (Bonferroni -corrected)

Tortuosity

F1 Average values of the 5 most tortuous 
segments Entire image Equation 1 < 0.0001

F2 Average tortuosity of all segments 5DD Equation 1 < 0.0001

F3 Average of top 1% curvature values Entire image Equation 2 < 0.0001

Diameter F4 Diameter of the thickest segment 5DD Average diameter at random points along 
each of the vessel segments < 0.0001

Density F5 Ratio of the area occupied by the vessels to 
the rest of the vascularized area Entire image Vascularized area determined by morpho-

logical dilation applied on the vessel mask < 0.0001

Features         Images (a) Plus (b) Plus (c) non-Plus (d) non-Plus
F1 (Tortuosity) 3.82×10

-05
2.24×10

-05
1.58×10

-05
6.79×10

-06

F2 (Tortuosity) 8.59×10
-06

5.20×10
-06

6.08×10
-06

1.81×10
-06

F3 (Curvature) 0.1474 0.1278 0.1220 0.0785

F4 (Diameter) 9.55 11.84 6.399 7.058

F5 (Density) 0.0517 0.0663 0.033 0.0451

Figure 2.   Two samples of Plus images (a and b) and two samples of non-Plus images (c and d) and their 
corresponding feature values.
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Plus images and non-Plus images (F5). The density of vessels in Plus images was significantly greater than that 
in non-Plus images (p ≤ 0.0001).

Image classification
Since three out of the five selected features (i.e. F1, F2, and F3) were in the category of the vessels’ tortuosity and 
they were likely to be correlated, we tried for more dimension reduction by utilizing Principal Component Analy-
sis (PCA) on the selected features. We yielded the best accuracy with the first, second, and third components and 
using them to train an SVM classifier. A radial basis kernel function and the regularization parameter of 1 were 
used for the SVM classification. The performance of our classifier was assessed using a tenfold cross validation. 
We also assessed the accuracy of our classifier in comparison to the accuracy of the diagnosis provided by experts 
for the reference standard. Table 5 displays the diagnostic accuracy of each expert and the proposed method in 
distinguishing Plus images from non-plus images. According to the table, the proposed method achieved an 
accuracy of 0.86 ± 0.01, placing it third among the accuracy values of the expert-provided diagnosis. The accuracy 
values for our classifier were obtained through repetitive execution of tenfold cross-validation. Figure 4 illustrates 
the data points of Plus and non-Plus images in a three-dimensional plane, utilizing the standardized values of 
the first, second, and third principal components of the chosen features.

Figure 5 illustrates an overall view of the proposed method and a schematic of the outputs at each of the stages.

Discussion
Numerous research groups have undertaken investigations into the advancement of computer-based image 
analysis techniques for the purpose of automating the diagnosis of ROP with Plus disease11,14–18,38–42.

(a) (b) (c) (d) (e)

* * * * *

Figure 3.   Comparison of extracted feature values between Plus and non-Plus images (values are standardized). 
(a) Mean tortuosity of the five vessel segments with the greatest tortuosity (F1). (b) The mean tortuosity of all 
vessel segments within a region extending 5 diameters from the OD border (5DD) (F2). (c) The mean of the 
highest 1% of curvature values (F3). (d) The maximum diameter of the vessel in the 5DD region (F4). (e) Vessel 
density determined in the retina’s vascular region (F5). Blue circles represent outlier data values.

Table 5.   Comparison of the accuracy measures of the expert-provided diagnosis and the proposed method’s 
prediction against the reference standard.

Experts/algorithm prediction (ordered by accuracy) Accuracy Sensitivity Specificity PPV NPV

E1 0.94 0.92 0.97 0.97 0.92

E2 0.90 0.89 0.91 0.9210 0.89

Proposed algorithm 0.86 ± 0.01 0.89 ± 0.02 0.83 ± 0.01 0.85 ± 0.02 0.88 ± 0.02

E3 0.84 0.94 0.72 0.78 0.93
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In order to establish an automated system for the detection of ROP, it is necessary to conduct an analysis of 
retinal fundus images and accurately characterize the distinctive features associated with ROP. The identification 
of ROP and more specifically, the presence of Plus disease, can be conceptualized as a classification task within 
the domain of machine learning. Conventional algorithms employ handcrafted features (HC), such as vessel 
dilation and tortuosity, to analyze retinal fundus images and distinguish between Plus disease and pre-Plus/
non-Plus conditions17,19,20,43,44. In contrast, Deep Convolutional Neural Networks (DCNN) possess the ability to 
acquire knowledge of image features from the provided inputs in order to effectively classify labels. DCNNs have 
demonstrated effective utilization in the automated identification of various ocular diseases, including diabetic 
retinopathy, glaucoma, age-related macular degeneration, and retinopathy of prematurity. These findings have 
been reported in multiple studies14,18,21,45–48. DCNN often requires a substantial quantity of high-quality training 
samples that are well-balanced across different labels. However, obtaining such samples in the context of ROP 
can be challenging due to limited patient cooperation and inadequate attention span, particularly in children. 
Additionally, the features acquired by DCNNs lack transparency and interpretability. Therefore, the utilization 
of HC features in the detection of Plus Disease has proven to be effective, both as a standalone method17,22,29 and 
as a means of providing supplementary information for DCNN in image classification tasks16,23.

Figure 4.   Datapoints associated with Plus and non-Plus images depicted by the first, second, and the third 
principal components of the selected features (values are standardized).
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Figure 5.   A Schematic of the proposed method and sample outputs at each stage.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6375  | https://doi.org/10.1038/s41598-024-57072-4

www.nature.com/scientificreports/

In addition to the diagnosis of Plus disease, a significant challenge encountered by experts in the field of ROP 
pertains to the assessment of the efficacy of clinical interventions implemented during patient treatments49–51. 
The quantification of vascular characteristics during therapeutic procedures can provide clinicians with a more 
precise means of monitoring the effects of their interventions on the disease.

Accurate vessel segmentation is crucial for quantifying vessel characteristics, such as tortuosity, by extracting 
vessel masks. Most studies have manually created masks for vessels in retinal images, either for the entire image 
or for specific segments of vessels. This process utilizes graphical editing software, such as Photoshop, which 
requires significant time and relies heavily on the operator’s proficiency and expertise. In the current study we 
utilized a combination of thresholding technique for retinal vessel segmentation, along with a method utilizes 
a set of B-COSFIRE filters designed for vessel detection27. By integrating these two approaches, the researchers 
achieved automated generation of a vessel mask for each ROP fundus image. We built a GUI to correct automated 
segmentation mask inadequacies due to ROP image artifacts and the need for proper vessel segmentation for 
subsequent analysis. Accurate and automated vessel segmentation in ROP fundus images can also serve as a 
dataset for a comprehensive vessel segmentation method using deep learning in our future studies.

This study aimed to develop algorithms for characterizing two primary vascular image features associated 
with Plus disease: vessel tortuosity and dilation. The algorithms were assessed for their ability to differentiate 
between subjects with Plus disease and those without Plus disease. It was demonstrated that the mean tortuosity 
of the five most tortuous vessels exhibited a statistically significant increase in Plus images when compared to 
non-Plus images (p ≤ 0.0001). The analysis revealed that the curvature values derived from points exhibited a 
statistically significant increase in Plus images as compared to non-Plus images (p ≤ 0.0001). A statistically sig-
nificant increase in the greatest diameter of vessels within a zone extending 5-disc diameters away from the edge 
of the optic disc (referred to as 5DD) was observed in Plus images compared to non-Plus images (p ≤ 0.0001). In 
addition to vessel tortuosity and dilation, our method validates the finding by Ataer et al. 26 that the point-based 
curvature values are substantially greater in Plus images than in non-Plus images.

Additionally, we conducted a comparative analysis of vessel density in retinal images to evaluate any statisti-
cally significant differences between the two subject groups in relation to this particular characteristic of blood 
vessels. The density of vessels in Plus images was significantly higher than in non-Plus images (p ≤ 0.0001).

The literature extensively discusses the density of retinal vessels as a potential indicator of ROP, particularly 
Plus disease. The relationship between vessel density and Plus disease remains unclear, as there is limited research 
on this specific aspect. Additionally, the development of Plus disease is influenced by multiple factors, including 
gestational age, birth weight, and the overall health of the infant. The study findings revealed a significant dif-
ference in vessel density between Plus and non-Plus images (p ≤ 0.0001). This finding supports the results of a 
study conducted by Mao et al.35, which demonstrated that patients diagnosed with Plus and pre-Plus exhibited 
significantly higher vessel density compared to the normal group. They also demonstrated a proportional decrease 
in vessel density at 7-, 14-, and 30-days post-treatment. An increase in vessel density was observed in a study con-
ducted on a mouse model of oxygen-induced retinopathy (OIR)32. However, our findings contradict other studies 
that did not observe a significant increase in vessel density between the ROP group and the normal group33,34.

We trained an SVM classifier using the extracted features to distinguish between Plus and non-Plus images. 
We evaluated the performance of our algorithms using cross-validation and a reference standard. The reference 
standard was determined through the integration of the diagnoses given by a panel consisting of three experts 
in ROP. The classifier’s accuracy in distinguishing between Plus and non-Plus images, as determined through 
tenfold cross-validation, was 0.86 ± 0.01. The observed accuracy was higher than that one of the three experts 
in comparison to the reference standard.

There is considerable variation in the classification of Plus disease by experts in ROP. This variation arises 
from differences in the thresholds used by experts to determine the extent of vascular abnormality necessary 
to diagnose Plus and pre-Plus disease. This finding has significant implications for ROP studies, instruction, 
and patient care. It indicates that a continuous ROP Plus disease severity score could provide a more accurate 
representation of expert ROP clinicians’ assessments and potentially improve the standardization of classifica-
tion in the future52.

The Images and Informatics in ROP(i-ROP) deep learning (DL) algorithm (i-ROP) is a well-known AI tool 
used to measure vascular changes in the posterior pole in cases of ROP. Multiple studies on ROP screening have 
shown that the i-ROP algorithm can effectively detect Plus disease, similar to human ROP experts. This suggests 
that the algorithm has the potential to identify cases of ROP reactivation that require retreatment. The i-ROP DL 
system’s output can be converted into a vascular severity score (VSS) that represents the range of Plus disease. 
This score has proven to be valuable for primary ROP screening, tracking disease progression, and evaluating 
treatment response15,16,49,50,53–56.

The study demonstrated the utility of VSS in both primary and secondary ROP screening, including the 
screening for ROP reactivation following anti-VEGF treatment51.

Infants diagnosed with ROP in developing countries tend to have higher birth weights and older gestational 
ages compared to those in developed countries. As a result, broader screening guidelines have been implemented 
in low- and middle-income countries, leading to a larger population at risk for ROP in these regions57. The rise in 
screening burden poses a particular challenge due to the relatively lower number of ophthalmologists per capita 
in comparison to higher-income nations. The current study, aimed to develop a computer-assisted system for 
detecting Plus disease in Iran as a low-income country, with the goal of improving diagnostic accuracy and facili-
tating quantitative monitoring of treatment progress. This study quantified the characteristics of vessels in ROP 
images, focusing on tortuosity, dilation, and density. These measurements were used for primary Plus disease 
screening and could be useful for future studies on screening for ROP reactivation after anti-VEGF treatment.

This study has a number of limitations. Firstly, the dataset used in this study had a limited number of ROP 
fundus images, which may have influenced the performance of the model. Secondly, the fundus images were 
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collected from a single clinical site with consistent device settings and population characteristics, which could 
have reduced the diversity of the data and affected the algorithm’s ability to generalize to other populations. Lastly, 
while a cross-validation method was employed to enhance generalizability, further validation using independent 
images is necessary for future research.

Future studies should aim to obtain larger datasets of ROP images in order to validate and optimize our system 
within the clinical setting. Additionally, it may be necessary to conduct additional testing and optimization of the 
sensitivity metric in order to minimize the occurrence of false-negative results. Additional studies are required to 
validate this automated system and enhance its practicality for real-world clinical applications by incorporating 
datasets from multiple clinical centers and larger patient cohorts.

In conclusion, the algorithm used in this study showed high accuracy in detecting Plus disease in cases of 
retinopathy of prematurity, performing similarly to expert diagnoses. By objectively analyzing vessel charac-
teristics, it is possible to quantitatively assess the features of disease progression. The automated system has the 
potential to improve physicians’ ability to diagnose Plus disease, making valuable contributions to the manage-
ment of ROP by integrating traditional ophthalmoscopy and image-based telemedicine methods.

Data availability
The datasets developed and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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