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Enhancing scanning electron 
microscopy imaging quality 
of weakly conductive samples 
through unsupervised learning
Xin Gao 1,2, Tao Huang 1,2, Ping Tang 1, Jianglei Di 1, Liyun Zhong 1 & Weina Zhang 1*

Scanning electron microscopy (SEM) is a crucial tool for analyzing submicron-scale structures. 
However, the attainment of high-quality SEM images is contingent upon the high conductivity of the 
material due to constraints imposed by its imaging principles. For weakly conductive materials or 
structures induced by intrinsic properties or organic doping, the SEM imaging quality is significantly 
compromised, thereby impeding the accuracy of subsequent structure-related analyses. Moreover, 
the unavailability of paired high–low quality images in this context renders the supervised-based 
image processing methods ineffective in addressing this challenge. Here, an unsupervised method 
based on Cycle-consistent Generative Adversarial Network (CycleGAN) was proposed to enhance the 
quality of SEM images for weakly conductive samples. The unsupervised model can perform end-to-
end learning using unpaired blurred and clear SEM images from weakly and well-conductive samples, 
respectively. To address the requirements of material structure analysis, an edge loss function was 
further introduced to recover finer details in the network-generated images. Various quantitative 
evaluations substantiate the efficacy of the proposed method in SEM image quality improvement with 
better performance than the traditional methods. Our framework broadens the application of artificial 
intelligence in materials analysis, holding significant implications in fields such as materials science 
and image restoration.

Due to its exceptional sub-nanometer resolution and large depth of field, scanning electron microscopy (SEM) 
has emerged as a crucial tool for morphological characterization at the submicron  scale1, and it is widely used 
in materials  science2,  biomedicine3,  chemistry4 and so on. SEM generates high-resolution images by focusing an 
electron beam onto the sample surface and detecting the emitted secondary electrons. Therefore, a prerequisite 
for obtaining high-resolution and high-quality SEM images is the high conductivity of  samples5. Weakly con-
ductive samples, such as most polymers and some semiconductor materials, often exhibit an excess of electrons 
or free charges on their surface, which impedes the transmission of electronic signals, resulting in a significant 
reduction in imaging contrast and clarity. Besides, organic contamination introduced during material synthesis 
or processing can also diminish the electrical conductivity of the  samples6,7. Subject to the electron beam, the 
organic matter decomposes into carbon-hydrogen compounds and covers the sample surface. This will lead to 
the charge accumulation and thus diminish the quality of SEM  imaging8,9. To improve the sample conductivity, a 
common method is coating the sample surface with a gold film through vacuum  sputtering10. However, the gold 
layer will cover the original material information, resulting in a reduction in elemental contrast for the mate-
rial. For samples at the scale of hundreds of nanometers or even smaller, the gold layer will obscure the details 
of the sample structure, leading to a misrepresentation of surface structures. Additionally, gold-coated samples 
are generally non-reusable, increasing experimental costs and operational complexities. Therefore, there is an 
urgent need for a method that can quickly, conveniently, and effectively improve the SEM imaging quality of 
weakly conductive samples without contaminating or damaging the sample.

With the advancement of computational imaging, image post-processing provides another avenue for enhanc-
ing SEM imaging quality. Traditional methods such as  linear11 or nonlinear  filters12,13 recover sharp images 
from blurred images by deconvolution methods. They are mostly achieved by simplifying and modeling the 
principles of blurring, and then utilizing prior information from the images to restore the blurred images. 
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However, in practical situations, the types of blurring are more complex than those modeled. At the same time, 
iterative calculation of the blur kernel requires a significant amount of time. Compared to traditional methods, 
neural networks can automatically learn the blur kernel without the need for manual design, and they exhibit 
faster computational  speeds14–20. Therefore, deep learning-based methods have been widely applied to enhance 
micrograph quality, such as image  deblurring21–24 and super-resolution25–29. For SEM images, Haan et al.30 used 
a Generative Adversarial Network (GAN) to increase the resolution of SEM images by two fold. Juwon et al. 
proposed a multi-scale network for deblurring defocused SEM images, achieving superior performance com-
pared to traditional  methods31. Although deep learning has achieved significant advancements in SEM imaging 
improvement, the existing studies primarily rely on supervised learning, which requires paired data containing 
both blurred and clean images for network training. However, in practical scenarios involving weakly conductive 
samples, it is challenging to obtain one-to-one corresponding SEM images with both blurred and clear versions 
under the same field of view. Hence, there is a pressing need for an unsupervised learning approach that can 
perform image deblurring without relying on paired data training.

In recent years, the characteristics of Cycle-consistent Generative Adversarial Network (CycleGAN) unpaired 
training make unsupervised learning  possible32, and demonstrate comparable performance to supervised meth-
ods. This framework has been successfully applied to enhance the quality of  natural33,34,  satellite35, and fluo-
rescence microscopic  images36–38. Here, we propose an unsupervised learning-based approach to improve the 
quality of SEM images captured from weakly conductive samples. The proposed method employs the CycleGAN 
architecture to learn from unpaired data consisting of blurry and clear SEM images in an end-to-end manner. 
An additional edge loss function was introduced into the CycleGAN model to address the requirements of mate-
rial structure analysis, helping eliminate artifacts and restore detailed information about the material contours. 
Multiple image evaluation metrics demonstrated that the improved CycleGAN model can effectively enhance 
the SEM image quality of various weakly conductive samples without any complicated physical operations.

Principle and network analysis
The overall framework of our method is shown in Fig. 1a, which is inspired by CycleGAN. It consists of two 
generators (G and F) and two discriminators ( DA and DB ). A and B represent the blurred and clear image sets, 
respectively, and no pre-aligned image pairs are required in the two image collections. Generator G aims to 
translate the blurred image A to a clear one G(A). The discriminator DB determines whether G(A) is a real or 
generated clear image. Generator F aims to translate the clear image B to a blurred one F(B). The discrimina-
tor DA determines whether F(B) is a real or generated blurred image. These generators and discriminators are 
trained using adversarial loss ( LGAN ), which allows the generator to complete the conversion between differ-
ent image domains. To address the gradient vanishing problem and generate high-quality images, the LGAN 
employed least squares loss instead of cross-entropy loss. The cycle-consistency loss ( LGAN ) is imposed to make 
the cycle-generated images as close to the input images as possible. Here, the Structure Similarity Index Measure 
(SSIM)39 loss is used as the Lcycle , which can measure the similarity between the initial input images A and B and 
the corresponding cyclic images F(G(A)) and G(F(B)) output by two generators in terms of brightness, contrast, 
and structure. The utilization of LGAN and Lcycle allow the network to be trained with unpaired data. In addition, 
blurred image A and clear image B are input into generators F and G to construct identity loss ( Lid ) and edge loss 
( Ledge ), respectively. The Lid is used to ensure that the information from the original input image is retained. The 
Ledge utilizes the Sobel operator to extract image edge information and preserves the edge detail information of 
the image. This is necessary because just using the weak constraint introduced by cycle consistency is prone to 
generate noise artifacts and structural distortion in the output images when our datasets consist of SEM images 
of various materials with different morphologies. The equations for the loss functions can be seen in Method. The 
generators G and F are trained simultaneously to learn the mapping relationship between the two image domains.

Figure 1b and c show the structure of the generator and discriminator, respectively. We designed a Unet 
network structure with multi-scale convolution as our generator, which was inspired by inception  blocks21 and 
 Unet40. The designed generator has 8 convolution layers and 8 deconvolution layers. Each convolution layer is 
followed by an instance norm and an activation function (leaky ReLU). Except for the stride size of the eighth 
convolution layer and the first deconvolution layer is 1, the other convolution stride sizes are 2. In addition, 
there are 14 Multi blocks, whose structure is shown in the inset in Fig. 1b. Multi block can enhance image edge 
features by using multi-scale convolution, to better recover image details. Each Multi block consists of 1 × 1 con-
volution kernels and 3 × 3 convolution kernels, and all convolution stride sizes are 1. Skip connections are used 
in the middle to fuse information at different scales. The discriminator shown in Fig. 1c was implemented in a 
full convolution manner. 5 convolution layers were used in the discriminator. Except for the last convolutional 
layer, each convolution layer was followed by an instance norm and an activation function (leaky ReLU). Except 
the stride size of the first three convolution layers is 2, the other convolution stride sizes are 1.

Verification and analysis of experimental results
Results on the simulated dataset
It is impossible to quantitatively characterize the performance of the model in image enhancement without paired 
samples. Here, to quantitatively evaluate the effectiveness of the proposed model, the simulated dataset was 
created comprising pairs of blurred and clear images. Clean SEM images were selected as ground truth and the 
corresponding low-quality SEM images were synthesized by introducing blur. In response to the weak intrinsic 
conductivity of the material and the scenario of organic compound doping, three simulated blurry datasets A, 
B, C were constructed by applying Gaussian blur, Gaussian blur and synthetic fog, hybrid blur (including Gauss-
ian blur, motion blur, out-of-focus blur) and synthetic fog on the clear SEM images, respectively. Figure 2a–c is 
obtained separately from these three simulated datasets. The kernel size and standard deviation σ of the Gaussian 
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blur were set as 7 × 7 and 1, respectively(detailed information seen in Methods). σ = 1 is the level of blurriness 
that typically occurs in practice. And in practical applications, pixels beyond approximately 3 σ distance can be 
considered negligible for the calculation results. Hence, image processing programs only need to compute a (6σ
+1)×(6σ+1) matrix to ensure the relevant pixel influence. The matrix is the Gaussian blur kernel, whose size was 
set as 7 × 7 in our work. The synthetic fog refers to fogging an image to reduce its quality. The degree of fogging 
is random at different positions in the image(detailed information seen in Methods). Blurry and clear datasets 
were randomly shuffled to achieve unpaired data training. For comparison, the CycleGAN and the traditional 
methods such as blind deconvolution (Blind Deconv for short)41 and Wiener filtering algorithm (Wiener for 
short)42, were applied to enhance the quality of the simulated blurred images. 10 iterations were set for blind 
deconvolution. The results are shown in Fig. 2. It can be seen that, for all types of blurry images, CycleGAN 
demonstrates superior image restoration performance, improving the clarity and contrast of images to approach 
the ground truth. In contrast, traditional methods such as blind deconvolution and Wiener filtering show poorer 
performance in handling images with unknown blurry kernels, and it is difficult to recover the contrast and clarity 
of blurry images that have been modified with added synthetic fog and Gaussian blur.

To quantitatively evaluate the deblurring results,  SSIM39 and Peak Signal-to-Noise Ratio (PSNR)43 metrics are 
employed and the average values on the test datasets are shown in Table 1. SSIM measures the image structure 
similarity by comparing the brightness and contrast between the two images. PSNR is the ratio of the maximum 
power of the image signal to the noise power (detailed equations seen in Methods). The value range of SSIM is 
between 0 and 1, where 1 indicates perfect similarity between two images, 0 indicates no similarity. The value 
range of PSNR is between 0 and infinity, where higher values indicate better image quality. The results show that 
our method achieves higher SSIM and PSNR scores relative to the traditional methods, especially in datasets B 
and C, indicating the effectiveness of CycleGAN in improving the SEM imaging quality of weakly conductive 
samples. To further demonstrate the superiority of the proposed CycleGAN, two other traditional methods, the 
Richardson–Lucy (RL)  algorithm44 and constrained least squares (CLS) filter  algorithm45, have been added for 
comparison and the results are shown in Supplementary Fig. S1 and Table S1. It can be seen that the performance 
of the proposed CycleGAN surpasses traditional methods significantly.

Figure 1.  (a) Schematic of the overall architecture. The proposed method consists of two generators (G 
and F) and two discriminators ( DA and DB ). The generator G predicts clean images from blurred image A, 
Discriminator DA attempts to distinguish between the real clear image and the generated clear image. The 
generator F predicts a blurred image from clean image A, and the discriminator DB attempts to distinguish 
between the real blurred image and the generated blurred image. Loss functions include adversarial loss ( LGAN ), 
cyclic consistency loss ( Lcycle ), identity loss ( Lid ), and edge loss ( Ledge ). (b) The generator network structure. 
Numbers below each layer represent the number of channels. (c) The discriminator network structure.
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To visually and comprehensively demonstrate the deblurring effects of each model, three no-reference image 
quality evaluation metrics, Average gradient (AG)46, Contrast (CON)47, and Spatial frequency (SF)48, were also 
used to evaluate the results in Fig. 2 and Supplementary Fig. S1. AG is the average value of the image gradient. 
CON measures the contrast of the image by the gray difference between adjacent pixels and the pixel distribution 
probability. SF reflects the change rate of the image grayscale, which is used to measure the overall activity level 
of an image. The values of AG, CON, and SF are numbers greater than or equal to zero but have no upper limit, 
the larger the values, the clearer the image. Further details on the image quality evaluation metrics are presented 
in the “Methods” section. As shown in Table 2 and Supplementary Table S2, the CycleGAN model achieved the 
maximum values for the three metrics, which were closest to the ground truth, indicating that the CycleGAN 
model can effectively improve image sharpness and highlight image details. Conversely, traditional methods had 
poor performance on the image restoration, especially in cases involving complex blur.

Results on the real dataset
To evaluate the deblurring capability of our model in real data, the model was trained and tested on the real 
dataset. The real dataset consists of unmatched clear and blurry SEM images obtained from experiments. Clear 
SEM images are obtained by SEM imaging of materials with good conductivity. The blurry images are obtained 

Figure 2.  Deblurring results of different models on simulated datasets. The material in the SEM images is iron 
chloride. (a) Deblurring results for data with Gaussian blur only. (b) Deblurring results for data with Gaussian 
blur and synthetic fog. (c) Deblurring results for data with synthetic fog and hybrid blur (Gaussian blur, motion 
blur, out-of-focus blur).
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by SEM imaging of the above materials after introducing organic contamination. Figure 3 and Supplementary 
Fig. S2 show the SEM image deblurring results of various models on different samples. The materials shown 
in Fig. 3a–c were tungsten trioxide ( WO3 ) and copper sulfide (CuS), respectively. Subjectively, compared with 
the traditional methods, the recovered images obtained by our method have clearer edges, better contrast, and 
richer details. Objectively, the recovered images were evaluated by the no-reference image quality evaluation 
metrics, and the results are shown in Table 3 and Supplementary Table S3. It can be seen that the recovered 
images obtained by the CycleGAN model achieve the maximum values for all metrics, consistent with the results 
obtained from the simulated dataset. These results indicate that the CycleGAN model used here has stable per-
formance on images of different materials and can adapt to different degrees and types of blurriness, enhancing 
image detail information and clarity.

In addition to weakly conducting samples obtained by adding organic contaminants, we also verified the 
effectiveness of our method on SEM images of weakly conducting material that has not been trained by a net-
work. Figure 4a shows the SEM image of silicon dioxide ( SiO2 ) particles. Due to its intrinsic weak conductivity, 
the high-magnification SEM image of SiO2 has low imaging quality which is not clear and the edges are blurred. 
After processing with the CycleGAN model, the image quality has significantly improved, and the particle edges 
are clearer (Fig. 4b). The rise in numerical values for multiple evaluation metrics further confirms this conclusion 
(Table 4). Therefore, our method can effectively improve the SEM imaging quality of weakly conductive materials.

Edge Loss
As SEM images of micro-nano scale materials often exhibit rich edge details, an additional edge loss was incor-
porated when constructing the network. Here, the effects of the edge loss on the recovered images were inves-
tigated. As a crucial parameter, the value of edge loss weight γ directly influences the quality of the generated 
images. If γ is too small, the generator tends to produce artifacts in the output. Conversely, if γ is too large, the 
generator prioritizes maintaining the input image, leading to a decrease in quality. The value of γ in our model 
was determined through quantitative evaluation of synthetic data, as shown in Fig. 5a. As γ increases from 0 to 
20, the SSIM and PSNR values increase first and then decrease. Both reach their maximum values simultaneously 
when γ is 10. Based on this, the value of γ in our model was set as 10.

To further validate the effectiveness of the edge loss, the blurry SEM images were processed by the CycleGAN 
model with and without edge loss, as shown in Fig. 5b. Compared to the original image, both models enhanced 
the clarity and contrast of the images. However, the model without edge loss resulted in obvious artifacts on the 
edge of the material. The model with edge loss could maintain the edge details of the material, thus confirming 
the effectiveness of our edge loss. Furthermore, experiments were performed using the other operator as edge 
loss. Supplementary Fig. S3 and Table. S4 show that both Kirsch and Sobel operators can effectively restore the 

Figure 3.  Deblurring results of different models on real datasets. The materials in SEM images were tungsten 
trioxide ( WO3 ) (a, c) and copper sulfide (CuS) (b).
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Figure 4.  Deblurring results on SiO2 SEM images. (a) Original SEM image. (b) Recovered image by the 
CycleGAN.

Figure 5.  (a) Quantitative comparison results of different γ values on synthetic data. (b) Deblurring results on 
real data by CycleGAN with and without edge loss. The materials in SEM images are CuS.
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Table 1.  Average SSIM and PSNR of the simulated datasets, and the best results are shown in bold. A 
represents the dataset that only adds Gaussian blur. B represents the dataset that adds Gaussian blur and the 
synthetic fog. C represents the dataset that adds hybrid blur (Gaussian blur, motion blur, out-of-focus blur) 
and the synthetic fog.

Dataset Metrics

Methods

Blurry Blind Deconv Wiener CycleGAN

A
SSIM 0.906 0.901 0.918 0.929

PSNR (dB) 26.97 27.52 27.92 29.77

B
SSIM 0.861 0.796 0.845 0.886

PSNR (dB) 25.99 21.73 24.36 27.96

C
SSIM 0.771 0.793 0.765 0.798

PSNR (dB) 22.07 21.58 22.24 24.27

Table 2.  No-reference evaluation indexes values performed on Fig. 2. The best recovery results of the three 
methods are shown in bold.

Image Metrics

Methods

Blurry Blind Deconv Wiener CycleGAN Ground truth

a

AG 3.69 4.34 4.40 6.58 7.37

CON 30.69 42.09 44.53 91.95 98.59

SF 7.78 8.91 9.29 13.47 13.92

b

AG 0.41 0.79 0.52 6.28 7.37

CON 0.45 1.07 0.64 83.70 98.59

SF 0.94 1.45 1.12 12.85 13.92

c

AG 0.35 0.59 0.41 6.30 7.37

CON 0.32 0.73 0.41 82.01 98.59

SF 0.80 1.19 0.89 12.71 13.92

Table 3.  No-reference evaluation indexes values performed on Fig. 3 The best results are shown in bold.

Image Metrics

Methods

Blurry Blind Deconv Wiener CycleGAN

a

AG 3.11 4.54 2.79 5.81

CON 13.85 33.95 14.38 74.57

SF 5.23 7.77 5.31 12.1

b

AG 10.40 10.75 9.40 11.06

CON 157.9 178.88 142.76 202.73

SF 17.64 18.79 16.69 20.01

c

AG 2.89 3.93 3.05 5.02

CON 14.25 28.15 20.75 54.02

SF 5.30 7.45 6.32 10.29

Table 4.  No-reference evaluation indexes values performed on Fig. 4.

Methods

Metrics

AG CON SF

Blurry 2.41 8.08 4.01

CycleGAN 3.08 37.16 8.53
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edge information of the image. The results demonstrated the validity of adding edge loss. Compared to multiple 
operators, the Sobel operator performs well and has low computational complexity, making it particularly suit-
able for our task.

Conclusions
In summary, an unsupervised method based on CycleGAN was proposed to enhance the SEM imaging quality 
for weakly conductive samples. In the case of unknown blurry kernels and the absence of paired datasets, the 
proposed method effectively improves the quality of various blurry SEM images, including the restoration of 
image details, contrast, and improvement of clarity. The performance surpasses traditional methods significantly. 
In comparison to the reported CycleGAN architectures, we introduced an additional edge loss function tailored 
to material analysis needs, resulting in the removal of artifacts and restoring material contour details. As far as we 
know, this is the first application of unsupervised learning in improving SEM image quality. We believe that the 
work contributes to the expansion of artificial intelligence applications in materials science and has significant 
importance for material analysis.

Methods
Image quality metrics
AG is defined as follows:

where f(x, y) is pixel intensity of the image at (x, y), which is grayscale value in our work.
CON is defined as follows:

where δ is grayness difference between adjacent pixels, Pδ is the pixel distribution probability.
SF is defined as follows:

where RF and CF are row frequency and column frequency respectively:

SSIM can be expressed as follows:

where µ and σ are the mean and standard deviation of the images at pixel i over the 11 × 11 Gaussian filter, 
respectively. C1 and C2 are non-zero constants introduced to avoid the denominator from being 0. Usually, the 
C1 and C2 are much less than 1. We set the values of C1 and C2 as 0.0001 and 0.0004, respectively.

PSNR is defined as follows:

max(I) is the maximum pixel value, which is equal to 1 for normalized images. MSE is the mean squared error 
difference between the two images.

Loss function
The adversarial loss ( LGAN ) for generator G and the discriminator DB is specified as follows:
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where A and B are unpaired blurred and clear images, a ∈ A, b ∈ B. Similarly, the LGAN for generator F and the 
discriminator DA is specifically as follows:

The cycle consistency loss ( Lcyle ) is as follows:

Mean-squared error function(MSE) was used as the identity loss ( Lid ) which was imposed on both generators 
G and F, as shown below:

The edge loss ( Ledge ) can be expressed as follow:

The Sobel operators in the x and y directions are:

Our final loss is defined as the weighted sum of the above four losses:

where coefficients �1 , �2 , and γ are the weights of cycle consistency loss, identity loss, and edge loss, respectively. 
The weight size determines the influence of different losses on the overall loss function. The values of �1 , �2 , and 
γ were empirically determined as 10, 5, and 10, respectively.

Experimental settings
The proposed model was trained using the TensorFlow framework on an NVIDIA GeForce RTX 3090. Based on 
the computer hardware used, each experimental model was trained for 50 epochs with a batch size of 1. Adam 
Optimizer was used to optimize the gradients with a learning rate of 0.0001. The image size was set to a fixed 
resolution of 256 × 256 pixels for input to the network during training. All the images were acquired on the 
Hitachi SU8010 SEM that was used with a 5 kV accelerating voltage.

Synthesis dataset: Three synthetic datasets were created. The first dataset only adds Gaussian blur. Gaussian 
blur is an image blurring filter that uses the Gaussian distribution to calculate the transformation of each pixel 
in the image. In two-dimensional space, it is defined as:

where σ is the standard deviation of the function, which controls the radial range of the function. The second 
dataset adds a random concentration synthetic fog and Gaussian blur. The formation of a foggy image can be 
formulated as follows:

where I(x, y) and f(x, y) refer to the foggy and original image, respectively. β is the scattering coefficient, the d is 
the depth of field, and the A controls the light intensity. The β is randomly chosen in the range of [1.5- 2.5], d is 
1, and the A is 3. The third dataset adds hybrid blur (Gaussian blur, motion blur, out-of-focus blur), and synthetic 
fog. The motion blur can be expressed as follows:

where the θ is the motion blur angle and the d is the motion blur length. The θ = 0 ◦ and d = 10 pixels. The out-
of-focus blur caused by a system with a circular aperture can be modeled as a uniform disk with a radius r:
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where the r is 5. The parameters of the applied Gaussian blur for all datasets were the kernel size and standard 
deviation, which were set as 7 × 7 and 1, respectively. After data expansion, we obtained 2550 pairs of 256×256 
images, 10% of which were used for testing. During training, blurry and clear data sets were randomly shuffled 
to achieve unpaired data training.

Real dataset: We deliberately contaminated the samples to obtain blurry SEM images of weakly conductive 
samples, and collected SEM images of normal samples as clear images. After data expansion, we obtained 1550 
pairs of 256 × 256 pixel size images, of which 10% were used for testing.

Data availability
The data used in this study are available upon request to the corresponding author.
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