
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports

Effective social spider optimization
algorithms for distributed
assembly permutation flowshop
scheduling problem in automobile
manufacturing supply chain
Weiwei Zhang 1, Jianhua Hao 2* & Fangai Liu 2

This paper presents a novel distributed assembly permutation flowshop scheduling problem (DAPFSP)
based on practical problems in automobile production. Different from the existing research on
DAPFSP, this study considers that each component of the final product is composed of more than
one part. Components are processed in a set of identical components manufacturing factories and are
assembled into products in the assembly factory. The integration of manufacturing processes is an
important objective of Industry 4.0. For solving this problem with the minimum makespan criterion,
we introduce a three-level representation and a novel initialization method. To enhance the search
ability of the proposed algorithms, we design three local search methods and two restart procedures
according to characteristics of the problem. Then, by incorporating the problem specific knowledge
with the social spider optimization algorithm (SSO), we propose three SSO variants: the SSO with
hybrid local search strategies (HSSO), the HSSO with restart procedures (HSSOR), and the HSSOR
with self-adaptive selection probability (HSSORP). Finally, 810 extended instances based on the
famous instances are used to test the proposed algorithms. In most cases, HSSOR performs the best,
with an average comparison metric value of 0.158% across three termination conditions, while the
average comparison metric value for the best comparison method is 2.446%, which is 15.481 times
that of HSSOR. Numerical results demonstrate that the proposed algorithms can solve the problem
efficiently.

Assembly production systems are widely used in various industries, e.g., in electronic, construction machinery,
automobile and auto parts industries. In order to boost the production efficiency of assembly systems, researchers
and industrial engineers have paid great attention to it in the past decades. The assembly flowshop scheduling
problem (AFSP) was firstly presented by Lee et al.1 Later, Potts et al.2 illustrated the two-stage assembly flowshop
problem (TSAFSP) according to the production of personal computers and proved that the general version of
the considered problem is NP-hard. Koulamas and Kyparisis3 introduced the three-stage assembly flowshop
scheduling problem taking the immediate transportation operation into consideration. Due to the practicality
and complexity of AFSP, many literatures have conducted deep researches to it4–10.

Recently, with the trend of globalization in the manufacture, considerable attention is paid to distributed
flowshop scheduling problems since Naderi’s innovative paper11. Later, Hatami et al.12,13 first introduced the
distributed assembly permutation flowshop scheduling problem (DAPFSP) and proposed effective algorithms
to study the modern supply chain. DAPFSP is composed by two stages: component processing and assembly. In
the first stage, components are processed in several factories with the identical equipment. The latter stage is to
assemble components processed in the first stage into products. As the widespread use of DAPFSP in modern
supply chains and the NP-hardness of large-scale DAPFSP, many researchers investigated it in depth and pro-
posed heuristics to achieve near-optimum solutions within reasonable time. Harami, Ruiz and Andres-Romano14
studied DAPFSP with sequence dependent setup times and developed two constructive heuristics to obtain
efficient initial solutions. Li et al.15 employed the genetic algorithm (GA) for the DAPFSP, which combining an
improved crossover strategy and three novel local search strategies. Wang, Zhang and Liu16 incorporated the

OPEN

1School of Science, Shandong Jiaotong University, Jinan 250357, China. 2School of Information Science and
Engineering, Shandong Normal University, Jinan 250014, China. *email: haojianhua07@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57044-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

variable neighborhood search (VNS) into the memetic algorithm (MA) for the DAPFSP with the makespan crite-
rion. Moreover, Deng et al.17 propose a competitive memetic algorithm for the distributed TSAFSP (DTSAFSP).
Lin and Zhang18 hybridized the biogeography-based optimization (BBO) algorithm with several heuristics to
minimize the makespan of the DAPFSP. A novel estimation of distribution algorithm based memetic algorithm
(EDAMA) was developed by Wang and Wang19 to minimize the makespan of DAPFSP. Lin, Wang and Li20
proposed the backtracking search hyper-heuristic (BS-HH) to figure out the DAPFSP. The effectiveness of BBO,
EDAMA and BS-HH was demonstrated on the benchmark instances generated by Hatami et al.12. In addition,
Gonzalez-Neira et al.21 considered the DAPFSP with stochastic processing times. More recently, several papers
carried further research on the DAPFSP. Ruiz, Pan and Naderi22 proposed iterated greedy (IG) methods for the
DAPFSP with makespan criterion. Ferone et al.23 developed a biased-randomized iterated local search for the
same problem. Pan et al.24 presented an extension of the DAPFSP and proposed effective heuristics to solve the
considered scheduling problem. Recently, Sang et al.25 studied the DAPFSP proposed by Pan et al.24 with the total
flowtime criterion and proposed three diffident discrete invasive weed optimization (DIWO).

Studies in DAPFSP suppose that each component of the final product consists of only one part but one
component could be more complicated and composed of several parts in the practical production. Meanwhile,
with the trend of production specialization and internationalization, one factory generally does not engage in
all stages of production from raw materials to final products, and the production of semi-finished products is
usually completed by other factories. In many practical production scenarios, especially in the automobile pro-
duction process, one semi-finished product is usually a large-sized component composed of many small parts.
For example, in automotive enterprises such as Anhui Jianghuai Automobile Co., Ltd and Jiangling Motors
Corporate of China, components from other manufacturers are added to the truck frame on the final assembly
line, such as the engine24, the axle, the transmission shaft, and so on. Each of these large-sized components is
composed of some small parts and can be considered as semi-finished products produced by other components
manufacturing factories. To the best of our knowledge, there is no study on DAPFSP considering that each
component of the final product is composed of several parts, but this problem exists in practical production. For
this problem, efficient scheduling can improve the production efficiency of enterprises, reduce resource waste
and pollutant emissions, and help enterprises achieve green production. Therefore, this paper considers the
practical situation in the automobile manufacturing supply chain and addresses a novel DAPFSP based on the
innovative work of Hatami et al.12,13 and Pan et al.24. There are several optimization objectives in the flowshop
scheduling problem26,27, such as total flow time, total waiting time, makespan, and weighted flow time. This
paper aims to minimize makespan of the proposed problem due to the time of delivery is an important content
in trade contracts. It has been proved that minimizing makespan of DAPFSP is NP-hard, hence, the presented
problem is NP-hard because of more complexity.

Over recent years, various meta-heuristics have been proposed and applied to solve production schedul-
ing problems, such as genetic algorithm (GA)28, particle swarm optimization (PSO)29–31, artificial bee colony
(ABC)32–34, firefly algorithm (FA)35,36, grey wolf optimizer (GWO)37,38, whale optimization algorithm (WOA)39–42,
migrating birds optimization algorithm (MBO)43, and so on. Recently, the social spider optimization (SSO),
inspired by the cooperative behavior of spiders, is an emerging and excellent swarm intelligent algorithm. The
SSO was first proposed by Cuevas and Cienfuegos44 for solving constrained optimization problems. To enhance
the search ability of SSO, Klein et al.45 introduced a modified SSO and applied it to electromagnetic optimiza-
tion. Nguyen46 presented a novel improved SSO (NISSO) for optimal power flow problem. Zhang and Xing47
developed a memetic SSO (MSSO) for the distributed TSAFSP. Inspired by many successful applications of SSO,
we adopt SSO to solve the DAPFSP proposed in this paper.

Considering the complexity of the proposed DAPFSP in this paper, we introduce a three-level representa-
tion and present three shift operators for it. According to the three shift operators, three local search methods
are designed respectively. Two restart procedures are presented to maintain the diversity of the population and
avoid premature convergence. We combine the problem specific knowledge with the SSO and propose three SSO
variants. Experimental results based on 810 extended instances demonstrate the effectiveness of our algorithms.

The remainder of our paper is organized as follows. “Problem definition and formulation” section illustrates
the proposed DAPFSP in this paper and formulates the proposed problem with makespan criterion. “The canoni-
cal SSO algorithm” section shows the concept and theory of SSO. “The proposed three social spider optimization
algorithms” section reports three variants of SSO in detail. In “Experiment analyses” section, we conduct experi-
ments and analyze the results. Finally, “Conclusions” section details conclusions and our future research work.

Problem definition and formulation
Problem definition
This section briefly illustrates the presented DAPFSP similar to examples reported by Hatami et al.12 and Pan
et al.24. There are one assembly factory and a set of F identical components manufacturing factories (See in
Fig. 1). Under the Make-To-Order (MTO) mode of automobile production, the customer places an order for H
products to the assembly factory, and then the assembly factory orders components from F components manu-
facturing factories according to the customer’s order. Each final product is composed of several components and
each component can be manufactured in any of the F components manufacturing factories. Each component
manufacturing factory f (f = 1, . . . , F) is formed by the same production stage and an assembly machine. The
production stage is a flowshop and consists of m machines. In the flowshop, every part must be processed by m
machines in sequence, i.e., M1 , M2 , and so on until Mm . All parts belonging to one component must be processed
continuously in one factory. In the assembly stage of one component manufacturing factory, all parts belonging
to the same component are assembled on the assembly machine MA . Finished components are transported to

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

the final assembly factory. Finally, H products {P1, P2, . . . ,PH } are assembled on the final assembly line in the
assembly factory and delivered to customers within the delivery date.

Problem formulation
Following assumptions are used to formulate the considered DAPFSP:

• All parts of each component are available to be processed at time zero.
• One component must be processed in one components manufacturing factory. Changing factory is not

allowed.
• The transportation time within and between factories is ignored.
• The assembly operation of one component can be performed if all parts belong to the component are pro-

cessed.
• When all components of a product have been processed, the assembly operation for that product can begin.

Parameters, indices, sets, and variables are listed as follows.
Parameters:

F Number of components manufacturing factories

M Number of machines in the production stage

α Number of products

β Number of all the components

Χ Number of all the parts

np Number of the components belonging to product �p,p = 0, 1, 2, . . . ,α · n0 = 0

uc Number of the parts belonging to component ωc , c = 0, 1, 2, . . . ,β · u0 = 0.Bj,m

Pj,m Processing time of part j on machine m

Aωc Assembly time of component ωc

A�p Assembly time of product �p

T A very large positive number

Indices:

f Actory index

i j Part index

c c′ Component index

p p′ Product index

m Index of machines in the production stage

Sets:

Figure 1. Illustration of the presented DAPFSP.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

� = {�1,�2, . . . ,�α} Set of products

�0 A dummy product

�p =
{

�p,1,�p,2, . . . ,�p,np

}

Set of components belonging to �p

� =
{

ωk0+1,ωk0+2, . . . ωk1 , ωk+1, . . . ,ωkα−1+1, . . . ωkα

} Set of all the components, where components ωkp−1+1, . . . ωkp belonging to the
product �p · k0 = 0, kp =

∑p
s=1 ns

ω0 A dummy component

θ0 A dummy part

δc =
{

δc,1, δc,2, . . . δc,uc
}

Set of parts belonging to ωc

δ =
{

θz0+1, θz0+2, . . . θz1 , θz1+1, . . . θzβ−1+1, . . . θzβ
} Set of all the parts, where parts θzc−1+1, . . . θzc , belonging to the component

ωc · z0 = 0, zc =
∑c

s=1 us

Variables:

Bj,m Beginning time of part j on machine m

Cj,m Completion time of part j on machine m

Cωc Completion time of component ωc

C�p Completion time of product �p

Cmax Makespan of all products

Binary variables:

The mathematical model of the presented DAPFSP can be formulated as follows:

Xi,j =
{

1 if part j is processed immediately after part i
0 otherwise

Yc,f =
{

1 if component c is process ed in factory f
0 otherwise

Zc,c′ =
{

1 if component c is assembled immediately after component c′ on the assembly machine
0 otherwise

Hp,p′ =
{

1 if product p is assembled immediately after product p′ on the final assembly factory
0 otherwise

(1)min Cmax

(2)

S. T

χ
∑

i=0,i �=j

Xi,j = 1, j = 1, 2, . . . ,χ

(3)
χ
∑

j=0,j �=i

Xi,j = 1, i = 1, 2, . . . ,χ

(4)
F
∑

f=1

Yc,f = 1, c = 1, 2, . . . ,β

(5)
zl−1
∑

i=1

zl
∑

j=zl−1+1

Xi,j +
zβ
∑

i=zl+1

zl
∑

j=zl−1+1

Xi,j = 1, l = 1, 2, . . . ,β

(6)Cj,m ≥ Cj,m−1 + Pj,m, j = 1, 2, . . . ,χ , m = 2, 3, . . . ,M

(7)Cj,m ≥ Ci,m + Pi,m + (Xi,j − 1) · T , i = 1, 2, . . . ,χ , j = 1, 2, . . . ,χ , m = 1, 2, . . . ,M

(8)Cωc ≥ Cj,M + Aωc , c = 1, 2, . . . ,β , j = zl−1 + 1, . . . , zl

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Formulation (1) illustrates the objective is minimizing the makespan of all products. Constraint sets (2) and
(3) mandate that every part has only one immediate successor and one immediate predecessor. Constraint set
(4) ensures that each component must be assigned to only one factory. Constraint set (5) enforces that the parts
belonging to the same component should be processed in succession and cannot be separated. Constraint set
(6) makes sure that a part cannot start until the previous operation is completed. Constraint set (7) indicates
that one machine can only process a part at a time. Constraint set (8) guarantees that the assembly operation of
a component can only be started after all parts belonging to it are completed. Constraint set (9) enforces that the
assembly machine cannot assemble two components at the same time. Constraint set (10) requires that one prod-
uct cannot be assembled in the final assembly factory before all the components of the product are completed.
Constraint set (11) indicates that the final assembly factory cannot assemble two products at a time. Constraint
set (12) defines the makespan of all products. Constraint sets (13)-(16) define the domain of decision variables.

An illustrative example
Sequence-based variables are used with a set of min {F, α, β} + 1 dummy parts. Consider an example with
F = 2 , M = 2 , α = 3 , β = 6 , χ = 12 , �1 = {1, 2} , �2 = {3, 4} , �3 = {5, 6} , δ1 = {1, 2} , δ2 = {3, 4} , δ3 = {5, 6} ,

(9)Cωc ≥ Cωc′ + Aωc + (Zc,c′ − 1) · T , c = 1, 2, . . . ,β , c′ = 1, 2, . . . ,β , c �= c′

(10)C�p ≥ Cωc + A�p , p = 1, 2, . . . ,α, c = kp−1 + 1, . . . , kp

(11)C�p ≥ C�p′ + A�p + (Hp,p′ − 1) · T , p = 1, 2, . . . ,α, p′ = 1, 2, . . . ,α, p �= p′

(12)Cmax ≥ C�p , p = 1, 2, . . . ,α

(13)Xi, j ∈ {0, 1}, ∀i, j, i �= j

(14)Yc,f ∈ {0, 1}, ∀c, f

(15)Zc,c′ ∈ {0, 1} ∀c, c′, c �= c′

(16)Hp,p′ ∈ {0, 1}, ∀p, p′, p �= p′.

Table 1. Processing time for all parts, components and products.

Part 1 2 3 4 5 6 7 8 9 10 11 12

M1 3 4 5 2 2 3 2 5 2 4 3 5

M2 2 3 2 3 5 3 3 4 3 3 5 3

Component 1 2 3 4 5 6

MA 3 4 6 5 6 4

Product 1 2 3

MAF 6 5 4

Figure 2. Gantt chart of the example.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

δ4 = {7, 8} , δ5 = {9, 10} , δ6 = {11, 12} . The processing time of products, components and parts are shown
in Table 1. One feasible solution is X0,1 = X1,2 = X2,3 = X3,4 = X4,5 = X5,6 = X6,0 = X0,7 = X7,8 = X8,9 = X9,10 = X10,11 =
X11,12 = X12,0 = 1, where 0 is the dummy part. The part sequence is {0, 1, 2, 3, 4, 5, 6, 0, 7, 8, 9, 10, 11,12, 0}, where
the part sequence {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11,12} are assigned to the factory 1 and 2, respectively. Then the
component processing sequence is {1, 2, 3} and {4, 5, 6} in the factory 1 and 2, respectively. Finally, the finished
components are transported to the assembly factory to be assembled into products. In the assembly factory,
product sequence is {1, 3, 2} and the makespan of the example is 38 (see in Fig. 2).

The canonical SSO algorithm
The concept and theory of the social spider optimization algorithm was developed by Cuevas and Cienfuegos44
which mathematically models the behaviour of social spiders. The validity of SSO has been proved in many dif-
ferent optimization problems45–47.

The search space of SSO is regarded as a communal web. Social spiders use the communal web as a commu-
nication media to perform cooperative behavior48, such as mating, prey capturing and social contact49. Different
from most of existing swarm algorithms, the SSO divides the social spider population into two different groups:
the female group and the male group. According to gender, each social spider is executed by a different set of
evolution operators. Moreover, SSO adopts mating operator to exchange information among two groups and
produce offspring. These operators enhance the search ability of SSO to find the optimal solution. In this way,
the SSO can avoid premature convergence and keep the balance between exploration and exploitation.

The proposed three social spider optimization algorithms
The canonical SSO cannot be used directly for discrete optimization problem because it is designed to solve con-
tinuous optimization problem. Therefore, this section presents three discrete SSO algorithms for the proposed
DAPFSP in this paper. We first introduce the solution representation, the initialization method, cooperative
operators, three neighborhood operators, three local search methods, two restart producers, and present three
discrete SSO algorithms in detail.

Solution representation
Solution representation is an important part in the design of scheduling algorithms. We design a three-level
representation for the DAPFSP presented in this paper. The representation includes three parts: a product
sequence, α component sequences and β part sequences. The product sequence π introduce the processing
sequence of all the products in the assembly factory. In components manufacturing factories, the components
belonging to products are assigned according to the product sequence. In other words, the components of the
first product in the sequence are assigned first. And then, the components belonging to the second product in
the sequence are considered. The part sequence of a component is a permutation of all the parts belonging to
the component. Suppose a solution s, its product sequence can be expressed as π = {π1,π2, . . . ,πα} (π1 : the first
product of the product sequence). The component sequence of product πk is �πk = {�πk ,1,�πk ,2, . . . ,�πk ,nπk

} ,
where nπk is the number of components belonging to product πk . The part sequence of component �πk ,h is
δ�πk ,h

=
{

δ�πk ,h
,1, δ�πk ,h

,2, . . . , δ�πk ,h
,u�πk ,h

}

 , where u�πk ,h
 is the number of parts belonging to component �πk ,h .

An illustrative example is presented in “An illustrative example” section. The product sequence in the assembly
factory is {1, 3, 2}. Three component sequences are �1 = {1, 2} , �2 = {3, 4} and �3 = {5, 6} . Six part sequences
are δ1 = {1, 2} , δ2 = {3, 4} , δ3 = {5, 6} , δ4 = {7, 8} , δ5 = {9, 10} , δ6 = {11, 12}.

Initial population
The initial population has an important effect on the quality of the solution for swarm intelligence algorithms. In
order to improve the quality of the initial population, there are three interdependent decisions need to be dealt
with for the presented DAPFSP: (1) determination of product sequence in the assembly factory; (2) allocation
of components to components manufacturing factories and determination of components sequence for each
product; (3) determination of part sequence for each component.

Inspired by the pioneering work of Naderi and Ruiz11, we assigned each component to the factory which
has the minimum makespan among components manufacturing factories when including the component. To
maintain the diversity of the population and save computation time, the product sequence and the part sequence
for each component are generated randomly.

Population division and weight assignation
The SSO divides the social spider population (denoted as S) into two different groups: female spiders (denoted as
F) and male spiders (denoted as M). In the social spider population, the number of female spiders (denoted as
Nf) outnumber male spiders (denoted as Nm). and Nf usually make up 65–90% of the population size (denoted
as N). In this paper, the female ratio is set to 70%, as in paper45. Therefore, Nf is calculated according to the
following formula:

where the mathematical symbol | | can take an integer as the number of female spiders. The num-
ber of male spiders Nm = N − Nf . The population S = {s1, s2, . . . , sN } is composed of a set of female
spiders (F = {f1, f2, . . . , fNf

}) and a set of male individuals (M = {m1,m2, . . . ,mNf
}). As S = F ∪M

,S = {s1 = f1, s2 = f2, . . . , sNf
= fNf

, sNf+1 = m1,sNf+2 = m2, ..., sN = mNm}.

(17)Nf = |70% · N |

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

In the proposed three SSO algorithms, the solution quality of the individual (spider) i is measured by a weight
wi . The following equation is used to calculated the weight wi.

Cooperative operators
The search space of the SSO is assumed as a communal web, in which social spiders update positions. In the
communal web, female and male social spiders update positions according to different cooperative operators.

Female cooperative operator
Female spiders have two behavior patterns for updating their positions: attraction movement and repulsion
movement. The selection of the final behavior pattern for the female spider fi is influenced by three factors: the
vibration Vc,i perceived by fi form the nearest spider (denoted as sc) with a better weight; the vibration Vb,i per-
ceived by fi form the best spider (denoted as sb) of the population; and a stochastic movement. The movement
of the female spider fi can be defined as follows:

where fnew,i is the newly generated position of the female spider fi . r1 , r2 , r3 , r4 and r5 are five random numbers
between [0, 1] . PF is a threshold which determines the selection of attraction movement or repulsion movement.
In this paper, PF is set to 0.7 for three proposed SSO algorithms. wc and wb are weights of the nearest spider
and the best spider, respectively. The notation || · || represents the Euclidean distance. The final random item
r3(r4 − 0.5) donates a stochastic movement.

Male cooperative operator
The male spiders are divided into dominant members and non-dominant members according to weight. mm is
the male spider whose weight is the median value of the male population. A male spider with a weight greater
than the median value is assigned to dominant members; otherwise, it is regarded as one non-dominant member.
Dominant male spiders tend towards the nearest female member (denoted as fn) to generate a new generation.
On the contrary, non-dominant male spiders move towards the center of the male group to utilize the remaining
resources. The male cooperative operator can be formulated as follows:

where mnew,i is the newly generated position of the male spider mi . r1 , r2 and r3 are random numbers between
[0, 1] . Vn,i is the vibration perceived by mi form the nearest female spider fn . wi , wm and wa is the weight of mi , mm
and ma , respectively. Wmean is the weighted mean of male spiders. wn is the weight of the nearest female spider fn.

The male spiders are sorted descending by their weight. The sequence after permutation is
M = {m1,m2, . . . ,mm, . . . ,mNf

} . The movement of dominant male spiders and non-dominant male spiders
are modeled by formulas (20-1) and (20-2), respectively.

(18-1)wi =
worst − Cmax(si)

worst − best + c

(18-2)worst = max(Cmax(si)) i ∈ (1, 2, . . . ,N)

(18-3)best = min(Cmax(si)) i ∈ (1, 2, . . . ,N)

(18-4)c = 0.001

(19-1)fnew,i =

fi + r1 · Vc,i · (sc − fi)+ r2 · Vb,i

×(sb − fi)+ r3(r4 − 0.5)
r ≤ PF

fi − r1 · Vc,i · (sc − fi)− r2 · Vb,i

×(sb − fi)+ r3(r4 − 0.5)
r > PF

(19-2)Vc,i = wc · e−
√

||sc−fi ||

(19-3)Vb,i = wb · e−
√

||sb−fi ||

mnew,i =

mi + r1 · Vn,i · (fn −mi)

+r2(r3 − 0.5)
wi > wm (20-1)

mi + r1 · (Wmean −mi) wi ≤ wm (20-2)

(20-3)Vn,i = wn · e−
√

||fn−mi ||

(20-4)Wmean =
Nm
∑

a=1

ma · wa/

Nm
∑

a=1

wa

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Mating operator
Dominant male spiders and female spiders perform mating operator in the communal web. The radius (denoted
as r) limits the mating range of each dominant male spider. For one dominant male spider mk , it finds out a set of
female spiders (denoted as Ek) within the mating range. The mating operator is performed in set Tk = Ek ∪mk . If
Ek is a non-empty set, the mating operator is executed to generate a new individual mnew ; otherwise, the mating
operator is not performed. The radius is calculated by the following formula:

where smax and smin represent the boundary of search space. Recall the presented solution representation, there
are smax = {p, p− 1, p− 2, . . . , 1} and smin = {1, 2, . . . , p} . ratio ∈ (0, 1) is a factor controlling the radius r.

If the new individual mnew is generated, compare its weight with the weight of the worst individual in the
population. If the new individual mnew is better than the worst individual, the worst individual is replaced by
mnew , and mnew inherits the gender and index of the replaced individual. Otherwise, the new individual mnew is
ignored and the population remain unchanged.

Neighborhood operators and local search strategies
Neighborhood operators play an important role in designing a heuristic algorithm and it can enhance the
exploitation ability of the algorithm. According to the representation, there are three types of neighborhoods.
The first one is based on the product sequence, the second type is based on the component sequence, the third
kind is based on the part sequence. For one solution, we can shift its product sequence and keep the other two
types of sequences unchanged. Shift operators are widely used in scheduling problems. A shift operator moves
one element in a sequence to another location and keeps the other elements in the same position. Considering a
product sequence π =

{

π1,π2, . . . ,πk ,πk+1, . . . ,πα
}

 , the first product π1 can be shifted to the kth position and
generating a new sequence πnew =

{

π2, . . . ,πk ,π1,πk+1, . . . ,πα
}

 , while keeping the component sequence of
each product and part sequence of each component unchanged. The same shift operator applies to the compo-
nent-based neighborhood and part-based neighborhood.

According to the presented three neighborhood operators, we design three local search strategies. The first
local search strategy is designed based on the neighborhood operator of the produce sequence. For an individual
si with a product sequence π =

{

π1,π2, . . . ,πk ,πk+1, . . . ,πα
}

 , the product πk can be inserted into α − 1 possible
positions and generate α − 1 different neighborhood solutions. s∗i is the best solution of all the α − 1 neighbor-
hood solutions. If s∗i is better than si , replace si with s∗i . Otherwise, si remains unchanged. The above process is
performed for each product in the product sequence. The procedure of product-based local search strategy is
presented in Algorithm 1.

Algorithm 1 Product-based local search
The second loca l search st rateg y i s des igned based on component sequences .

�πk = {�πk ,1,�πk ,2, . . . ,�πk ,h,�πk ,h+1, . . . ,�πk ,nπk
} is the component sequence of product πk , where nπk is

the number of components belonging to product πk . The component �πk ,h can be inserted into nπk − 1 possible
positions and produce nπk − 1 different neighborhood solutions. s∗i is the best solution of all the nπk − 1 neigh-
borhood solutions. If s∗i is better than si , replace si with s∗i . Otherwise, si remains unchanged. The above process
is performed for each component of the product πk . The procedure of component-based local search strategy
is illustrated in Algorithm 2.

(21)r = �smax − smin� · ratio

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Algorithm 2 Component-based local search
The third local search strategy is designed based on part sequences. The part sequence of component �πk ,h

is δ�πk ,h
=

{

δ�πk ,h
,1, δ�πk ,h

,2, ..., δ�πk ,h
,j , δ�πk ,h

,j+1, ..., δ�πk ,h
,u�πk ,h

}

 , where u�πk ,h
 is the number of parts belonging

to component �πk ,h . The part δ�πk ,h
,j can be inserted into u�πk ,h

− 1 possible positions and can produce u�πk ,h
− 1

different neighborhood solutions. s∗i is the best solution of all the u�πk ,h
− 1 neighborhood solutions. If s∗i is better

than si , replace si with s∗i . Otherwise, si remains unchanged. The above process is performed for each part of the
component �πk ,h . The procedure of part-based local search strategy is shown in Algorithm 3.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Algorithm 3 Part-based local search

Restart procedure
Opposition‑based restart procedure
In order to maintain the diversity of the population and avoid premature convergence, we introduce an oppo-
sition-based restart (OBR) procedure that combines restart procedure with opposition-based learning (OBL).
The OBL was proposed by Tizhoosh50 and its effective has been proved in optimization problems51–55. Xu et al.56
described in detail the concept of OBL, and the process of generating opposite numbers is presented as follows.

Definition 1 Let x ∈ [a, b] be a real number. The opposite number x̃ can be defined by

Similarly, the opposite vector for a D-dimensional vector can be defined as follows:

Definition 2 Let X = (x1, x2, . . . , xD) be a D-dimensional vector, where xi ∈ [ai , bi] , i ∈ 1, 2, ...,D . the opposite
vector X̃ = (x̃1, x̃2, . . . , x̃D) can be defined by

For example, there is the product permutation π = {3, 2, 7, 6, 8, 1, 9, 4, 5} consists of 9 products. According to
the definition 2, the opposite product permutation can be calculated as π̃ = {7, 8, 3, 4, 2, 9, 1, 6, 5}.

The minimum makespan of each iteration is stored. If the minimum is not improved in ten consecutive itera-
tions, we adopt the following OBR procedure to increase population diversity.

Step 1 Sort all spiders in the population in descending order of weight.
Step 2: Take the top 10% of individuals and calculate their opposite positions based on the sequence of

products.
Step 3 An opposite position is accepted if the makespan is better, while a poor opposite position (denoted as

π̃) is accepted according to the following probability pπ̃:

(22)x̃ = a+ b− x.

(23)x̃i = ai + bi − xi .

(24)pπ̃ =
worst − Cmax(π̃)

worst − best + c
.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Step 4 Among the remaining 90% individuals, randomly select the same number of individuals as the opposite
positions, and replace the selected individuals with the opposite positions.

Inverse‑based restart procedure
Since the permutation of components and parts is not a set of consecutive integers, the OBL cannot be used
directly. For the component-based sequence and part-based sequence, we apply an inverse operation to generate
new permutations. The procedure of inverse operator is shown as follows: (a) randomly select two points P1 and
P2 of the permutation; (b) reverse the sequence between P1 and P2. Figure 3 presents an instance of the inverse
operator. The procedure of inverse-based restart (IBR) is shown as follows:

Step 1 Sort all spiders in the population in descending order of weight.
Step 2 Take the top 10% of individuals and calculate their inverse neighborhoods based on the sequence of

components and parts.
Step 3 An inverse position is accepted if the makespan is better, while a poor inverse position (denoted as π̃)

is accepted according to the formula (24).
Step 4 Among the remaining 90% individuals, randomly select the same number of individuals as the inverse

neighborhoods, and replace the selected individuals with the opposite positions.

SSO with hybrid local search strategies

Three local search strategies mentioned above are quite different, and they can enhance the search ability of
discrete SSO. In order to make full use of the advantages of these strategies and obtain the optimal solution or
the near optimal solution, we propose a hybrid SSO (HSSO for short) that adopts these strategies simultaneously.
The procedure of HSSO is illustrated in Algorithm 4.

Algorithm 4 HSSO

HSSO with restart procedures

With the evolution of HSSO, an increasing number of individuals have a tendency to converge together, so the
algorithm may be trapped in local optimal. To maintain the diversity of the population and avoid premature
convergence, we present the HSSO with two restart procedures (HSSOR for short). The procedure of HSSOR
is shown in Algorithm 5.

Figure 3. An example of the inverse operator.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Algorithm 5 HSSOR

HSSOR with self-adaptive selection probability
Since the OBR and product-based local search strategy operate the product sequence, and a product is composed
of a series of components and parts, they are beneficial to enhance the exploration ability of the algorithm. The
IBR and component-based local search strategy and the part-based local search strategy are based on shifting of
components and parts, so they can improve the exploitation ability of the algorithm. The OBR and product-based
local search strategy are more needed in the early generations, because almost all individuals are far from the
optimal solution. In the final iterations, some individuals of the population are close to the optimum solution or
near optimal solutions. The IBR and component-based and part-based local search strategies are more needed.
To balance exploration and exploitation, a self-adaptive selection probability (denoted as Psa) is introduced to
control the use of two restart procedures and three local search strategies. The parameter Psa is defined by the
following formula:

where t and T are the current elapsed time and maximum elapsed time respectively. ρmin and ρmax are deci-
mals between 0 and 1. The component-based and part-based local strategies are adopted with probability Psa .
Otherwise, the product-based local search strategy is used. Algorithm 6 illustrates the procedure of HSSO with
self-adaptive selection probability (HSSORP for short).

Algorithm 6 HSSORP

(25)Psa = ρmin +
t

T
· (ρmax − ρmin)

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Experiment analyses
Experimental design
Since the DAPFSP presented in this paper is an extension of the innovative work of Hatami et al.12,13 and Pan
et al.24, the instances of the proposed problem are extended based on the 810 large instances of Hatami et al.12. We
set instances with the number of parts {100, 200, 500}, the number of machines in the production stage M ∈{5,
10, 20}, the number of components manufacturing factories F ∈{4, 6, 8}, the number of components β ∈{30, 40,
50}. To satisfy the assumption that each product is composed of at least two components and limit the number
of instances, we assign 30 components, 40 components and 50 components to 10 products, 15 products and 20
products, respectively. For each instance, all time indexes are set to integers. The processing time of each part
in different product stages is fixed to U[1, 99]. The assembly time of each component is set to U[1× n , 99× n],
where n is the number of parts belonging to the component.

The assembly time of each product in the assembly factory is set to U[1× n , 99× n], where n is the number
of components belonging to the product. There are 3× 3× 3× 3 = 81 different combinations and each combina-
tion has 10 replications. The 810 instances zip file is available. For example, the notation “I_100_5 _4_30_10_1”
means an instance consists of 100 parts, 5 machines, 4 components manufacturing factories, 30 components and
10 products. The last number ‘1’ of the notation indicates that the instance is the first one of the combination.

The relative percentage deviation (RPD) is used to measure solutions obtained by different algorithms. The
formula for calculating RPD is as follows:

where is Cmax the makespan calculated by one algorithm, and Cbest is the minimum makespan obtained by all
comparing algorithms.

Experimental calibration
In this subsection, we calibrate the proposed three SSO variants and comparing algorithms. This study is the first
work to solve the DAPFSP with the assumption that each component of the final product is composed of several
parts. This kind of problem is widespread in the actual production process, especially in auto parts supply chain,
but there is no published works to make comparisons. To verify the validity of the proposed three algorithms,
we conduct a comparison with two excellent work on the distributed flowshop scheduling problem including
 CMA17 and EDA19. By incorporating the presented solution representation and the above-mentioned objective
function, we adopt CMA and EDA to the proposed DAPFSP.

The parameters of the algorithm affect its performance. To calibrate these five algorithms, we generate an
instance for each combination randomly and employ Taguchi method57. To set parameters effectively, we con-
ducted preliminary experiments. For the HSSORP, the population size Ps , the levels of the self-adaptive selection
probability Psa (ρmin–ρmax), and the parameter ratio of mating operator, are shown in Table 2.

We use C++ o code the HSSOPR in VS 2015 and the elapsed CPU time is set to 20× χ ×M milliseconds. For
three critical parameters, we chose the orthogonal array L16 (43) that test 16 combinations of different parameter
levels. The HSSOPR runs 20 times independently for each combination on a computer with 8 Intel(R) Core (TM)
i5-10210U CPU @ 1.60GHz, 8 GB RAM and Windows 10 operation system. The average RPD (aRPD) values is
calculated and presented in Table 3. The parameter level trend is shown in Fig. 4. According to Fig. 4, HSSORP
performs better with the following parameters: Ps = 100, ρmin = 0.2, ρmax = 0.8, ratio = 0.6. The other four algo-
rithms are calibrated by the same method, and Table 4 details parameters of all five algorithms.

Computational evaluation
We code all the algorithms using C++ in VS 2015 and solve the 810 instances on the above-mentioned computer.
To make the experiment fair, instead of using the number of iterations as the termination condition, we let each
algorithm run independently for the same time. Termination is triggered when the algorithm reaches the maxi-
mum elapsed CPU time t = τ × χ ×M milliseconds and the parameter τ is set to is set to three values 20, 40,
and 60 respectively. In the given three different termination times, each algorithm runs 20 times independently
for 810 instances. The best solutions of 810 instances calculated by each algorithm can be accessed. Tables 5, 6
and 7 presents the summarized aRPD values of three terminations.

Table 5 reports the aRPD values with CPU time t = 20× χ ×M milliseconds. It can be seen from the last row
that HSSOR and HSSORP performs better than HSSO, which proves the effectiveness of the presented restart
procedures. There is only a small difference in the performance of HSSOR and HSSORP. EDA gets the worst
performance with 12.248% aRPD, which is almost 65 times that of HSSOR. This is because the search method

(26)RPD =
Cmax − Cbest

Cbest
× 100

Table 2. Parameter values.

Parameter

Values

1 2 3 4

Ps 50 100 150 200

Psa(ρmin–ρmax) 0.1–0.5 0.2–0.8 0.2–0.9 0.3–0.8

Ratio 0.6 0.7 0.8 0.9

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Table 3. Response values.

Ps Pc Cn aRPD

1 1 1 0.564

1 2 2 0.833

1 3 3 0.922

1 4 4 0.945

2 1 2 0.856

2 2 1 0.467

2 3 4 1.020

2 4 3 0.733

3 1 3 1.327

3 2 4 0.923

3 3 1 0.671

3 4 2 1.180

4 1 4 1.620

4 2 3 0.978

4 3 2 1.542

4 4 1 0.792

Figure 4. Factor level trend.

Table 4. Parameters of five algorithms.

Algorithms Parameter values

HSSO Ps = 100, ratio = 0.6

HSSOR Ps = 100, ratio = 0.6

HSSORP Ps = 100, ρmin = 0.2, ρmax = 0.8, ratio = 0.6

CMA Ps = 50, LS = 100

EDA Ps = 50, γ = 0.2

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

of EDA may not be suitable for the proposed problem. CMA performs much better than EDA. Moreover, the
proposed three algorithms outperform the comparison algorithms. Tables 6 and 7 present the aRPD values
with CPU time t = 40× χ ×M milliseconds and CPU time t = 60× χ ×M milliseconds respectively. As we
can see from two tables, as running time increases, our proposed algorithm can maintain a very large lead in
performance. At CPU time t = 40× χ ×M milliseconds, HSSOR and HSSORP are almost equal, while HSSORP
outperforms HSSOR at CPU time t = 60× χ ×M milliseconds.

Table 5. aRPD at CPU time t = 20× χ ×M ms. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts (χ)

 100 0.628 0.454 0.459 1.542 6.209

 200 0.106 0.064 0.083 2.805 13.877

 500 0.094 0.050 0.052 3.400 16.659

Components (β)

 30 0.246 0.156 0.187 2.923 11.754

 40 0.297 0.235 0.201 2.685 12.691

 50 0.286 0.177 0.207 2.139 12.300

Machines (M)

 5 0.352 0.272 0.285 2.672 12.403

 10 0.300 0.178 0.183 2.567 12.181

 20 0.177 0.119 0.127 2.509 12.160

Factories (F)

 4 0.226 0.152 0.150 2.622 12.369

 6 0.249 0.164 0.157 2.541 12.258

 8 0.354 0.251 0.287 2.584 12.118

Products (α)

 10 0.246 0.156 0.187 2.923 11.754

 15 0.297 0.235 0.201 2.685 12.691

 20 0.286 0.177 0.207 2.139 12.300

Means 0.276 0.189 0.198 2.582 12.248

Table 6. aRPD at CPU time t = 40× χ ×M ms. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts (χ)

 100 0.469 0.318 0.336 1.588 5.861

 200 0.118 0.076 0.076 2.581 13.175

 500 0.117 0.088 0.072 3.174 16.071

Components (β)

 30 0.197 0.144 0.143 2.672 11.358

 40 0.258 0.162 0.190 2.604 12.114

 50 0.248 0.176 0.151 2.067 11.636

Machines (M)

 5 0.266 0.223 0.241 2.499 11.719

 10 0.235 0.134 0.138 2.486 11.647

 20 0.203 0.126 0.104 2.358 11.742

Factories (F)

 4 0.181 0.137 0.132 2.487 11.843

 6 0.221 0.143 0.160 2.393 11.720

 8 0.302 0.202 0.192 2.463 11.544

Products (α)

 10 0.197 0.144 0.143 2.672 11.358

 15 0.258 0.162 0.190 2.604 12.114

 20 0.248 0.176 0.151 2.067 11.636

Means 0.235 0.161 0.161 2.448 11.703

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

We analyze the results closely. EDA is taken out of the analysis because it is not suitable for the proposed
problem. Figures 5, 6 and 7 present box plots for four comparison algorithms at three diffident CPU times. It can
be clearly observed that: (1) statistically, our algorithms are much better than CMA, and this can prove that our
strategies and algorithms is effective; (2) HSSOR and HSSORP is better than HSSO, and this can illustrate the
effectiveness of the proposed restart procedures; (3) HSSOR is slightly better than HSSORP, and this can show
that using three local search strategies simultaneously can achieve better results.

In addition, five parameters including the number of parts χ, the number of components β, the number of
machines M, the number of factories F, and the number of products α determine the proposed problem. We
conduct data analysis to figure out the effects of these parameters on the four comparison algorithms. Figure 8
shows variation trend of aRPD for different value levels of five parameters. It can be seen from Fig. 8 that both
of HSSOR and HSSORP have very slight fluctuations and small values which illustrate that both of them have
excellent robustness and performance. According to the data, all values of HSSOR for each parameter are smaller
than HSSORP, which indicates HSSOR is better than HSSORP.

Finally, to illustrate the proposed DAPFSP intuitively, Fig. 9 reports the Gantt chart of instance
“I_100_5_4_30_10_1” with the best solution we found so far.

Table 7. aRPD at CPU time t = 60× χ ×M milliseconds. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts (χ)

 100 0.239 0.111 0.133 2.108 5.561

 200 0.186 0.134 0.134 2.131 12.397

 500 0.256 0.130 0.185 2.683 15.182

Components (β)

 30 0.242 0.113 0.131 2.391 10.874

 40 0.209 0.137 0.184 2.423 11.452

 50 0.231 0.124 0.137 2.107 10.814

Machines (M)

 5 0.235 0.128 0.165 2.489 11.122

 10 0.222 0.125 0.150 2.295 10.959

 20 0.224 0.122 0.137 2.136 11.059

Factories (F)

 4 0.223 0.119 0.139 2.227 11.430

 6 0.214 0.148 0.155 2.305 11.044

 8 0.245 0.107 0.158 2.389 10.666

Products (α)

 10 0.242 0.113 0.131 2.391 10.874

 15 0.209 0.137 0.184 2.423 11.452

 20 0.231 0.124 0.137 2.107 10.814

Means 0.227 0.125 0.151 2.307 11.047

Figure 5. Box plots for four comparison algorithms at CPU time t = 20× χ ×M ms.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Conclusions
In conclusion, our study makes several contributions from different perspectives: theoretical, managerial, and
practical. (i) Theoretical contribution: This paper presents the first study on DAPFSP considering the intricate
nature of modern supply chains, where components of one final product are manufactured by multiple compa-
nies. Our proposed problem formulation requires determining the optimal product sequence in the assembly
factory, as well as the component sequence and part sequence in multiple component manufacturing factories.
To address this challenge, we introduce a novel three-level representation and an initialization method, along
with three local search methods to enhance the algorithm’s search ability. Additionally, to prevent premature
convergence, we design two restart procedures tailored to the problem’s characteristics. Furthermore, we propose
three discrete SSO algorithms for the proposed DAPFSP. Our experiments, calibrated using the Taguchi method,
demonstrate the efficiency of these algorithms in solving the problem. (ii) Our study provides insights into the
critical role of efficient scheduling in supply chain management. By addressing a crucial aspect of production
processes, it partially bridges the gap between academic research and practical applications. However, it is
important to acknowledge that our research does not encompass all constraints present in practical production
scenarios, such as transportation costs58, production capacity constraints, setup times, machine maintenance, and
rescheduling in emergencies59. These aspects are vital considerations for real-world applications and should be
incorporated into future research endeavors. (iii) In the view of practical standpoint, our research sets the stage
for further exploration into the integration of manufacturing processes in Industry 4.060. Moving forward, we
are committed to addressing the aforementioned constraints and designing efficient scheduling algorithms that
can significantly enhance production efficiency in practical settings. By focusing on the challenges encountered

Figure 6. Box plots for four comparison algorithms at CPU time t = 40× χ ×M ms.

Figure 7. Box plots for four comparison algorithms at CPU time t = 60× χ ×M ms.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Figure 8. Variation trend of aRPD for different value levels of five parameters.

Figure 9. Gantt chart of instance “I_100_5_4_30_10_1”.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

in real-world production environments, we aim to contribute to the advancement of manufacturing processes
and facilitate the transition towards Industry 4.0.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Received: 27 October 2023; Accepted: 13 March 2024

References
 1. Lee, C. Y., Cheng, T. C. E. & Lin, B. M. T. Minimizing the makespan in the 3-machine assembly-type flowshop scheduling problem.

Manag. Sci. 39, 616–625 (1993).
 2. Potts, C. N., Sevast’Janov, S. V. & Strusevich, V. A. The two-stage assembly scheduling problem: Complexity and approximation.

Oper. Res. 43, 346–355 (1995).
 3. Koulamas, C. & Kyparisis, G. J. The three-stage assembly flowshop scheduling problem. Comput. Oper, Res. 28, 689–704 (2001).
 4. Meng, Q., Qiu, D. & Liu, Y. Two-stage assembly flow shop scheduling problem with sequence-dependent setup times. In 2023

IEEE 19th International Conference on Automation Science and Engineering (CASE) 1–6 (IEEE, 2023).
 5. Karabulut, K., Öztop, H., Kizilay, D., Tasgetiren, M. F. & Kandiller, L. An evolution strategy approach for the distributed permuta-

tion flowshop scheduling problem with sequence-dependent setup times. Comput. Oper. Res. 142, 105733 (2022).
 6. Framinan, J. M. & Perez-Gonzalez, P. The 2-stage assembly flowshop scheduling problem with total completion time: Efficient

constructive heuristic and metaheuristic. Comput. Oper. Res. 88, 237–246 (2017).
 7. Chung, T. P. & Chen, F. A complete immunoglobulin-based artificial immune system algorithm for two-stage assembly flowshop

scheduling problem with part splitting and distinct due windows. Int. J. Prod. Res. 57(10), 3219–3237 (2019).
 8. Fernandez-Viagas, V., Talens, C. & Framinan, J. M. Assembly flowshop scheduling problem: Speed-up procedure and computational

evaluation. Eur. J. Oper. Res. 299, 869–882 (2022).
 9. Yokoyama, M. & Santos, D. L. Three-stage flow-shop scheduling with assembly operations to minimize the weighted sum of product

completion times. Eur. J. Oper. Res. 161(3), 754–770 (2005).
 10. Komaki, G. M., Teymourian, E., Kayvanfar, V. & Booyavi, Z. Improved discrete cuckoo optimization algorithm for the three-stage

assembly flowshop scheduling problem. Comput. Ind. Eng. 105, 158–173 (2017).
 11. Naderi, B. & Ruiz, R. The distributed permutation flowshop scheduling problem. Comput. Oper. Res. 37(4), 754–768 (2010).
 12. Hatami, S., Ruiz, R. & Andres-Romano, C. The distributed assembly permutation flowshop scheduling problem. Int. J. Prod. Res.

51(17), 5292–5308 (2013).
 13. Hatami, S., Ruiz, R. & Andrés Romano, C. Two Simple Constructive Algorithms for the Distributed Assembly Permutation Flowshop

Scheduling Problem 139–145 (Springer, 2014).
 14. Hatami, S., Ruiz, R. & Andrés-Romano, C. Heuristics and metaheuristics for the distributed assembly permutation flowshop

scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 169, 76–88 (2015).
 15. Li, X., Zhang, X., Yin, M. & Wang, J. A genetic algorithm for the distributed assembly permutation flowshop scheduling problem.

In IEEE Congress on Evolutionary Computation (CEC) 3096–3101 (2015).
 16. Liu, B., Wang, K. & Zhang, R. Variable neighborhood based memetic algorithm for distributed assembly permutation flowshop.

In IEEE Congress on Evolutionary Computation (CEC) 1682–1686 (2016).
 17. Deng, J., Wang, L., Wang, S. Y. & Zheng, X. L. A competitive memetic algorithm for the distributed two-stage assembly flow-shop

scheduling problem. Int. J. Prod. Res. 54(12), 3561–3577 (2016).
 18. Lin, J. & Zhang, S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation

flow-shop scheduling problem. Comput. Ind. Eng. 97, 128–136 (2016).
 19. Wang, S. Y. & Wang, L. An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation

flow-shop scheduling problem. IEEE. T. SYST. MAN. CY‑S. 46(1), 139–149 (2015).
 20. Lin, J., Wang, Z. J. & Li, X. A backtracking search hyper-heuristic for the distributed assembly flowshop scheduling problem.

Swarm. Evol. Comput. 36, 124–135 (2017).
 21. Gonzalez-Neira, E. M., Ferone, D., Hatami, S. & Juan, A. A. A biased-randomized simheuristic for the distributed assembly per-

mutation flowshop problem with stochastic processing times. Simul. Model. Pract. Th. 79, 23–36 (2017).
 22. Ruiz, R., Pan, Q. K. & Naderi, B. Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega

83, 213–222 (2019).
 23. Ferone, D., Hatami, S., González-Neira, E. M., Juan, A. A. & Festa, P. A biased-randomized iterated local search for the distributed

assembly permutation flowshop problem. Int. Trans. Oper. Res. 27(3), 1368–1391 (2020).
 24. Pan, Q. K., Gao, L., Xin-Yu, L. & Jose, F. M. Effective constructive heuristics and meta-heuristics for the distributed assembly

permutation flowshop scheduling problem. Appl. Soft. Comput. 81, 105492 (2019).
 25. Sang, H. Y. et al. Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with

total flowtime criterion. Swarm. Evol. Comput. 44, 64–73 (2019).
 26. Yılmaz, B. G. & Yılmaz, Ö. F. Lot streaming in hybrid flowshop scheduling problem by considering equal and consistent sublots

under machine capability and limited waiting time constraint. Comput Ind Eng. 173, 108745 (2022).
 27. Yılmaz, Ö. F. An integrated bi-objective U-shaped assembly line balancing and parts feeding problem: Optimization model and

exact solution method. Annals of Mathematics and Artificial Intelligence. 90(7–9), 679–696 (2022).
 28. Chen, S. H., Chang, P. C., Cheng, T. C. E. & Zhang, Q. A self-guided genetic algorithm for permutation flowshop scheduling

problems. Comput. Oper. Res. 39(7), 1450–1457 (2012).
 29. Liao, C. J., Tjandradjaja, E. & Chung, T. P. An approach using particle swarm optimization and bottleneck heuristic to solve hybrid

flow shop scheduling problem. Appl. Soft. Comput 12(6), 1755–1764 (2012).
 30. Liu, H., Gao, L. & Pan, Q. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation

flowshop scheduling problem. Expert. Syst. Appl. 38(4), 4348–4360 (2011).
 31. Marinakis, Y. & Marinaki, M. Particle swarm optimization with expanding neighborhood topology for the permutation flowshop

scheduling problem. Soft. Comput. 17(7), 1159–1173 (2013).
 32. Pan, Q. K., Wang, L., Mao, K., Zhao, J. H. & Zhang, M. An effective artificial bee colony algorithm for a real-world hybrid flowshop

problem in steelmaking process. IEEE. Trans. Autom. Sci. Eng. 10(2), 307–322 (2012).
 33. Ribas, I., Companys, R. & Tort-Martorell, X. An efficient Discrete Artificial Bee Colony algorithm for the blocking flow shop

problem with total flowtime minimization. Expert Syst. Appl. 42(15–16), 6155–6167 (2015).
 34. Gong, D., Han, Y. & Sun, J. A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop

scheduling problems. Knowl. Based. Syst. 148, 115–130 (2018).

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

 35. Vahedi Nouri, B., Fattahi, P. & Ramezanian, R. Hybrid firefly-simulated annealing algorithm for the flow shop problem with learn-
ing effects and flexible maintenance activities. Int. J. Prod. Res. 51(12), 3501–3515 (2013).

 36. Marichelvam, M. K., Prabaharan, T. & Yang, X. S. A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling
problems. IEEE. Trans. Evolut. Comput. 18(2), 301–305 (2013).

 37. Komaki, G. M. & Kayvanfar, V. Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with
release time. J. Comput. Sci. 8, 109–120 (2015).

 38. Lu, C., Gao, L., Pan, Q., Li, X. & Zheng, J. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem
considering noise pollution. Appl. Soft. Comput. 75, 728–749 (2019).

 39. Abdel-Basset, M., Manogaran, G., El-Shahat, D. & Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy
for the permutation flow shop scheduling problem. Future. Gener. Comput. Syst. 85, 129–145 (2018).

 40. Jiang, T., Zhang, C. & Sun, Q. M. Green job shop scheduling problem with discrete whale optimization algorithm. IEEE Access 7,
43153–43166 (2019).

 41. Jiang, T., Zhang, C., Zhu, H., Gu, J. & Deng, G. Energy-efficient scheduling for a job shop using an improved whale optimization
algorithm. Mathematics 6(11), 220 (2018).

 42. Luan, F., Cai, Z., Wu, S., Liu, S. Q. & He, Y. Optimizing the low-carbon flexible job shop scheduling problem with discrete whale
optimization algorithm. Mathematics 7(8), 688 (2019).

 43. Pan, Q. K. & Dong, Y. An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimiza-
tion. Inf. Sci. 277, 643–655 (2014).

 44. Cuevas, E. & Cienfuegos, M. A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert
Syst. Appl. 41(2), 412–425 (2014).

 45. Klein, C. E., Segundo, E. H., Mariani, V. C. & Coelho, L. D. Modified social-spider optimization algorithm applied to electromag-
netic optimization. IEEE. Trans. Magn. 52(3), 1–4 (2015).

 46. Nguyen, T. T. A high performance social spider optimization algorithm for optimal power flow solution with single objective
optimization. Energy 171, 218–240 (2019).

 47. Zhang, G. & Xing, K. Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed
environment. Comput. Ind. Eng. 125, 423–433 (2018).

 48. Salomon, M., Sponarski, C., Larocque, A. & Avilés, L. Social organization of the colonial spider Leucauge sp. in the Neotropics:
Vertical stratification within colonies. J. Arachnol. 38(3), 446–451 (2010).

 49. Yip, E. C., Powers, K. S. & Avilés, L. Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc. Natl.
Acad. Sci. 105(33), 11818–11822 (2008).

 50. Tizhoosh, H. R. Opposition-based learning: A new scheme for machine intelligence, CIMCA-IAWTIC’06. IEEE 1, 695–701 (2005).
 51. Wang, H., Wu, Z., Rahnamayan, S., Liu, Y. & Ventresca, M. Enhancing particle swarm optimization using generalized opposition-

based learning. Inf. Sci. 181(20), 4699–4714 (2011).
 52. Abed-Alguni, B. H., Alawad, N. A., Al-Betar, M. A. & Paul, D. Opposition-based sine cosine optimizer utilizing refraction learning

and variable neighborhood search for feature selection. Appl. Intell. 53(11), 13224–13260 (2023).
 53. Shekhawat, S. & Saxena, A. Development and applications of an intelligent crow search algorithm based on opposition based

learning. ISA Trans. 99, 210–230 (2020).
 54. Hussien, A. G. & Amin, M. A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local

search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 13, 309–336 (2022).
 55. Tubishat, M., Idris, N., Shuib, L., Abushariah, M. A. & Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based

learning and novel local search algorithm for feature selection. Expert. Syst. Appl. 145, 113122 (2020).
 56. Xu, Q., Wang, L., Wang, N., Hei, X. & Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intel.

29, 1–12 (2014).
 57. Mongomery, D. C. Design and Analysis of Experiments (Wiley, 2017).
 58. Lu, C., Gao, L., Li, X., Pan, Q. & Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-

objective backtracking search algorithm. J. Clean. Prod. 144, 228–238 (2017).
 59. He, X., Dong, S. & Zhao, N. Research on rush order insertion rescheduling problem under hybrid flow shop based on NSGA-III.

Int. J. Prod. Res. 58(4), 1161–1177 (2020).
 60. Hughes, L., Dwivedi, Y. K., Rana, N. P., Williams, M. D. & Raghavan, V. Perspectives on the future of manufacturing within the

Industry 4.0 era. Prod. Plan. Control 33(2–3), 138–158 (2022).

Acknowledgements
This work is supported by the following Grants: National Natural Science Foundation of China 61772321, Shan-
dong Natural Science Foundation ZR202011020044.

Author contributions
J.H. and W.Z.: Literature review and proposed algorithm; J.H.: Implementation; J.H. and F.L.: Results and
discussion.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

www.nature.com/reprints

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:6370 | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Effective social spider optimization algorithms for distributed assembly permutation flowshop scheduling problem in automobile manufacturing supply chain
	Problem definition and formulation
	Problem definition
	Problem formulation
	An illustrative example

	The canonical SSO algorithm
	The proposed three social spider optimization algorithms
	Solution representation
	Initial population
	Population division and weight assignation
	Cooperative operators
	Female cooperative operator
	Male cooperative operator
	Mating operator
	Neighborhood operators and local search strategies
	Restart procedure
	Opposition-based restart procedure
	Inverse-based restart procedure

	SSO with hybrid local search strategies
	HSSO with restart procedures
	HSSOR with self-adaptive selection probability

	Experiment analyses
	Experimental design
	Experimental calibration
	Computational evaluation

	Conclusions
	References
	Acknowledgements

