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A generalisation of the method 
of regression calibration 
and comparison with Bayesian 
and frequentist model averaging 
methods
Mark P. Little 1,2*, Nobuyuki Hamada 3 & Lydia B. Zablotska 4

For many cancer sites low-dose risks are not known and must be extrapolated from those observed 
in groups exposed at much higher levels of dose. Measurement error can substantially alter the dose–
response shape and hence the extrapolated risk. Even in studies with direct measurement of low-
dose exposures measurement error could be substantial in relation to the size of the dose estimates 
and thereby distort population risk estimates. Recently, there has been considerable attention paid 
to methods of dealing with shared errors, which are common in many datasets, and particularly 
important in occupational and environmental settings. In this paper we test Bayesian model averaging 
(BMA) and frequentist model averaging (FMA) methods, the first of these similar to the so-called 
Bayesian two-dimensional Monte Carlo (2DMC) method, and both fairly recently proposed, against 
a very newly proposed modification of the regression calibration method, the extended regression 
calibration (ERC) method, which is particularly suited to studies in which there is a substantial 
amount of shared error, and in which there may also be curvature in the true dose response. The 
quasi-2DMC with BMA method performs well when a linear model is assumed, but very poorly when 
a linear-quadratic model is assumed, with coverage probabilities both for the linear and quadratic 
dose coefficients that are under 5% when the magnitude of shared Berkson error is large (50%). For 
the linear model the bias is generally under 10%. However, using a linear-quadratic model it produces 
substantially biased (by a factor of 10) estimates of both the linear and quadratic coefficients, with the 
linear coefficient overestimated and the quadratic coefficient underestimated. FMA performs as well 
as quasi-2DMC with BMA when a linear model is assumed, and generally much better with a linear-
quadratic model, although the coverage probability for the quadratic coefficient is uniformly too 
high. However both linear and quadratic coefficients have pronounced upward bias, particularly when 
Berkson error is large. By comparison ERC yields coverage probabilities that are too low when shared 
and unshared Berkson errors are both large (50%), although otherwise it performs well, and coverage 
is generally better than the quasi-2DMC with BMA or FMA methods, particularly for the linear-
quadratic model. The bias of the predicted relative risk at a variety of doses is generally smallest for 
ERC, and largest for the quasi-2DMC with BMA and FMA methods (apart from unadjusted regression), 
with standard regression calibration and Monte Carlo maximum likelihood exhibiting bias in predicted 
relative risk generally somewhat intermediate between ERC and the other two methods. In general 
ERC performs best in the scenarios presented, and should be the method of choice in situations where 
there may be substantial shared error, or suspected curvature in the dose response.
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Moderate and high doses of ionising radiation are well established causes of most types of  cancer1,2. There is 
emerging evidence, particularly for leukaemia and thyroid cancer, of risk at low dose (< 0.1 Gy)  radiation3–6 
(roughly 50 times the dose from background radiation in a year). For most other cancer endpoints it is necessary 
to assess risks via extrapolation from groups exposed at moderate and high levels of  dose7–13. Such extrapolations, 
which are dependent on knowing the true dose–response relationship, as inferred from some reference moderate/
high-dose data (very often the Japanese atomic bomb survivors), are subject to some uncertainty, not least that 
induced by systematic and random dosimetric errors that may be present in that moderate/high-dose  data1,14. 
Extensive biostatistical research over the last 30 years have done much to develop understanding of this  issue15–30 
and in particular the role played by various types of dose measurement  error31. Among the simplest methods of 
correction for dose error, regression calibration, which entails substitution of the conditional expectation of the 
true dose given the observed dose, is straightforward to apply, and is often used to correct for classical  error31. 
However, it only takes account of the 1st order dose error terms in the Taylor expansion of the likelihood, and 
does not take account of correlations between dose  errors32. It is also prone to bias when dose errors are large, 
or errors are differential, or the dose response has substantial  curvature33. Other methods of correction for dose 
error, in particular Monte Carlo maximum likelihood (MCML)25,26,30,34, and fully Bayesian  methods21–23,29, both 
of which take full account of the uncertainty in doses (in particular 2nd and higher order dose error terms in 
the Taylor expansion of the likelihood), can work better in these circumstances.

A variant of the commonly used method of regression  calibration31 has been very recently proposed which 
is particularly suited to studies with substantial shared error with dose response non-linearity32. This so-called 
extended regression calibration (ERC) method can be used in settings where there is a mixture of Berkson and 
classical  error32. In fits to synthetic datasets in which there is substantial upward curvature in the true dose 
response, and varying (and sometimes substantial) amounts of classical and Berkson error, the ERC method 
generally outperformed both standard regression calibration, MCML and unadjusted regression, particularly 
with respect to the coverage probabilities of the quadratic coefficient, and for larger magnitudes of the Berkson 
error, whether this is shared or  unshared32.

A Bayesian model averaging (BMA) method has been also recently proposed, the so-called 2-dimensional 
Monte Carlo with Bayesian model averaging (2DMC with BMA)  method28, which has been used in fits to radia-
tion thyroid nodule  data35. The so-called frequentist model averaging (FMA) model has also been recently pro-
posed, although only fitted to simulated  data36. In the present paper we shall assess the performance of a variant 
implementation of the 2DMC with BMA method, which is more closely aligned with standard implementations 
of  BMA37, and FMA against ERC, making also comparisons with other methods of correction for dose error 
using simulated data. The simulated data used is exactly as in the previous  report32.

Methods
Synthetic data used for assessing corrections for dose error
The methods and data exactly parallel those of the previous  paper32, using publicly available Life Span Study 
(LSS) leukaemia  data38 to guide construction of a number of artificial datasets. Specifically we used the person 
year distribution by bone marrow dose groups 0–0.07, 0.08–0.19, 0.20–0.99, 1.00–2.49, ≥ 2.50 Gy. The central 
estimates of dose we assumed are close to the person year weighted means of these groups, and as given in Sup-
plement A Table A1, although for the uppermost dose group we assigned a central estimate of 2 Gy. A composite 
Berkson-classical error model was used in which the true dose Dtrue,i,j and the surrogate dose Dsurr,i,j to individual 
i (in dose group ki ) in simulation j are given by:

The variables εj , δi,j ,µj , κi,j are independent identically distributed N(0, 1) random variables. It should be 
noted that the errors εj ,µj are common to all individuals and are uniform within each sub-simulation nested 
within each meta-simulation, and hence give rise to a shared error structure. By comparison the δi,j , κi,j are chosen 
so as to be independent for all other individuals within each sub-simulation and within a meta-simulation, as 
well as independent of those in other sub-simulations/meta-simulations, and hence give rise to an unshared 
error structure. The factors Dcent,ki are the central estimates of dose, as given in Supplement A Table A1. The 
factors exp

[

−0.5(σ 2
share,Berkson + σ 2

unshare,Berkson)

]

 and exp
[

−0.5(σ 2
share,Class + σ 2

unshare,Class)

]

 ensure that the dis-
tributions given by (1) and (2) have theoretical mean that coincides with the central estimates Dcent,ki . The model 
has the feature that when the Berkson error geometric standard deviations (GSDs) are set to 0 
( σshare,Berkson = σunshare,Berkson = 0 ) the model reduces to one with classical error (a mixture of shared and 
unshared); likewise when the classical error GSDs are set to 0 ( σshare,Class = σunshare,Class = 0 ) the model reduces 
to one with pure Berkson error (a mixture of shared and unshared).

We generated a number of different versions of the dose data, with σshare,Berkson , σunshare,Berkson , σshare,Class , 
σunshare,Class taking values of 0.2 (20%) or 0.5 (50%). This individual dose data was then used to simulate the dis-
tribution of N = 250 cancers for each of m = 1000 sub-simulated datasets, using a model in which the assumed 
probability of being a case for individual i in simulation j ( j = 1, ...,m = 1000 ) is given by:

the scaling constant κj being chosen for each simulation (but not for the Bayesian model fits) to make these sum 
to 1. As previously, we assumed a linear-quadratic model, with coefficients α = 0.25/Gy,β = 2/Gy2 , also a 

(1)Dtrue,i,j = Dcent,ki exp
[

−0.5(σ 2
share,Berkson + σ 2

unshare,Berkson)
]

exp
[

σshare,Berksonεj + σunshare,Berksonδi,j
]

(2)Dsurr,i,j = Dcent,ki exp
[

−0.5(σ 2
share,Class + σ 2

unshare,Class)
]

exp
[

σshare,Classµj + σunshare,Classκi,j
]

(3)exp[κj][1+ αDtrue,i,j + βD2
true,i,j]
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linear model with α = 3/Gy,β = 0/Gy2 , both models derived from fitting a stratified linear-quadratic or linear 
model to the LSS leukaemia  data38.

A total of n = 500 meta-simulations, consisting of ensembles of dose + cancer simulations were used. Within 
each meta-simulation a total of m = 1000 sub-simulations were taken of each type of dose (true dose = Dtrue,i,j , 
surrogate dose = Dsurr,i,j ). The true dose ( = Dtrue,i,j ) averaged over the 1000 sub-simulations within each meta-
simulation will be used to generate the distribution of cancers by dose group within the meta-simulation, using 
the summed relative risks RRij = 1+ αDtrue,i,j + βD2

true,i,j . Within each of the n = 500 meta-simulations, this 
cancer distribution will be constant over the m = 1000 sub-simulations that comprise it, but this distribution 
will of course change slightly between each of the n = 500 meta-simulations. The n = 500 meta-simulated 
dose + cancer ensembles were used to fit models and evaluate fitted model means and coverage probability. 
Having derived synthetic individual level data, for the purposes of model fitting, for all models except MCML 
and 2DMC with BMA, the data were then collapsed (summing cases, averaging doses) into the 5 dose groups 
used  previously32. Poisson linear relative risk generalised linear  models39 were fitted to this grouped data, with 
rates given by expression (3), using as offsets the previously-specified number per  group32. Models were fitted 
using six separate methods (unadjusted, regression calibration, ERC, MCML, 2DMC and BMA, FMA). For ERC 
and the other methods previously used the methods of deriving doses and model fitting were as in our earlier 
 paper32. It should be noted that for all except the unadjusted regressions the true (rather than surrogate) dose is 
used, so that classical error does not figure. Only for unadjusted regression is it the surrogate dose that is used.

We used a BMA method somewhat analogous to the 2DMC with BMA method of Kwon et al.28, using the full 
set of mean true doses per group as previously generated for MCML, the mean doses per group for each simula-
tion being given by group means of the samples generated by expression (3), averaged over the m = 1000 dose 
samples. The model was fitted using Bayesian Markov Chain Monte Carlo (MCMC) methods. Associated with the 
dose vector is a vector of probabilities pj , j = 1, ..., 1000 which is generated using variables �j , j = 1, ..., 999 , so that:

This is therefore quite close to the method proposed by Hoeting et al.37, and somewhat distinct from the for-
mulation of 2DMC with BMA proposed by Kwon et al.28, as we discuss at greater length below. For this reason 
we shall describe our own method as quasi-2DMC with BMA. The standard formulation of BMA, as given by 
Hoeting et al.37, and which we employ, is based on the posterior probability:

where (pk)mk=1 are given by Eq. (4). We fitted via successive application of Metropolis–Hastings samplers to 
(a) sample conditionally the model dose response parameters α,β , κ conditionally on (pk)mk=1 and (b) sample 
conditionally the dose vector probability parameters (�j)m−1

k=1  which determine (pk)mk=1 conditionally on α,β , κ . 
Kwon et al.28 did this slightly differently, sampling (a) the dose response parameters α,β , κ conditional on k , 
(b) sampling of k (via a multinomial distribution) conditional on α,β , κ and (pk)mk=1 and (c) sampling of the 
parameters (pk)mk=1 (via a Dirichlet distribution) conditional on α,β , κ and k . Kwon et al.28 resorted to use of 
an approximate Monte Carlo sampler, the so-called stochastic approximation Monte Carlo (SAMC) method of 
Liang et al.40. Unfortunately Kwon et al. do not provide enough information to infer the precise form of SAMC 
that was used by  them28, and for that reason we have adopted this alternative.

All main model parameters ( α,β , κ , �k ) had normal priors, with mean 0 and standard deviation (SD) 1000. 
The Metropolis–Hastings algorithm was used to generate samples from the posterior distribution. Random nor-
mal proposal distributions were assumed for all variables, with SD of 0.2 for κ and 1 for α,β , and SD 2 for all �k . 
The �k were proposed in blocks of 10. Two separate chains were used, in order to compute the Brooks-Gelman-
Rubin (BGR) convergence  statistic41,42. The first 1000 simulations were discarded, and a further 1000 simulations 
taken for sampling. The proposal SDs and number of burn-in sample were chosen to give mean BGR statistics 
(over the 500 simulated datasets) that were in all cases less than 1.03 and acceptance probabilities of about 30% 
for the main model parameters ( α,β , κ ), suggesting good mixture and likelihood of chain convergence. For 
the ERC model confidence intervals (CI) were (as previously) derived using the profile  likelihood39 and for the 
quasi-2DMC with BMA model Bayesian uncertainty intervals were derived.

The FMA model of Kwon et  al.36 was also fitted. For each of j = 1, ...,m = 1000 dose vectors 
model (3) was fitted  using Poisson regression (via maximum likelihood) and the Akaike Informa-
tion Criterion (AIC)43, AICj , computed, as well as the central estimate and profile likelihood 95% 
CI for each coefficient, αj,MLE(αj,0.025,αj,0.975) and βj,MLE(βj,0.025,βj,0.975) ; from these were derived 
the estimated standard deviation, via SD(α)j = min(αj,MLE − αj,0.025,αj,0.975 − αj,MLE)/1.96 and 
SD(β)j = min(βj,MLE − βj,0.025,βj,0.975 − βj,MLE)/1.96 , in other words the minimum of the distance from each 
CI to the mean, divided by the asymptotic 97.5% centile (1.96) of the normal distribution, to recover the SD. 
For each fit k = 100 simulations were taken from the respective normal distributions N(αj,MLE , SD(α)

2
j ) and 

N(βj,MLE , SD(β)
2
j ) , and each such sample given an AIC-derived weight via:

(4)pj =
exp[�j]

1+
∑999

k=1 exp[�k]
, j = 1, ..., 999, p1000 =

1

1+
∑999

k=1 exp[�k]

(5)

p(α,β , κ|Y ,X, (Dtrue,k)
m
k=1, (pj)

m
k=1)

=

m
∑

k=1

p(α,β , κ|γ = k,Y ,X,Dtrue,γ )p(γ = k|Y ,X, (Dtrue,k)
m
k=1, (pj)

m
k=1)

=

m
∑

k=1

p(α,β , κ|Y ,X,Dtrue,k)pk
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[It should be noted that Eq. (6) differs from the formula mistakenly given by Kwon et al.36 in their paper, 

exp[AICj/2]/
1000
∑

k=1

exp[AICk/2] ]. The central estimate for each coefficient was taken as the AIC-derived-weighted 

sum of these samples, and 95% CI estimated from the 2.5% and 97.5% centiles of the AIC-derived-weighted 
samples. A variety of k in the range 100–1000 were used, yielding very similar results. We also tried using asym-
m e t r i c  c o n f i d e n c e  i n t e r v a l s ,  e m p l o y i n g  SD(α)j,lower = (αj,MLE − αj,0.025)/1.96  a n d 
SD(α)j,upper = (αj,0.975 − αj,MLE)/1.96 to separately generate the samples above and below the central estimate 
αj,MLE , and likewise for the β coefficient. However, this generally yielded badly biased estimates of both coeffi-
cients, because of occasional samples in which one or other CI was very large.

The Fortran 95-2003 program used to generate these datasets and perform Poisson and Bayesian MCMC 
model fitting, and the relevant steering files employed to control this program are given in online Supplement B. 
Using the mean coefficients for each model and error scenario over the 500 simulated datasets, (αmean,βmean) , 
the percentage mean bias in predicted excess relative risk (ERR) is calculated, via:

This was evaluated for two values of predicted dose, Dpred = 0.1 Gy and Dpred = 1 Gy.

Results
As shown in Table 1, using the linear-quadratic model the coverage probabilities of the ERC method for the 
linear coefficient α are near the desired 95% level, irrespective of the magnitudes of assumed Berkson error, 
whether shared or unshared. However, the ERC method yields coverage probabilities that are somewhat too 
low when shared and unshared Berkson errors are both large (with logarithmic SD = 50%), although otherwise 
it performs well (Table 1). It should be noted that classical error will have no effect on any of these models, as its 
only effect is on the unadjusted regression model (via sampling of the surrogate dose), and so the effect is not 
shown. By contrast the coverage probabilities of both the linear coefficient α and the quadratic coefficient β for 
the quasi-2DMC with BMA method are generally much too low, and when shared Berkson error is large (50%) 
the coverage probabilities do not exceed 5% (Table 1). The coverage for the FMA method is generally better, and 
for the coefficient α does not depart too markedly from the desired 95%; however, the coverage of the coefficient 
β tends to be too high, for any non-zero level of Berkson error, whether shared or unshared (Table 1).

Table 2 shows that for the linear model the coverage percentage is generally too high for ERC, MCML and 
FMA, and slightly too low for quasi-2DMC with BMA, but more or less correct for regression calibration.

Table 3 shows the coefficient mean values, averaged over all 500 simulations, assuming a linear-quadratic 
model. A notable feature is that for larger values of Berkson error, the linear coefficient α for quasi-2DMC with 
BMA is substantially overestimated, and the quadratic dose coefficient β substantially underestimated, both by 
factors of about 10. For ERC the estimates of the quadratic coefficient β are upwardly biased, but not by such 
large amounts. For FMA both coefficients have pronounced upward bias, particularly for large shared Berkson 
error (50%) (Table 3).

Table 4 shows that the bias in ERR for ERC evaluated either at 0.1 Gy or 1 Gy does not exceed 30% in absolute 
value. Regression calibration performs somewhat worse, with bias ~ 60% when shared and unshared Berkson 
error are large (50%) for predictions at 1 Gy, although otherwise with bias under 30%. For all but the smallest 
shared and unshared Berkson errors (both 0% or 20%) MCML has bias ~ 35–70%, with bias particularly severe at 
1 Gy. Quasi-2DMC with BMA performs somewhat worse, with bias in excess of ~ 30% and sometimes in excess 

(6)exp[−AICj/2]/

1000
∑

k=1

exp[−AICk/2]

(7)100
[

(αmeanDpred + βmeanD
2
pred)/(αDpred + βD2

pred)− 1
]

Table 1.  Coverage probability of profile likelihood (for extended regression calibration) or Bayesian posterior 
confidence intervals (for quasi-2DMC with BMA) or frequentist model averaging (FMA) for fits of linear-
quadratic model. Coverage probability evaluated using n = 500 dose + cancer ensembles, all with classical error 
(shared and unshared) of 20%. The central three columns are mostly taken from the paper of Little et al.32.

Magnitude of unshared Berkson error Magnitude of shared Berkson error
Sample Pearson correlation coefficient between 
individual true doses

Extended 
regression 
calibration 
adjusted

Quasi-
2DMC with 
BMA

Frequentist 
model 
averaging 
(FMA)

Coverage % Coverage % Coverage %

α β α β α β

0% 0% NA 95.2 94.8 93.6 95.0 92.6 94.8

20% 20% 0.50 94.8 98.4 92.4 94.2 92.6 99.2

20% 50% 0.84 95.4 94.8 4.6 1.6 91.8 100.0

0% 50% 1.00 95.8 95.4 4.6 1.6 91.8 100.0

50% 20% 0.15 94.4 94.8 88.0 96.8 92.2 99.2

50% 50% 0.45 95.0 80.4 0.8 3.8 94.2 100.0
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of 100% when Berkson errors are large, and bias most pronounced at low dose. Unadjusted regression yields 
almost as severe bias, which exceeds 50% in many cases for predictions at 1 Gy, and when shared or unshared 
classical errors are large (50%) often exceeds 100% (Table 4). Bias for FMA is generally moderate to severe, and 
particularly bad (> 100%) when shared Berkson error is large (50%) (Table 4).

Table 5 shows the coefficient mean values, averaged over all 500 simulations, for the linear model, and per-
centage bias. For most methods bias is modest, generally under ~ 10%. The only significant exception is FMA 
where the bias approaches 30% when shared Berkson errors are large (50%) (Table 5).

It should be noted that the behaviour of all regression methods in both scenarios (linear, linear-quadratic) is 
very similar when Berkson errors are 50%, irrespective of whether unshared Berkson errors are 0, 20% or 50% 
(Tables 1, 2, 3, 4, 5).

Discussion
We have demonstrated that the quasi-2DMC with BMA method performs well when a linear model is assumed 
and fitted, albeit with coverage for the linear coefficient that is slightly too low (~ 90%) (Table 2). However, it 
performs very poorly when a linear-quadratic model is assumed and fitted, with coverage probabilities both 
for the linear and quadratic dose coefficients that are under 5% when the magnitude of shared Berkson errors 
is large (50%) (Table 1). For the linear model the bias is generally modest, under 10% (Table 5). However, if a 
linear-quadratic model is assumed there is substantial bias (by a factor of 10) in estimates of both the linear and 
quadratic coefficients, with the linear coefficient overestimated and the quadratic coefficient underestimated 
(Table 3). FMA performs as well as the other method when a linear model is assumed (Table 2), and generally 
much better assuming a linear-quadratic model, although the coverage probability for the quadratic coefficient 
is uniformly too high (Table 1). However both linear and quadratic coefficients have pronounced upward bias, 
particularly when Berkson error is large (50%) (Table 3). By comparison the ERC method yields coverage prob-
abilities that are too high when a linear model is fitted (Table 2), and too low when a linear-quadratic model is 
fitted with shared and unshared Berkson errors both large (50%) (Table 1), although otherwise it performs well, 
and coverage is generally better than for quasi-2DMC with BMA or FMA, particularly for the linear-quadratic 
model. As shown previously it generally outperforms all other methods (regression calibration, MCML, unad-
justed regression) when a linear-quadratic model is  assumed32. The upward bias in estimates of the α coefficient 
and the downward bias in the estimates of the β coefficient, at least for larger magnitudes of error (Table 3) largely 
explains the poor coverage of quasi-2DMC with BMA in these cases (Table 1). The bias of the predicted ERR 

Table 2.  Coverage probability of profile likelihood (for extended regression calibration) or Bayesian posterior 
confidence intervals (for quasi-2DMC with BMA) or frequentist model averaging (FMA) for fits of linear 
model. Coverage probability evaluated using n = 500 dose + cancer ensembles, all with classical error (shared 
and unshared) of 20%.

Magnitude of 
unshared Berkson 
error

Magnitude of shared 
Berkson error

Coverage %

Unadjusted
Regression 
calibration

Extended regression 
calibration adjusted

Monte Carlo 
maximum likelihood

Quasi-2DMC with 
BMA

Frequentist model 
averaging (FMA)

0% 0% 82.4 94.8 94.8 94.8 93.8 90.4

20% 20% 82.4 94.4 99.6 99.2 94.4 98.8

20% 50% 81.8 95.2 99.8 100.0 91.0 100.0

0% 50% 81.8 95.2 99.8 100.0 90.8 100.0

50% 20% 82.2 94.4 99.6 99.4 94.6 98.8

50% 50% 81.8 95.2 99.8 100.0 91.2 100.0

Table 3.  Mean over n = 500 dose + cancer ensembles of regression coefficients in fits of linear-quadratic model, 
all with classical error (shared and unshared) of 20%. The central two columns are mostly taken from the paper 
of Little et al.32. ERR, excess relative risk.

Magnitude of unshared Berkson 
error Magnitude of shared Berkson error

Extended regression calibration Quasi-2DMC with BMA
Frequentist model 
averaging (FMA)

ERR/Gy ERR/Gy2 ERR/Gy ERR/Gy2 ERR/Gy ERR/Gy2

α β α β α β

0% 0% 0.196 2.061 0.362 2.072 0.196 2.061

20% 20% 0.125 2.132 0.891 1.672 0.205 2.516

20% 50% 0.109 2.393 2.902 0.180 0.294 5.730

0% 50% 0.114 2.350 2.786 0.181 0.277 5.535

50% 20% 0.121 2.354 1.108 1.971 0.247 3.060

50% 50% 0.038 2.795 3.527 0.210 0.282 7.106

True value 0.25 2.0 0.25 2.0 0.25 2.0
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using the linear-quadratic model at a variety of doses is generally smallest for ERC, and largest (apart from unad-
justed regression) for quasi-2DMC with BMA and for FMA, with standard regression calibration and MCML 
exhibiting bias in predicted ERR generally somewhat intermediate between the other two methods (Table 4). The 
fact that bias in ERR tends to be larger for a dose of 1 Gy (Tables 4, 5) relates to the fact that at higher assumed 
dose the contribution of the quadratic coefficient is relatively more important. However, this is not always the 
case, and for example for the quasi-2DMC with BMA method the inflated linear coefficient and much reduced 
quadratic coefficient (Table 3) generally result in bias being more severe at the lower dose (Table 4).

As noted above, the form of the quasi-2DMC with BMA model that we fit differs slightly from that employed 
by Kwon et al.28. Our method and that of Kwon et al.28 should be approximately equivalent, although the latter is 
considerably more computationally challenging, and may be the reason why Kwon et al.28 resorted to use of the 
SAMC  method40, in order to get their method to work. As noted in the Methods, unfortunately Kwon et al. do 

Table 4.  Percentage bias in excess relative risk (ERR) using linear-quadratic model predicted at 0.1 Gy or 
1 Gy with various sorts of dose error correction, using mean regression coefficients over n = 500 dose + cancer 
ensembles (as in Table 2).

Magnitude of error distribution Percentage bias in excess relative risk estimates by type of dose error correction

Unshared 
Berkson 
error

Shared 
Berkson 
error

Unshared 
classical 
error

Shared 
classical 
error

Unadjusted
Regression 
calibration

Extended 
regression 
calibration

Monte Carlo 
maximum 
likelihood

Quasi-2DMC with 
BMA

Frequentist model 
averaging (FMA)

ERR at 
0.1 Gy

ERR at 
1 Gy

ERR at 
0.1 Gy

ERR at 
1 Gy

ERR at 
0.1 Gy

ERR at 
1 Gy

ERR at 
0.1 Gy

ERR at 
1 Gy

ERR at 
0.1 Gy

ERR at 
1 Gy

ERR at 
0.1 Gy

ERR at 
1 Gy

0% 0% 20% 20% − 0.26 11.07 − 10.58 0.34 − 10.58 0.34 − 10.58 0.34 26.49 8.17 − 80.13 0.33

0% 0% 20% 50% 56.68 98.07 − 10.58 0.34 − 10.58 0.34 − 10.58 0.34 26.49 8.17 − 80.13 0.33

0% 0% 50% 20% 6.99 11.79 − 10.58 0.34 − 10.58 0.34 − 10.58 0.34 26.49 8.17 − 80.13 0.33

0% 0% 50% 50% 64.85 98.42 − 10.58 0.34 − 10.58 0.34 − 10.58 0.34 26.49 8.17 − 80.13 0.33

20% 20% 20% 20% 3.74 19.52 − 7.04 7.90 − 24.73 0.34 13.14 10.91 135.05 13.88 − 77.43 20.97

20% 20% 20% 50% 64.26 113.79 − 7.04 7.90 − 24.73 0.34 13.14 10.91 135.05 13.88 − 77.43 20.97

20% 20% 50% 20% 11.14 20.28 − 7.04 7.90 − 24.73 0.34 13.14 10.91 135.05 13.88 − 77.43 20.97

20% 20% 50% 50% 72.64 114.21 − 7.04 7.90 − 24.73 0.34 13.14 10.91 135.05 13.88 − 77.43 20.97

20% 50% 20% 20% 24.61 44.25 10.67 30.42 − 22.65 11.21 49.11 50.12 548.93 36.99 − 57.18 167.75

20% 50% 20% 50% 99.33 156.92 10.67 30.42 − 22.65 11.21 49.11 50.12 548.93 36.99 − 57.18 167.75

20% 50% 50% 20% 33.08 45.12 10.67 30.42 − 22.65 11.21 49.11 50.12 548.93 36.99 − 57.18 167.75

20% 50% 50% 50% 108.90 157.37 10.67 30.42 − 22.65 11.21 49.11 50.12 548.93 36.99 − 57.18 167.75

0% 50% 20% 20% 19.81 39.10 6.25 25.80 − 22.52 9.49 43.65 45.57 523.08 31.85 − 59.00 158.29

0% 50% 20% 50% 91.80 147.91 6.25 25.80 − 22.52 9.49 43.65 45.57 523.08 31.85 − 59.00 158.29

50% 20% 20% 20% 23.79 44.18 9.93 30.36 − 20.88 9.97 34.39 34.02 189.99 36.82 − 72.69 46.98

50% 20% 20% 50% 98.02 157.23 9.93 30.36 − 20.88 9.97 34.39 34.02 189.99 36.82 − 72.69 46.98

50% 20% 50% 20% 32.41 45.02 9.93 30.36 − 20.88 9.97 34.39 34.02 189.99 36.82 − 72.69 46.98

50% 20% 50% 50% 107.78 157.59 9.93 30.36 − 20.88 9.97 34.39 34.02 189.99 36.82 − 72.69 46.98

50% 50% 20% 20% 36.22 75.38 20.91 58.16 − 29.45 25.90 56.13 67.27 688.36 66.08 − 50.97 228.37

50% 50% 20% 50% 123.65 214.48 20.91 58.16 − 29.45 25.90 56.13 67.27 688.36 66.08 − 50.97 228.37

50% 50% 50% 20% 45.28 76.32 20.91 58.16 − 29.45 25.90 56.13 67.27 688.36 66.08 − 50.97 228.37

50% 50% 50% 50% 133.97 214.90 20.91 58.16 − 29.45 25.90 56.13 67.27 688.36 66.08 − 50.97 228.37

Table 5.  Mean and percentage bias over n = 500 dose + cancer ensembles of regression coefficients in fits of 
linear model, all with classical error (shared and unshared) of 20%. ERR, excess relative risk.

Magnitude of unshared 
Berkson error

Magnitude of shared 
Berkson error

Unadjusted
Regression 
calibration

Extended 
regression 
calibration 
adjusted

Monte Carlo 
maximum 
likelihood

Quasi-2DMC with 
BMA

Frequentist model 
averaging (FMA)

ERR/Gy % bias ERR/Gy % bias ERR/Gy % bias ERR/Gy % bias ERR/Gy % bias ERR/Gy % bias

0% 0% 3.124 4.14 3.019 0.63 3.019 0.63 3.019 0.63 3.150 5.00 3.019 0.63

20% 20% 3.123 4.11 3.018 0.61 3.066 2.21 3.033 1.09 3.082 2.74 3.142 4.72

20% 50% 3.125 4.16 3.020 0.67 3.017 0.57 3.345 11.50 2.755 − 8.18 3.877 29.22

0% 50% 3.125 4.15 3.020 0.66 3.017 0.57 3.349 11.63 2.752 − 8.27 3.876 29.20

50% 20% 3.124 4.12 3.019 0.62 3.063 2.09 3.033 1.11 3.081 2.69 3.143 4.77

50% 50% 3.125 4.17 3.021 0.68 3.016 0.53 3.349 11.64 2.749 − 8.35 3.878 29.27

True value 3.0 3.0 3.0 3.0 3.0 3.0
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not provide enough information to infer the precise form of SAMC that was used by  them28, and it was for that 
reason we adopted this alternative, which is in any case possibly more computationally efficient. It is possible 
that the SAMC implementation used by Kwon et al.28 may behave differently from the more standard imple-
mentation of BMA given here. Kwon et al.28 report results of a simulation study that tested the 2DMC with BMA 
method against what they term “conventional regression”, which may have been regression calibration. They did 
not assess performance against MCML, and in all cases only a linear model was  tested28 unlike the simulations 
given here and in a previous  publication32, which used a linear-quadratic model, and in the present paper also 
a linear model. Kwon et al.28 report generally better performance of 2DMC with BMA against the regression 
calibration alternative. Their findings using the linear model are consistent with ours (Tables 2, 5). Kwon et al.36 
tested FMA against the 2DMC method and against the so-called corrected information matrix (CIM)  method44 
and observed similar performance, in particular adequate coverage, of all three methods, although narrower CI 
were produced by FMA compared with CIM under a number of scenarios. However, in all cases only a linear 
model was  tested36. Set against this, Stram et al. reported results of a simulation  study45 which suggested that 
the 2DMC with BMA method will produce substantially upwardly biased estimates of risk, also that the cover-
age may be poor, somewhat confirming our own findings, at least using the linear-quadratic model; although 
we do not always find upward bias, and generally little bias when a linear model is assumed, the coverage of 
both regression coefficients for quasi-2DMC with BMA is poor for larger values of shared Berkson error when 
a linear-quadratic model is assumed (Tables 1, 3, 4). One possible reason for the bias that may occur in quasi-
2DMC with BMA is that by chance a dose vector is chosen which results in good fit by the model (linear or 
linear-quadratic) but which nevertheless is substantially biased, resulting in substantial bias in the linear and/
or quadratic coefficients. While in most circumstances (as in the present simulations) there is no information 
regarding the dose vector, it might occur that one has an informative prior for the pj , which would be expected 
to reduce the likelihood of such bias.

Dose error in radiation studies is unavoidable, even in experimental settings. It is particularly common in 
epidemiological studies, in particular those of occupationally exposed groups, where shared errors, resulting 
from group assignments of dose, dosimetry standardizations or possible variability resulting from application 
of, for example, biokinetic or environmental or biokinetic models result in certain shared unknown (and vari-
able) parameters between individuals or groups. There have been extensive assessments of uncertainties in dose 
in these  settings46–48. Methods for taking account of such uncertainties cannot always correct for them, but they 
at least enable error adjustment (e.g. to CI) to be  made31. As previously  discussed32 the defects in the standard 
type of regression calibration are well known, in particular that the method can break down when dose error is 
 substantial31, as it is in many of our scenarios. It also fails to take account of shared errors. Perhaps because of 
this a number of methods have been recently developed that take shared error into account, in particular the 
2DMC and BMA  method28 and the CIM  method44. The CIM method only applies to situations where there is pure 
Berkson error. Both 2DMC with BMA and CIM have been applied in number of settings, the former to analysis 
of thyroid nodules in nuclear weapons test exposed  individuals35, and the latter to assessment of lung cancer 
risk in Russian Mayak nuclear  workers49 and cataract risk in the US Radiologic  Technologists50. In principle the 
simulation extrapolation (SIMEX)  method51 can be applied in situations where there is shared (possibly combined 
with unshared) classical error, where the magnitudes of shared and unshared error are known. However, this 
was not part of the original formulation of  SIMEX51. Possibly because of the restrictions on error structure and 
its extreme computational demands SIMEX has only rarely been used in radiation  settings27,52.

Conclusions
Using methods and data that exactly parallel those of the previous  paper32, differing only in that linear as well 
as linear-quadratic models were assumed, we have demonstrated that the quasi-2DMC with BMA method per-
forms well when a linear model is assumed (Table 2), but very poorly when a linear-quadratic dose response is 
assumed, with coverage probabilities both for the linear and quadratic dose coefficients that are under 5% when 
the magnitude of shared Berkson error is moderate to large (Table 1). The bias with a linear model for this method 
is generally modest (under 10%) (Table 4), but for the linear-quadratic model bias is substantial (by a factor of 
10) both for the linear and quadratic coefficients, with the linear coefficient overestimated and the quadratic 
coefficient underestimated (Table 3). FMA performs generally better, although when assuming a linear-quadratic 
model the coverage probability for the quadratic coefficient is uniformly too high (Table 1), as it is also for the 
linear coefficient assuming a linear model (Table 2). However both linear and quadratic coefficients using FMA 
have pronounced upward bias, particularly when Berkson error is large (50%) (Tables 3, 4, 5). By comparison 
the recently developed ERC  method32 yields coverage probabilities that are too high when a linear model is 
assumed, and too low when a linear-quadratic model is assumed and shared and unshared Berkson errors are 
both large (50%), although otherwise it performs well, and coverage is generally better than for quasi-2DMC 
with BMA or FMA, particularly for the linear-quadratic model. The bias of the predicted ERR at a variety of 
doses is generally smallest for ERC, and largest for quasi-2DMC with BMA and FMA, with standard regression 
calibration and MCML exhibiting bias in predicted ERR generally somewhat intermediate between the other 
two methods (Tables 4, 5). In general ERC performs best in the scenarios presented, and should be the method 
of choice in situations where there may be substantial shared error, or suspected curvature in the dose response.

Data availability
The datasets generated and analysed in the current study are available by running the Fortran 95/2003 program 
fitter_shared_error_simulation_reg_cal_Bayes_FMA.for, given in the online web repository, with any of the 12 
steering input files given there. All are described in Supplement B. The datasets are temporarily stored in com-
puter memory, and the program uses them for fitting the Poisson models described in the “Methods” section.
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