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Effective social spider optimization 
algorithms for distributed 
assembly permutation flowshop 
scheduling problem in automobile 
manufacturing supply chain
Weiwei Zhang 1, Jianhua Hao 2* & Fangai Liu 2

This paper presents a novel distributed assembly permutation flowshop scheduling problem (DAPFSP) 
based on practical problems in automobile production. Different from the existing research on 
DAPFSP, this study considers that each component of the final product is composed of more than 
one part. Components are processed in a set of identical components manufacturing factories and are 
assembled into products in the assembly factory. The integration of manufacturing processes is an 
important objective of Industry 4.0. For solving this problem with the minimum makespan criterion, 
we introduce a three-level representation and a novel initialization method. To enhance the search 
ability of the proposed algorithms, we design three local search methods and two restart procedures 
according to characteristics of the problem. Then, by incorporating the problem specific knowledge 
with the social spider optimization algorithm (SSO), we propose three SSO variants: the SSO with 
hybrid local search strategies (HSSO), the HSSO with restart procedures (HSSOR), and the HSSOR 
with self-adaptive selection probability (HSSORP). Finally, 810 extended instances based on the 
famous instances are used to test the proposed algorithms. In most cases, HSSOR performs the best, 
with an average comparison metric value of 0.158% across three termination conditions, while the 
average comparison metric value for the best comparison method is 2.446%, which is 15.481 times 
that of HSSOR. Numerical results demonstrate that the proposed algorithms can solve the problem 
efficiently.

Assembly production systems are widely used in various industries, e.g., in electronic, construction machinery, 
automobile and auto parts industries. In order to boost the production efficiency of assembly systems, researchers 
and industrial engineers have paid great attention to it in the past decades. The assembly flowshop scheduling 
problem (AFSP) was firstly presented by Lee et al.1 Later, Potts et al.2 illustrated the two-stage assembly flowshop 
problem (TSAFSP) according to the production of personal computers and proved that the general version of 
the considered problem is NP-hard. Koulamas and  Kyparisis3 introduced the three-stage assembly flowshop 
scheduling problem taking the immediate transportation operation into consideration. Due to the practicality 
and complexity of AFSP, many literatures have conducted deep researches to  it4–10.

Recently, with the trend of globalization in the manufacture, considerable attention is paid to distributed 
flowshop scheduling problems since Naderi’s innovative  paper11. Later, Hatami et al.12,13 first introduced the 
distributed assembly permutation flowshop scheduling problem (DAPFSP) and proposed effective algorithms 
to study the modern supply chain. DAPFSP is composed by two stages: component processing and assembly. In 
the first stage, components are processed in several factories with the identical equipment. The latter stage is to 
assemble components processed in the first stage into products. As the widespread use of DAPFSP in modern 
supply chains and the NP-hardness of large-scale DAPFSP, many researchers investigated it in depth and pro-
posed heuristics to achieve near-optimum solutions within reasonable time. Harami, Ruiz and Andres-Romano14 
studied DAPFSP with sequence dependent setup times and developed two constructive heuristics to obtain 
efficient initial solutions. Li et al.15 employed the genetic algorithm (GA) for the DAPFSP, which combining an 
improved crossover strategy and three novel local search strategies. Wang, Zhang and  Liu16 incorporated the 
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variable neighborhood search (VNS) into the memetic algorithm (MA) for the DAPFSP with the makespan crite-
rion. Moreover, Deng et al.17 propose a competitive memetic algorithm for the distributed TSAFSP (DTSAFSP). 
Lin and  Zhang18 hybridized the biogeography-based optimization (BBO) algorithm with several heuristics to 
minimize the makespan of the DAPFSP. A novel estimation of distribution algorithm based memetic algorithm 
(EDAMA) was developed by Wang and  Wang19 to minimize the makespan of DAPFSP. Lin, Wang and  Li20 
proposed the backtracking search hyper-heuristic (BS-HH) to figure out the DAPFSP. The effectiveness of BBO, 
EDAMA and BS-HH was demonstrated on the benchmark instances generated by Hatami et al.12. In addition, 
Gonzalez-Neira et al.21 considered the DAPFSP with stochastic processing times. More recently, several papers 
carried further research on the DAPFSP. Ruiz, Pan and  Naderi22 proposed iterated greedy (IG) methods for the 
DAPFSP with makespan criterion. Ferone et al.23 developed a biased-randomized iterated local search for the 
same problem. Pan et al.24 presented an extension of the DAPFSP and proposed effective heuristics to solve the 
considered scheduling problem. Recently, Sang et al.25 studied the DAPFSP proposed by Pan et al.24 with the total 
flowtime criterion and proposed three diffident discrete invasive weed optimization (DIWO).

Studies in DAPFSP suppose that each component of the final product consists of only one part but one 
component could be more complicated and composed of several parts in the practical production. Meanwhile, 
with the trend of production specialization and internationalization, one factory generally does not engage in 
all stages of production from raw materials to final products, and the production of semi-finished products is 
usually completed by other factories. In many practical production scenarios, especially in the automobile pro-
duction process, one semi-finished product is usually a large-sized component composed of many small parts. 
For example, in automotive enterprises such as Anhui Jianghuai Automobile Co., Ltd and Jiangling Motors 
Corporate of China, components from other manufacturers are added to the truck frame on the final assembly 
line, such as the  engine24, the axle, the transmission shaft, and so on. Each of these large-sized components is 
composed of some small parts and can be considered as semi-finished products produced by other components 
manufacturing factories. To the best of our knowledge, there is no study on DAPFSP considering that each 
component of the final product is composed of several parts, but this problem exists in practical production. For 
this problem, efficient scheduling can improve the production efficiency of enterprises, reduce resource waste 
and pollutant emissions, and help enterprises achieve green production. Therefore, this paper considers the 
practical situation in the automobile manufacturing supply chain and addresses a novel DAPFSP based on the 
innovative work of Hatami et al.12,13 and Pan et al.24. There are several optimization objectives in the flowshop 
scheduling  problem26,27, such as total flow time, total waiting time, makespan, and weighted flow time. This 
paper aims to minimize makespan of the proposed problem due to the time of delivery is an important content 
in trade contracts. It has been proved that minimizing makespan of DAPFSP is NP-hard, hence, the presented 
problem is NP-hard because of more complexity.

Over recent years, various meta-heuristics have been proposed and applied to solve production schedul-
ing problems, such as genetic algorithm (GA)28, particle swarm optimization (PSO)29–31, artificial bee colony 
(ABC)32–34, firefly algorithm (FA)35,36, grey wolf optimizer (GWO)37,38, whale optimization algorithm (WOA)39–42, 
migrating birds optimization algorithm (MBO)43, and so on. Recently, the social spider optimization (SSO), 
inspired by the cooperative behavior of spiders, is an emerging and excellent swarm intelligent algorithm. The 
SSO was first proposed by Cuevas and  Cienfuegos44 for solving constrained optimization problems. To enhance 
the search ability of SSO, Klein et al.45 introduced a modified SSO and applied it to electromagnetic optimiza-
tion.  Nguyen46 presented a novel improved SSO (NISSO) for optimal power flow problem. Zhang and  Xing47 
developed a memetic SSO (MSSO) for the distributed TSAFSP. Inspired by many successful applications of SSO, 
we adopt SSO to solve the DAPFSP proposed in this paper.

Considering the complexity of the proposed DAPFSP in this paper, we introduce a three-level representa-
tion and present three shift operators for it. According to the three shift operators, three local search methods 
are designed respectively. Two restart procedures are presented to maintain the diversity of the population and 
avoid premature convergence. We combine the problem specific knowledge with the SSO and propose three SSO 
variants. Experimental results based on 810 extended instances demonstrate the effectiveness of our algorithms.

The remainder of our paper is organized as follows. “Problem definition and formulation” section illustrates 
the proposed DAPFSP in this paper and formulates the proposed problem with makespan criterion. “The canoni-
cal SSO algorithm” section shows the concept and theory of SSO. “The proposed three social spider optimization 
algorithms” section reports three variants of SSO in detail. In “Experiment analyses” section, we conduct experi-
ments and analyze the results. Finally, “Conclusions” section details conclusions and our future research work.

Problem definition and formulation
Problem definition
This section briefly illustrates the presented DAPFSP similar to examples reported by Hatami et al.12 and Pan 
et al.24. There are one assembly factory and a set of F identical components manufacturing factories (See in 
Fig. 1). Under the Make-To-Order (MTO) mode of automobile production, the customer places an order for H 
products to the assembly factory, and then the assembly factory orders components from F components manu-
facturing factories according to the customer’s order. Each final product is composed of several components and 
each component can be manufactured in any of the F components manufacturing factories. Each component 
manufacturing factory f  ( f = 1, . . . , F ) is formed by the same production stage and an assembly machine. The 
production stage is a flowshop and consists of m machines. In the flowshop, every part must be processed by m 
machines in sequence, i.e., M1 , M2 , and so on until Mm . All parts belonging to one component must be processed 
continuously in one factory. In the assembly stage of one component manufacturing factory, all parts belonging 
to the same component are assembled on the assembly machine MA . Finished components are transported to 
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the final assembly factory. Finally, H products {P1, P2, . . . ,PH } are assembled on the final assembly line in the 
assembly factory and delivered to customers within the delivery date.

Problem formulation
Following assumptions are used to formulate the considered DAPFSP:

• All parts of each component are available to be processed at time zero.
• One component must be processed in one components manufacturing factory. Changing factory is not 

allowed.
• The transportation time within and between factories is ignored.
• The assembly operation of one component can be performed if all parts belong to the component are pro-

cessed.
• When all components of a product have been processed, the assembly operation for that product can begin.

Parameters, indices, sets, and variables are listed as follows.
Parameters:

F Number of components manufacturing factories

M Number of machines in the production stage

α Number of products

β Number of all the components

Χ Number of all the parts

np Number of the components belonging to product �p,p = 0, 1, 2, . . . ,α · n0 = 0

uc Number of the parts belonging to component ωc , c = 0, 1, 2, . . . ,β · u0 = 0.Bj,m

Pj,m Processing time of part j on machine m

Aωc Assembly time of component ωc

A�p Assembly time of product �p

T A very large positive number

Indices:

f Actory index

i j Part index

c c′ Component index

p p′ Product index

m Index of machines in the production stage

Sets:

Figure 1.  Illustration of the presented DAPFSP.
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� = {�1,�2, . . . ,�α} Set of products

�0 A dummy product

�p =
{

�p,1,�p,2, . . . ,�p,np

}

Set of components belonging to �p

� =
{

ωk0+1,ωk0+2, . . . ωk1 , ωk+1, . . . ,ωkα−1+1, . . . ωkα

} Set of all the components, where components ωkp−1+1, . . . ωkp belonging to the 
product �p · k0 = 0, kp =

∑p
s=1 ns

ω0 A dummy component

θ0 A dummy part

δc =
{

δc,1, δc,2, . . . δc,uc
}

Set of parts belonging to ωc

δ =
{

θz0+1, θz0+2, . . . θz1 , θz1+1, . . . θzβ−1+1, . . . θzβ
} Set of all the parts, where parts θzc−1+1, . . . θzc , belonging to the component 

ωc · z0 = 0, zc =
∑c

s=1 us

Variables:

Bj,m Beginning time of part j on machine m

Cj,m Completion time of part j on machine m

Cωc Completion time of component ωc

C�p Completion time of product �p

Cmax Makespan of all products

Binary variables:

The mathematical model of the presented DAPFSP can be formulated as follows:

 

Xi,j =
{

1 if part j is processed immediately after part i
0 otherwise

Yc,f =
{

1 if component c is process ed in factory f
0 otherwise

Zc,c′ =
{

1 if component c is assembled immediately after component c′ on the assembly machine
0 otherwise

Hp,p′ =
{

1 if product p is assembled immediately after product p′ on the final assembly factory
0 otherwise

(1)min Cmax

(2)

S. T

χ
∑

i=0,i �=j

Xi,j = 1, j = 1, 2, . . . ,χ

(3)
χ
∑

j=0,j �=i

Xi,j = 1, i = 1, 2, . . . ,χ

(4)
F
∑

f=1

Yc,f = 1, c = 1, 2, . . . ,β

(5)
zl−1
∑

i=1

zl
∑

j=zl−1+1

Xi,j +
zβ
∑

i=zl+1

zl
∑

j=zl−1+1

Xi,j = 1, l = 1, 2, . . . ,β

(6)Cj,m ≥ Cj,m−1 + Pj,m, j = 1, 2, . . . ,χ , m = 2, 3, . . . ,M

(7)Cj,m ≥ Ci,m + Pi,m + (Xi,j − 1) · T , i = 1, 2, . . . ,χ , j = 1, 2, . . . ,χ , m = 1, 2, . . . ,M

(8)Cωc ≥ Cj,M + Aωc , c = 1, 2, . . . ,β , j = zl−1 + 1, . . . , zl
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Formulation (1) illustrates the objective is minimizing the makespan of all products. Constraint sets (2) and 
(3) mandate that every part has only one immediate successor and one immediate predecessor. Constraint set 
(4) ensures that each component must be assigned to only one factory. Constraint set (5) enforces that the parts 
belonging to the same component should be processed in succession and cannot be separated. Constraint set 
(6) makes sure that a part cannot start until the previous operation is completed. Constraint set (7) indicates 
that one machine can only process a part at a time. Constraint set (8) guarantees that the assembly operation of 
a component can only be started after all parts belonging to it are completed. Constraint set (9) enforces that the 
assembly machine cannot assemble two components at the same time. Constraint set (10) requires that one prod-
uct cannot be assembled in the final assembly factory before all the components of the product are completed. 
Constraint set (11) indicates that the final assembly factory cannot assemble two products at a time. Constraint 
set (12) defines the makespan of all products. Constraint sets (13)-(16) define the domain of decision variables.

An illustrative example
Sequence-based variables are used with a set of min {F, α, β} + 1 dummy parts. Consider an example with 
F = 2 , M = 2 , α = 3 , β = 6 , χ = 12 , �1 = {1, 2} , �2 = {3, 4} , �3 = {5, 6} , δ1 = {1, 2} , δ2 = {3, 4} , δ3 = {5, 6} , 

(9)Cωc ≥ Cωc′ + Aωc + (Zc,c′ − 1) · T , c = 1, 2, . . . ,β , c′ = 1, 2, . . . ,β , c �= c′

(10)C�p ≥ Cωc + A�p , p = 1, 2, . . . ,α, c = kp−1 + 1, . . . , kp

(11)C�p ≥ C�p′ + A�p + (Hp,p′ − 1) · T , p = 1, 2, . . . ,α, p′ = 1, 2, . . . ,α, p �= p′

(12)Cmax ≥ C�p , p = 1, 2, . . . ,α

(13)Xi, j ∈ {0, 1}, ∀i, j, i �= j

(14)Yc,f ∈ {0, 1}, ∀c, f

(15)Zc,c′ ∈ {0, 1} ∀c, c′, c �= c′

(16)Hp,p′ ∈ {0, 1}, ∀p, p′, p �= p′.

Table 1.  Processing time for all parts, components and products.

Part 1 2 3 4 5 6 7 8 9 10 11 12

M1 3 4 5 2 2 3 2 5 2 4 3 5

M2 2 3 2 3 5 3 3 4 3 3 5 3

Component 1 2 3 4 5 6

MA 3 4 6 5 6 4

Product 1 2 3

MAF 6 5 4

Figure 2.  Gantt chart of the example.
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δ4 = {7, 8} , δ5 = {9, 10} , δ6 = {11, 12} . The processing time of products, components and parts are shown 
in Table 1. One feasible solution is X0,1 = X1,2 = X2,3 = X3,4 = X4,5 = X5,6 = X6,0 = X0,7 = X7,8 = X8,9 = X9,10 = X10,11 = 
X11,12 = X12,0 = 1, where 0 is the dummy part. The part sequence is {0, 1, 2, 3, 4, 5, 6, 0, 7, 8, 9, 10, 11,12, 0}, where 
the part sequence {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11,12} are assigned to the factory 1 and 2, respectively. Then the 
component processing sequence is {1, 2, 3} and {4, 5, 6} in the factory 1 and 2, respectively. Finally, the finished 
components are transported to the assembly factory to be assembled into products. In the assembly factory, 
product sequence is {1, 3, 2} and the makespan of the example is 38 (see in Fig. 2).

The canonical SSO algorithm
The concept and theory of the social spider optimization algorithm was developed by Cuevas and  Cienfuegos44 
which mathematically models the behaviour of social spiders. The validity of SSO has been proved in many dif-
ferent optimization  problems45–47.

The search space of SSO is regarded as a communal web. Social spiders use the communal web as a commu-
nication media to perform cooperative  behavior48, such as mating, prey capturing and social  contact49. Different 
from most of existing swarm algorithms, the SSO divides the social spider population into two different groups: 
the female group and the male group. According to gender, each social spider is executed by a different set of 
evolution operators. Moreover, SSO adopts mating operator to exchange information among two groups and 
produce offspring. These operators enhance the search ability of SSO to find the optimal solution. In this way, 
the SSO can avoid premature convergence and keep the balance between exploration and exploitation.

The proposed three social spider optimization algorithms
The canonical SSO cannot be used directly for discrete optimization problem because it is designed to solve con-
tinuous optimization problem. Therefore, this section presents three discrete SSO algorithms for the proposed 
DAPFSP in this paper. We first introduce the solution representation, the initialization method, cooperative 
operators, three neighborhood operators, three local search methods, two restart producers, and present three 
discrete SSO algorithms in detail.

Solution representation
Solution representation is an important part in the design of scheduling algorithms. We design a three-level 
representation for the DAPFSP presented in this paper. The representation includes three parts: a product 
sequence, α component sequences and β part sequences. The product sequence π introduce the processing 
sequence of all the products in the assembly factory. In components manufacturing factories, the components 
belonging to products are assigned according to the product sequence. In other words, the components of the 
first product in the sequence are assigned first. And then, the components belonging to the second product in 
the sequence are considered. The part sequence of a component is a permutation of all the parts belonging to 
the component. Suppose a solution s, its product sequence can be expressed as π = {π1,π2, . . . ,πα} ( π1 : the first 
product of the product sequence). The component sequence of product πk is �πk = {�πk ,1,�πk ,2, . . . ,�πk ,nπk

} , 
where nπk is the number of components belonging to product πk . The part sequence of component �πk ,h is 
δ�πk ,h

=
{

δ�πk ,h
,1, δ�πk ,h

,2, . . . , δ�πk ,h
,u�πk ,h

}

 , where u�πk ,h
 is the number of parts belonging to component �πk ,h . 

An illustrative example is presented in “An illustrative example” section. The product sequence in the assembly 
factory is {1, 3, 2}. Three component sequences are �1 = {1, 2} , �2 = {3, 4} and �3 = {5, 6} . Six part sequences 
are δ1 = {1, 2} , δ2 = {3, 4} , δ3 = {5, 6} , δ4 = {7, 8} , δ5 = {9, 10} , δ6 = {11, 12}.

Initial population
The initial population has an important effect on the quality of the solution for swarm intelligence algorithms. In 
order to improve the quality of the initial population, there are three interdependent decisions need to be dealt 
with for the presented DAPFSP: (1) determination of product sequence in the assembly factory; (2) allocation 
of components to components manufacturing factories and determination of components sequence for each 
product; (3) determination of part sequence for each component.

Inspired by the pioneering work of Naderi and  Ruiz11, we assigned each component to the factory which 
has the minimum makespan among components manufacturing factories when including the component. To 
maintain the diversity of the population and save computation time, the product sequence and the part sequence 
for each component are generated randomly.

Population division and weight assignation
The SSO divides the social spider population (denoted as S ) into two different groups: female spiders (denoted as 
F ) and male spiders (denoted as M ). In the social spider population, the number of female spiders (denoted as 
Nf  ) outnumber male spiders (denoted as Nm ). and Nf  usually make up 65–90% of the population size (denoted 
as N  ). In this paper, the female ratio is set to 70%, as in  paper45. Therefore, Nf  is calculated according to the 
following formula:

where the mathematical symbol | | can take an integer as the number of female spiders. The num-
ber of male spiders Nm = N − Nf  . The population S = {s1, s2, . . . , sN } is composed of a set of female 
spiders ( F = {f1, f2, . . . , fNf

} ) and a set of male individuals ( M = {m1,m2, . . . ,mNf
} ). As S = F ∪M

,S = {s1 = f1, s2 = f2, . . . , sNf
= fNf

, sNf+1 = m1,sNf+2 = m2, ..., sN = mNm}.

(17)Nf = |70% · N |
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In the proposed three SSO algorithms, the solution quality of the individual (spider) i is measured by a weight 
wi . The following equation is used to calculated the weight wi.

Cooperative operators
The search space of the SSO is assumed as a communal web, in which social spiders update positions. In the 
communal web, female and male social spiders update positions according to different cooperative operators.

Female cooperative operator
Female spiders have two behavior patterns for updating their positions: attraction movement and repulsion 
movement. The selection of the final behavior pattern for the female spider fi is influenced by three factors: the 
vibration Vc,i perceived by fi form the nearest spider (denoted as sc ) with a better weight; the vibration Vb,i per-
ceived by fi form the best spider (denoted as sb ) of the population; and a stochastic movement. The movement 
of the female spider fi can be defined as follows:

where fnew,i is the newly generated position of the female spider fi . r1 , r2 , r3 , r4 and r5 are five random numbers 
between [0, 1] . PF is a threshold which determines the selection of attraction movement or repulsion movement. 
In this paper, PF is set to 0.7 for three proposed SSO algorithms. wc and wb are weights of the nearest spider 
and the best spider, respectively. The notation || · || represents the Euclidean distance. The final random item 
r3(r4 − 0.5) donates a stochastic movement.

Male cooperative operator
The male spiders are divided into dominant members and non-dominant members according to weight. mm is 
the male spider whose weight is the median value of the male population. A male spider with a weight greater 
than the median value is assigned to dominant members; otherwise, it is regarded as one non-dominant member. 
Dominant male spiders tend towards the nearest female member (denoted as fn ) to generate a new generation. 
On the contrary, non-dominant male spiders move towards the center of the male group to utilize the remaining 
resources. The male cooperative operator can be formulated as follows:

where mnew,i is the newly generated position of the male spider mi . r1 , r2 and r3 are random numbers between 
[0, 1] . Vn,i is the vibration perceived by mi form the nearest female spider fn . wi , wm and wa is the weight of mi , mm 
and ma , respectively. Wmean is the weighted mean of male spiders. wn is the weight of the nearest female spider fn.

The male spiders are sorted descending by their weight. The sequence after permutation is 
M = {m1,m2, . . . ,mm, . . . ,mNf

} . The movement of dominant male spiders and non-dominant male spiders 
are modeled by formulas (20-1) and (20-2), respectively.

(18-1)wi =
worst − Cmax(si)

worst − best + c

(18-2)worst = max(Cmax(si)) i ∈ (1, 2, . . . ,N)

(18-3)best = min(Cmax(si)) i ∈ (1, 2, . . . ,N)

(18-4)c = 0.001

(19-1)fnew,i =















fi + r1 · Vc,i · (sc − fi)+ r2 · Vb,i

×(sb − fi)+ r3(r4 − 0.5)
r ≤ PF

fi − r1 · Vc,i · (sc − fi)− r2 · Vb,i

×(sb − fi)+ r3(r4 − 0.5)
r > PF

(19-2)Vc,i = wc · e−
√

||sc−fi ||

(19-3)Vb,i = wb · e−
√

||sb−fi ||

mnew,i =







mi + r1 · Vn,i · (fn −mi)

+r2(r3 − 0.5)
wi > wm (20-1)

mi + r1 · (Wmean −mi) wi ≤ wm (20-2)

(20-3)Vn,i = wn · e−
√

||fn−mi ||

(20-4)Wmean =
Nm
∑

a=1

ma · wa/

Nm
∑

a=1

wa
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Mating operator
Dominant male spiders and female spiders perform mating operator in the communal web. The radius (denoted 
as r ) limits the mating range of each dominant male spider. For one dominant male spider mk , it finds out a set of 
female spiders (denoted as Ek ) within the mating range. The mating operator is performed in set Tk = Ek ∪mk . If 
Ek is a non-empty set, the mating operator is executed to generate a new individual mnew ; otherwise, the mating 
operator is not performed. The radius is calculated by the following formula:

where smax and smin represent the boundary of search space. Recall the presented solution representation, there 
are smax = {p, p− 1, p− 2, . . . , 1} and smin = {1, 2, . . . , p} . ratio ∈ (0, 1) is a factor controlling the radius r.

If the new individual mnew is generated, compare its weight with the weight of the worst individual in the 
population. If the new individual mnew is better than the worst individual, the worst individual is replaced by 
mnew , and mnew inherits the gender and index of the replaced individual. Otherwise, the new individual mnew is 
ignored and the population remain unchanged.

Neighborhood operators and local search strategies
Neighborhood operators play an important role in designing a heuristic algorithm and it can enhance the 
exploitation ability of the algorithm. According to the representation, there are three types of neighborhoods. 
The first one is based on the product sequence, the second type is based on the component sequence, the third 
kind is based on the part sequence. For one solution, we can shift its product sequence and keep the other two 
types of sequences unchanged. Shift operators are widely used in scheduling problems. A shift operator moves 
one element in a sequence to another location and keeps the other elements in the same position. Considering a 
product sequence π =

{

π1,π2, . . . ,πk ,πk+1, . . . ,πα
}

 , the first product π1 can be shifted to the kth position and 
generating a new sequence πnew =

{

π2, . . . ,πk ,π1,πk+1, . . . ,πα
}

 , while keeping the component sequence of 
each product and part sequence of each component unchanged. The same shift operator applies to the compo-
nent-based neighborhood and part-based neighborhood.

According to the presented three neighborhood operators, we design three local search strategies. The first 
local search strategy is designed based on the neighborhood operator of the produce sequence. For an individual 
si with a product sequence π =

{

π1,π2, . . . ,πk ,πk+1, . . . ,πα
}

 , the product πk can be inserted into α − 1 possible 
positions and generate α − 1 different neighborhood solutions. s∗i  is the best solution of all the α − 1 neighbor-
hood solutions. If s∗i  is better than si , replace si with s∗i  . Otherwise, si remains unchanged. The above process is 
performed for each product in the product sequence. The procedure of product-based local search strategy is 
presented in Algorithm 1.

Algorithm 1 Product-based local search
The second loca l  search st rateg y  i s  des igned based on component  sequences . 

�πk = {�πk ,1,�πk ,2, . . . ,�πk ,h,�πk ,h+1, . . . ,�πk ,nπk
} is the component sequence of product πk , where nπk is 

the number of components belonging to product πk . The component �πk ,h can be inserted into nπk − 1 possible 
positions and produce nπk − 1 different neighborhood solutions. s∗i  is the best solution of all the nπk − 1 neigh-
borhood solutions. If s∗i  is better than si , replace si with s∗i  . Otherwise, si remains unchanged. The above process 
is performed for each component of the product πk . The procedure of component-based local search strategy 
is illustrated in Algorithm 2.

(21)r = �smax − smin� · ratio
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Algorithm 2 Component-based local search
The third local search strategy is designed based on part sequences. The part sequence of component �πk ,h 

is δ�πk ,h
=

{

δ�πk ,h
,1, δ�πk ,h

,2, ..., δ�πk ,h
,j , δ�πk ,h

,j+1, ..., δ�πk ,h
,u�πk ,h

}

 , where u�πk ,h
 is the number of parts belonging 

to component �πk ,h . The part δ�πk ,h
,j can be inserted into u�πk ,h

− 1 possible positions and can produce u�πk ,h
− 1 

different neighborhood solutions. s∗i  is the best solution of all the u�πk ,h
− 1 neighborhood solutions. If s∗i  is better 

than si , replace si with s∗i  . Otherwise, si remains unchanged. The above process is performed for each part of the 
component �πk ,h . The procedure of part-based local search strategy is shown in Algorithm 3.
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Algorithm 3 Part-based local search

Restart procedure
Opposition‑based restart procedure
In order to maintain the diversity of the population and avoid premature convergence, we introduce an oppo-
sition-based restart (OBR) procedure that combines restart procedure with opposition-based learning (OBL). 
The OBL was proposed by  Tizhoosh50 and its effective has been proved in optimization  problems51–55. Xu et al.56 
described in detail the concept of OBL, and the process of generating opposite numbers is presented as follows.

Definition 1 Let x ∈ [a, b] be a real number. The opposite number x̃ can be defined by

Similarly, the opposite vector for a D-dimensional vector can be defined as follows:

Definition 2 Let X = (x1, x2, . . . , xD) be a D-dimensional vector, where xi ∈ [ai , bi] , i ∈ 1, 2, ...,D . the opposite 
vector X̃ = (x̃1, x̃2, . . . , x̃D) can be defined by

For example, there is the product permutation π = {3, 2, 7, 6, 8, 1, 9, 4, 5} consists of 9 products. According to 
the definition 2, the opposite product permutation can be calculated as π̃ = {7, 8, 3, 4, 2, 9, 1, 6, 5}.

The minimum makespan of each iteration is stored. If the minimum is not improved in ten consecutive itera-
tions, we adopt the following OBR procedure to increase population diversity.

Step 1 Sort all spiders in the population in descending order of weight.
Step 2: Take the top 10% of individuals and calculate their opposite positions based on the sequence of 

products.
Step 3 An opposite position is accepted if the makespan is better, while a poor opposite position (denoted as 

π̃ ) is accepted according to the following probability pπ̃:

(22)x̃ = a+ b− x.

(23)x̃i = ai + bi − xi .

(24)pπ̃ =
worst − Cmax(π̃)

worst − best + c
.
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Step 4 Among the remaining 90% individuals, randomly select the same number of individuals as the opposite 
positions, and replace the selected individuals with the opposite positions.

Inverse‑based restart procedure
Since the permutation of components and parts is not a set of consecutive integers, the OBL cannot be used 
directly. For the component-based sequence and part-based sequence, we apply an inverse operation to generate 
new permutations. The procedure of inverse operator is shown as follows: (a) randomly select two points P1 and 
P2 of the permutation; (b) reverse the sequence between P1 and P2. Figure 3 presents an instance of the inverse 
operator. The procedure of inverse-based restart (IBR) is shown as follows:

Step 1 Sort all spiders in the population in descending order of weight.
Step 2 Take the top 10% of individuals and calculate their inverse neighborhoods based on the sequence of 

components and parts.
Step 3 An inverse position is accepted if the makespan is better, while a poor inverse position (denoted as π̃ ) 

is accepted according to the formula (24).
Step 4 Among the remaining 90% individuals, randomly select the same number of individuals as the inverse 

neighborhoods, and replace the selected individuals with the opposite positions.

SSO with hybrid local search strategies

Three local search strategies mentioned above are quite different, and they can enhance the search ability of 
discrete SSO. In order to make full use of the advantages of these strategies and obtain the optimal solution or 
the near optimal solution, we propose a hybrid SSO (HSSO for short) that adopts these strategies simultaneously. 
The procedure of HSSO is illustrated in Algorithm 4.

Algorithm 4 HSSO

HSSO with restart procedures

With the evolution of HSSO, an increasing number of individuals have a tendency to converge together, so the 
algorithm may be trapped in local optimal. To maintain the diversity of the population and avoid premature 
convergence, we present the HSSO with two restart procedures (HSSOR for short). The procedure of HSSOR 
is shown in Algorithm 5.

Figure 3.  An example of the inverse operator.
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Algorithm 5 HSSOR

HSSOR with self-adaptive selection probability
Since the OBR and product-based local search strategy operate the product sequence, and a product is composed 
of a series of components and parts, they are beneficial to enhance the exploration ability of the algorithm. The 
IBR and component-based local search strategy and the part-based local search strategy are based on shifting of 
components and parts, so they can improve the exploitation ability of the algorithm. The OBR and product-based 
local search strategy are more needed in the early generations, because almost all individuals are far from the 
optimal solution. In the final iterations, some individuals of the population are close to the optimum solution or 
near optimal solutions. The IBR and component-based and part-based local search strategies are more needed. 
To balance exploration and exploitation, a self-adaptive selection probability (denoted as Psa ) is introduced to 
control the use of two restart procedures and three local search strategies. The parameter Psa is defined by the 
following formula:

where t  and T are the current elapsed time and maximum elapsed time respectively. ρmin and ρmax are deci-
mals between 0 and 1. The component-based and part-based local strategies are adopted with probability Psa . 
Otherwise, the product-based local search strategy is used. Algorithm 6 illustrates the procedure of HSSO with 
self-adaptive selection probability (HSSORP for short).

Algorithm 6 HSSORP

(25)Psa = ρmin +
t

T
· (ρmax − ρmin)



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6370  | https://doi.org/10.1038/s41598-024-57044-8

www.nature.com/scientificreports/

Experiment analyses
Experimental design
Since the DAPFSP presented in this paper is an extension of the innovative work of Hatami et al.12,13 and Pan 
et al.24, the instances of the proposed problem are extended based on the 810 large instances of Hatami et al.12. We 
set instances with the number of parts {100, 200, 500}, the number of machines in the production stage M ∈{5, 
10, 20}, the number of components manufacturing factories F ∈{4, 6, 8}, the number of components β ∈{30, 40, 
50}. To satisfy the assumption that each product is composed of at least two components and limit the number 
of instances, we assign 30 components, 40 components and 50 components to 10 products, 15 products and 20 
products, respectively. For each instance, all time indexes are set to integers. The processing time of each part 
in different product stages is fixed to U[1, 99]. The assembly time of each component is set to U[1× n , 99× n ], 
where n is the number of parts belonging to the component.

The assembly time of each product in the assembly factory is set to U[1× n , 99× n ], where n is the number 
of components belonging to the product. There are 3× 3× 3× 3 = 81 different combinations and each combina-
tion has 10 replications. The 810 instances zip file is available. For example, the notation “I_100_5 _4_30_10_1” 
means an instance consists of 100 parts, 5 machines, 4 components manufacturing factories, 30 components and 
10 products. The last number ‘1’ of the notation indicates that the instance is the first one of the combination.

The relative percentage deviation (RPD) is used to measure solutions obtained by different algorithms. The 
formula for calculating RPD is as follows:

where is Cmax the makespan calculated by one algorithm, and Cbest is the minimum makespan obtained by all 
comparing algorithms.

Experimental calibration
In this subsection, we calibrate the proposed three SSO variants and comparing algorithms. This study is the first 
work to solve the DAPFSP with the assumption that each component of the final product is composed of several 
parts. This kind of problem is widespread in the actual production process, especially in auto parts supply chain, 
but there is no published works to make comparisons. To verify the validity of the proposed three algorithms, 
we conduct a comparison with two excellent work on the distributed flowshop scheduling problem including 
 CMA17 and  EDA19. By incorporating the presented solution representation and the above-mentioned objective 
function, we adopt CMA and EDA to the proposed DAPFSP.

The parameters of the algorithm affect its performance. To calibrate these five algorithms, we generate an 
instance for each combination randomly and employ Taguchi  method57. To set parameters effectively, we con-
ducted preliminary experiments. For the HSSORP, the population size Ps , the levels of the self-adaptive selection 
probability Psa ( ρmin–ρmax ), and the parameter ratio of mating operator, are shown in Table 2.

We use C++ o code the HSSOPR in VS 2015 and the elapsed CPU time is set to 20× χ ×M milliseconds. For 
three critical parameters, we chose the orthogonal array  L16  (43) that test 16 combinations of different parameter 
levels. The HSSOPR runs 20 times independently for each combination on a computer with 8 Intel(R) Core (TM) 
i5-10210U CPU @ 1.60GHz, 8 GB RAM and Windows 10 operation system. The average RPD (aRPD) values is 
calculated and presented in Table 3. The parameter level trend is shown in Fig. 4. According to Fig. 4, HSSORP 
performs better with the following parameters: Ps = 100, ρmin = 0.2, ρmax = 0.8, ratio = 0.6. The other four algo-
rithms are calibrated by the same method, and Table 4 details parameters of all five algorithms.

Computational evaluation
We code all the algorithms using C++ in VS 2015 and solve the 810 instances on the above-mentioned computer. 
To make the experiment fair, instead of using the number of iterations as the termination condition, we let each 
algorithm run independently for the same time. Termination is triggered when the algorithm reaches the maxi-
mum elapsed CPU time t = τ × χ ×M milliseconds and the parameter τ is set to is set to three values 20, 40, 
and 60 respectively. In the given three different termination times, each algorithm runs 20 times independently 
for 810 instances. The best solutions of 810 instances calculated by each algorithm can be accessed. Tables 5, 6 
and 7 presents the summarized aRPD values of three terminations.

Table 5 reports the aRPD values with CPU time t = 20× χ ×M milliseconds. It can be seen from the last row 
that HSSOR and HSSORP performs better than HSSO, which proves the effectiveness of the presented restart 
procedures. There is only a small difference in the performance of HSSOR and HSSORP. EDA gets the worst 
performance with 12.248% aRPD, which is almost 65 times that of HSSOR. This is because the search method 

(26)RPD =
Cmax − Cbest

Cbest
× 100

Table 2.  Parameter values.

Parameter

Values

1 2 3 4

Ps 50 100 150 200

Psa(ρmin–ρmax) 0.1–0.5 0.2–0.8 0.2–0.9 0.3–0.8

Ratio 0.6 0.7 0.8 0.9
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Table 3.  Response values.

Ps Pc Cn aRPD

1 1 1 0.564

1 2 2 0.833

1 3 3 0.922

1 4 4 0.945

2 1 2 0.856

2 2 1 0.467

2 3 4 1.020

2 4 3 0.733

3 1 3 1.327

3 2 4 0.923

3 3 1 0.671

3 4 2 1.180

4 1 4 1.620

4 2 3 0.978

4 3 2 1.542

4 4 1 0.792

Figure 4.  Factor level trend.

Table 4.  Parameters of five algorithms.

Algorithms Parameter values

HSSO Ps = 100, ratio = 0.6

HSSOR Ps = 100, ratio = 0.6

HSSORP Ps = 100, ρmin = 0.2, ρmax = 0.8, ratio = 0.6

CMA Ps = 50, LS = 100

EDA Ps = 50, γ = 0.2
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of EDA may not be suitable for the proposed problem. CMA performs much better than EDA. Moreover, the 
proposed three algorithms outperform the comparison algorithms. Tables 6 and 7 present the aRPD values 
with CPU time t = 40× χ ×M milliseconds and CPU time t = 60× χ ×M milliseconds respectively. As we 
can see from two tables, as running time increases, our proposed algorithm can maintain a very large lead in 
performance. At CPU time t = 40× χ ×M milliseconds, HSSOR and HSSORP are almost equal, while HSSORP 
outperforms HSSOR at CPU time t = 60× χ ×M milliseconds.

Table 5.  aRPD at CPU time t = 20× χ ×M ms. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts ( χ)

 100 0.628 0.454 0.459 1.542 6.209

 200 0.106 0.064 0.083 2.805 13.877

 500 0.094 0.050 0.052 3.400 16.659

Components ( β)

 30 0.246 0.156 0.187 2.923 11.754

 40 0.297 0.235 0.201 2.685 12.691

 50 0.286 0.177 0.207 2.139 12.300

Machines ( M)

 5 0.352 0.272 0.285 2.672 12.403

 10 0.300 0.178 0.183 2.567 12.181

 20 0.177 0.119 0.127 2.509 12.160

Factories ( F)

 4 0.226 0.152 0.150 2.622 12.369

 6 0.249 0.164 0.157 2.541 12.258

 8 0.354 0.251 0.287 2.584 12.118

Products ( α)

 10 0.246 0.156 0.187 2.923 11.754

 15 0.297 0.235 0.201 2.685 12.691

 20 0.286 0.177 0.207 2.139 12.300

Means 0.276 0.189 0.198 2.582 12.248

Table 6.  aRPD at CPU time t = 40× χ ×M ms. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts ( χ)

 100 0.469 0.318 0.336 1.588 5.861

 200 0.118 0.076 0.076 2.581 13.175

 500 0.117 0.088 0.072 3.174 16.071

Components ( β)

 30 0.197 0.144 0.143 2.672 11.358

 40 0.258 0.162 0.190 2.604 12.114

 50 0.248 0.176 0.151 2.067 11.636

Machines ( M)

 5 0.266 0.223 0.241 2.499 11.719

 10 0.235 0.134 0.138 2.486 11.647

 20 0.203 0.126 0.104 2.358 11.742

Factories ( F)

 4 0.181 0.137 0.132 2.487 11.843

 6 0.221 0.143 0.160 2.393 11.720

 8 0.302 0.202 0.192 2.463 11.544

Products ( α)

 10 0.197 0.144 0.143 2.672 11.358

 15 0.258 0.162 0.190 2.604 12.114

 20 0.248 0.176 0.151 2.067 11.636

Means 0.235 0.161 0.161 2.448 11.703
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We analyze the results closely. EDA is taken out of the analysis because it is not suitable for the proposed 
problem. Figures 5, 6 and 7 present box plots for four comparison algorithms at three diffident CPU times. It can 
be clearly observed that: (1) statistically, our algorithms are much better than CMA, and this can prove that our 
strategies and algorithms is effective; (2) HSSOR and HSSORP is better than HSSO, and this can illustrate the 
effectiveness of the proposed restart procedures; (3) HSSOR is slightly better than HSSORP, and this can show 
that using three local search strategies simultaneously can achieve better results.

In addition, five parameters including the number of parts χ, the number of components β, the number of 
machines M, the number of factories F, and the number of products α determine the proposed problem. We 
conduct data analysis to figure out the effects of these parameters on the four comparison algorithms. Figure 8 
shows variation trend of aRPD for different value levels of five parameters. It can be seen from Fig. 8 that both 
of HSSOR and HSSORP have very slight fluctuations and small values which illustrate that both of them have 
excellent robustness and performance. According to the data, all values of HSSOR for each parameter are smaller 
than HSSORP, which indicates HSSOR is better than HSSORP.

Finally, to illustrate the proposed DAPFSP intuitively, Fig.  9 reports the Gantt chart of instance 
“I_100_5_4_30_10_1” with the best solution we found so far.

Table 7.  aRPD at CPU time t = 60× χ ×M milliseconds. Better results are in bold.

HSSO HSSOR HSSORP CMA EDA

Parts ( χ)

 100 0.239 0.111 0.133 2.108 5.561

 200 0.186 0.134 0.134 2.131 12.397

 500 0.256 0.130 0.185 2.683 15.182

Components ( β)

 30 0.242 0.113 0.131 2.391 10.874

 40 0.209 0.137 0.184 2.423 11.452

 50 0.231 0.124 0.137 2.107 10.814

Machines ( M)

 5 0.235 0.128 0.165 2.489 11.122

 10 0.222 0.125 0.150 2.295 10.959

 20 0.224 0.122 0.137 2.136 11.059

Factories ( F)

 4 0.223 0.119 0.139 2.227 11.430

 6 0.214 0.148 0.155 2.305 11.044

 8 0.245 0.107 0.158 2.389 10.666

Products ( α)

 10 0.242 0.113 0.131 2.391 10.874

 15 0.209 0.137 0.184 2.423 11.452

 20 0.231 0.124 0.137 2.107 10.814

Means 0.227 0.125 0.151 2.307 11.047

Figure 5.  Box plots for four comparison algorithms at CPU time t = 20× χ ×M ms.
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Conclusions
In conclusion, our study makes several contributions from different perspectives: theoretical, managerial, and 
practical. (i) Theoretical contribution: This paper presents the first study on DAPFSP considering the intricate 
nature of modern supply chains, where components of one final product are manufactured by multiple compa-
nies. Our proposed problem formulation requires determining the optimal product sequence in the assembly 
factory, as well as the component sequence and part sequence in multiple component manufacturing factories. 
To address this challenge, we introduce a novel three-level representation and an initialization method, along 
with three local search methods to enhance the algorithm’s search ability. Additionally, to prevent premature 
convergence, we design two restart procedures tailored to the problem’s characteristics. Furthermore, we propose 
three discrete SSO algorithms for the proposed DAPFSP. Our experiments, calibrated using the Taguchi method, 
demonstrate the efficiency of these algorithms in solving the problem. (ii) Our study provides insights into the 
critical role of efficient scheduling in supply chain management. By addressing a crucial aspect of production 
processes, it partially bridges the gap between academic research and practical applications. However, it is 
important to acknowledge that our research does not encompass all constraints present in practical production 
scenarios, such as transportation  costs58, production capacity constraints, setup times, machine maintenance, and 
rescheduling in  emergencies59. These aspects are vital considerations for real-world applications and should be 
incorporated into future research endeavors. (iii) In the view of practical standpoint, our research sets the stage 
for further exploration into the integration of manufacturing processes in Industry 4.060. Moving forward, we 
are committed to addressing the aforementioned constraints and designing efficient scheduling algorithms that 
can significantly enhance production efficiency in practical settings. By focusing on the challenges encountered 

Figure 6.  Box plots for four comparison algorithms at CPU time t = 40× χ ×M ms.

Figure 7.  Box plots for four comparison algorithms at CPU time t = 60× χ ×M ms.
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Figure 8.  Variation trend of aRPD for different value levels of five parameters.

Figure 9.  Gantt chart of instance “I_100_5_4_30_10_1”.
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in real-world production environments, we aim to contribute to the advancement of manufacturing processes 
and facilitate the transition towards Industry 4.0.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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