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Dynamic constitutive identification 
of concrete based on improved 
dung beetle algorithm to optimize 
long short‑term memory model
Ping Li 1*, Haonan Zhao 1,3, Jiming Gu 1,3 & Shiwei Duan 2,3

In order to improve the accuracy of concrete dynamic principal identification, a concrete dynamic 
principal identification model based on Improved Dung Beetle Algorithm (IDBO) optimized Long 
Short‑Term Memory (LSTM) network is proposed. Firstly, the apparent stress–strain curves of concrete 
containing damage evolution were measured by Split Hopkinson Pressure Bar (SHPB) test to decouple 
and separate the damage and rheology, and this system was modeled by using LSTM network. 
Secondly, for the problem of low convergence accuracy and easy to fall into local optimum of Dung 
Beetle Algorithm (DBO), the greedy lens imaging reverse learning initialization population strategy, 
the embedded curve adaptive weighting factor and the PID control optimal solution perturbation 
strategy are introduced, and the superiority of IDBO algorithm is proved through the comparison of 
optimization test with DBO, Harris Hawk Optimization Algorithm, Gray Wolf Algorithm, and Fruit Fly 
Algorithm and the combination of LSTM is built to construct the IDBO‑LSTM dynamic homeostasis 
identification model. The final results show that the IDBO‑LSTM model can recognize the concrete 
material damage without considering the damage; in the case of considering the damage, the 
IDBO‑LSTM prediction curves basically match the SHPB test curves, which proves the feasibility and 
excellence of the proposed method.

Keywords Dynamic constitutive model of concrete, Dung beetle optimization algorithm, Long short-term 
memory network, PID control, Lens imaging reverse learning

Concrete is one of the most common building materials in civil engineering, and it is the basis for building 
engineering to be realized. Its quality and performance will have a direct determining effect on the quality of 
engineering projects. During the service of engineering structures, they not only bear quasi-static loads, but also 
withstand shocks or explosions due to accidental accidents, such as gas explosions, terrorist attacks and explo-
sions caused by improper operation in factories, resulting in high strain rate and high temperature environment 
of concrete materials in construction projects, resulting in a large number of casualties. The dynamic failure of 
materials is actually a process of nucleation-growing-connectivity of cross-scale cracks in materials (possibly 
accompanied by the closure of a few cracks), and the evolution rate of cracks is a function of time/loading  rate1. 
At present, the study of dynamic damage of brittle concrete materials has always been a hot and difficult problem 
for scholars at home and abroad. The traditional concrete dynamic constitutive model is a mathematical equa-
tion in explicit function form that can reflect the performance of concrete material to a certain extent by means 
of macroscopic or microscopic experimental techniques and based on continuum mechanics or microscopic 
damage mechanics. Such as: Holmquist-Johnson–Cook (HJC)  model2, Taylar–Chen–Kuszmaul (TCK)  model3, 
Z–W–T  model4 and so on. In the process of establishing the dynamic constitutive model, the factors such as 
loading form, loading rate, temperature and damage as well as the coupling between these factors should be taken 
into account. Because the material parameters are difficult to determine accurately, and even some parameters 
(such as damage) can not be directly measured, and solving the mathematical equation is too complicated and 
lacks practicability. Therefore, at present, there is no constitutive model which is convenient for engineering 
application and can accurately and comprehensively describe the factors affecting the performance of concrete 
materials and the coupling effects between the factors.
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With the development of artificial intelligence, machine learning (ML), especially deep learning (DL) algo-
rithm, has been widely used in damage detection, system identification and risk assessment of engineering 
 structures5. The application of machine learning to concrete damage identification and detection can be roughly 
divided into two categories. One is to collect images of cracks and interface damage in concrete structures, and 
combine them with deep learning to detect them. For example, Song et al.6, based on the electric drive platform, 
proposed a method of close-range scanning to capture high-resolution panoramic images of the surface of con-
crete structures, adopted convolutional neural network to automatically segment panoramic cracks, and quanti-
fied panoramic cracks through crack matching and performance calculation methods. Laxman et al.7 developed 
an integrated CNN model based on the binary class convolutional neural network (CNN) model and combined 
the convolutional feature extraction layer with the regression model (RF and XGBoost) to automatically detect 
cracks on the concrete surface and evaluate crack depth. Jiang et al.8 used deep separable convolution, inverse 
residual network and linear bottleneck structure to optimize the original YOLO-v3 and SSD target detection 
algorithms, and the complete detection accuracy rate reached about 65%. Cui et al.9 improved YOLO-v4 by 
combining converter theory and proposed an MHSA-YOLOv4 target detection algorithm adapted to concrete 
wind erosion damage. The results show that the improved algorithm can accurately identify wind erosion dam-
age in concrete images. The width and depth of concrete cracks can be determined by analyzing concrete images 
containing damage and combining with deep learning algorithm, but this method can only randomly detect the 
results of local crack evolution of concrete, but can not get the process of concrete crack evolution. The other is 
to treat the material damage identification process as a system identification problem. It is therefore possible to 
determine a system model that identifies the relationship between cause (input) and effect (output).

For example,  Sun4, Xu et al.10 studied the dynamic constitutive model of polymers at high strain rates by 
combining SHPB technology with BP neural networks, with or without damage evolution. Sun et al.11 defined 
the damage of concrete as the deterioration of compressive strength and tensile strength according to the con-
tinuum damage mechanics theory. RBF neural network was used to model the damage of concrete under dif-
ferent freeze–thaw cycles, and the number of freeze–thaw cycles, dynamic elastic modulus loss, mass loss and 
stress ratio were taken as input variables. Concrete damage value as output variable. It is a new way to study the 
dynamic mechanical properties of concrete from the perspective of system science. The constitutive response 
and damage evolution law of concrete under different impact loads can be identified by the constructed model 
according to the test data without any constitutive assumptions in advance. At present, the concrete dynamic 
constitutive identification model is only a single model, such as BP neural network and RBF neural network, 
which has the advantages of parallel processing and self-learning, but the single algorithm model is too simple 
in operation and the identification error is large.

Long-term Short-Term Memory (LSTM)12 is a variant of Recurrent Neural networks (RNN). Mainly to solve 
the problem of gradient disappearance and gradient explosion in the process of long sequence training, LSTM is 
specially used for processing sequence data. Compared with traditional RNN structure, LSTM is time-sensitive 
and can learn patterns and features in time series data. A gating mechanism is introduced to better capture long-
term dependencies in sequence data. Zhou et al.13 used LSTM models (LSTM, Bi-LSTM, Dense-LSTM) for time 
series prediction, and compared the experimental results with each other, indicating that LSTM model is one 
of the most advanced models for predicting time series data. Therefore, LSTM is introduced as the main model 
in this paper, but since the prediction accuracy of LSTM is closely related to the selection of key parameters, 
the selection of appropriate parameters is the key to improve the identification of concrete dynamic constitu-
tive. Generally, empirical values alone are not enough to meet the prediction error requirements. Geng et al.14 
propose an improved adaptive particle swarm optimization (IAPSO) model to optimize LSTM neural network’s 
hyperparameters (such as time step, hidden unit, batch size and period). And applied to food safety risk analy-
sis and early warning. Li et al.15 proposed a model to optimize LSTM neural network based on variatory mode 
decomposition (VMD) and improved Dung Beetle Algorithm (IDBO), and applied it to fault detection of PV 
array, aiming at the problems of low convergence accuracy of Dung Beetle algorithm (DBO) and easy to fall into 
local optimal. Levy flight strategy, T-distribution perturbation strategy and multi-population mechanism were 
integrated to improve DBO. In the iterative process, Levy flight strategy was used to perturb elite dung beetles 
and generate candidate solutions, and combined with greedy selection and elimination of poorly fit dung beetles, 
the local optimization ability of the algorithm was enhanced. In the later stage of iteration, the T-distribution 
disturbance mechanism was used to expand the search range of dung beetles, and the predation strategy of grey 
Wolf algorithm was combined to promote the diversity of the population and avoid falling into local extreme 
values, which greatly improved the global optimization ability of dung beetle optimization algorithm.

Dung Beetle Optimizer (DBO) is an intelligent optimization algorithm proposed by Bo Shen et al.16 in 2022. 
The algorithm contains few parameters, has no special requirements for the initial setting of model parameters, 
and has strong universality. When dealing with complex high-dimensional optimization problems, it has the 
characteristics of high convergence speed, high precision and high stability. In practical application, dung beetle 
optimization algorithm, like other intelligent optimization algorithms, has the defect that it is easy to fall into 
local optimal in the late optimization period. Therefore, in view of the above problems, some scholars have 
improved it and applied it to different projects. Zhu et al.17 proposed a dung beetle optimization algorithm based 
on quantum computing and multi-strategy mixing, and introduced the best-point set strategy to initialize the 
population, so that the initial population distribution was more uniform. The T-distribution variation strategy 
based on quantum computing is used to change the global optimal solution and prevent the algorithm from 
falling into the local optimal. Zhou et al.18 introduced a periodic mutation mechanism into the Dung Beetle 
optimization algorithm to improve the optimization ability of the algorithm, and used the improved algorithm to 
optimize the differential integrated moving average autoregressive model to achieve the prediction of transformer 
vibration signals. Li et al.19 combined the chaotic initialization method with the reverse learning initial strategy 
to initialize the population and increase the diversity of the population. By integrating adaptive step size and 
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convex lens imaging strategy and introducing random difference change strategy, the relationship between search 
diversity and convergence accuracy of the algorithm is balanced, and the convergence speed of DBO is improved.

Based on the above analysis, an improved Dung Beetle Algorithm (IDBO) optimized Long short-term mem-
ory (LSTM) neural network dynamic constitutive identification model of concrete is proposed in this paper. 
First, the apparent stress–strain curve of concrete containing damage evolution was measured by split Hopkin-
son pressure bar test, the damage and rheology were decouple, and the system was modeled by LSTM neural 
network. Secondly, based on the principle of dung beetle algorithm, improved strategies (greedy lens imaging 
reverse learning initializing population strategy, curve adaptive weight factor and PID control optimal solution 
perturbation strategy) are introduced, and their optimization performance is verified by CEC2005 test set. 
Finally, four LSTM hyperparameters (number of hidden units, maximum training period, initial learning rate 
and L2 regularization parameter) are optimized using the improved Dung Beetle algorithm. The results show 
that the proposed IDBO algorithm has good optimization effect and the IDBO-LSTM model has high precision 
in identifying concrete dynamic constitutive.

Algorithm principle and improvement
Dung Beetle optimization algorithm
Dung Beetle Optimizer (DBO) was inspired by dung beetle behaviors such as ball rolling, dancing, foraging, 
stealing and  reproduction16. Thus, the dung beetle population consists of rolling dung beetles, breeding dung 
beetles, young dung beetles, and stealing dung beetles.

Rolling dung Beetle
In nature, dung beetles’ habit is to shape animal dung into balls, which is conducive to fast and efficient move-
ment of dung and prevent its peers from robbing them. Dung beetles need to navigate through celestial cues 
(sun orientation, polarized light, etc.) as they roll to keep the dung ball rolling on a straight path. As it rolls, the 
beetle’s position updates as,

In the formula, t represents the current number of iterations, xi(t) is where the i beetle is in the t iteration. α is the 
natural coefficient and is assigned − 1 or 1 using algorithm 1. k ∈ (0, 0.2] stands for the perturbation coefficient, 
set to 0.1 for a fixed value. Set the value of b ∈ (0, 1) to 0.3,Xω represents the worst position in the world, �x is 
used to simulate the change of strong light.

When dung beetles hit an obstacle, they usually climb onto the dung ball and "dance" (a series of spins and 
pauses) to reorient themselves and gain a new route. So the beetle’s position update is,

In the formula, θ ∈ [0,π ] is the interference Angle, when θ = 0,π/2,π , the beetle’s position does not update. 
|xi(t)− xi(t − 1)| is the difference between where the i beetle was on the t iteration and where it was on the t − 1 
iteration.

Algorithm 1.  α selection strategy

Breeding dung beetles
In order to provide a safe environment for their young, dung beetles roll their balls to a safe place to hide. There-
fore, the female dung beetle’s spawning zone boundary strategy is expressed as:

In the formula, X∗ represents the current local best position, LB∗ and Ub∗ are the lower and upper boundaries of 
the spawning area, respectively. R = 1− t/Tmax,Tmax is the maximum number of iterations, Lb and Ub represent 
the lower and upper bounds of the optimization problem, respectively.

After identifying the spawning area, the female dung beetle chooses that area for laying eggs. Formula (3) 
represents the dynamic spawning area, therefore, the position update of the oosphere in the iteration process is 
dynamic, which is expressed as,

(1)
xi(t + 1) = xi(t)+ α × k × xi(t − 1)+ b×�x

�x = |xi(t)− Xω|

(2)xi(t + 1) = xi(t)+ tan θ |xi(t)− xt(t − 1)|

(3)
Lb∗ = max(X∗ × (1− R), Lb)

Ub∗ = min(X∗ × (1+ R),Ub)
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In the formula, Bi(t) is the position of the i egg ball at the t iteration, b1 and b2 represent two independent ran-
dom variables of 1× D , D represents the dimension of the optimization problem. Therefore, the position of the 
oocytes is strictly controlled within a certain range. Breeding dung beetle position update Algorithm 2 shows.

Algorithm 2.  Breeding position renewal strategy of dung beetles

Little dung Beetle
When young dung beetles grow up after hatching eggs, they need to establish an optimal feeding area to guide 
them to be fed. The optimal feeding area boundary strategy is expressed as,

In the formula, Xb represents the global optimal feeding position, Lbb and Ubb are the lower and upper bounds 
of the optimal feeding region, respectively.

The beetle’s position update is represented by,

In the formula,xi(t) is where the i beetle is on the t iteration,C1 is a random number with a normal distribution, 
C2 ∈ (0, 1) is a random vector.

Dung Beetle stealing
There are some misbehaving dung beetles (thieving dung beetles) in the dung beetle population, stealing the 
fruits of other people’s labor. According to formula (5), it is the optimal feeding position, so the setting is the best 
place for dung beetles to compete for food. During the iteration, the position of the thieving beetle is updated to,

In the formula, xi(t) is where the i beetle is on iteration t, g is a random vector of 1× D-dimension size that fol-
lows a normal distribution, S is constant.

Improved dung beetle optimization algorithm
In the optimization problem, Dung Beetle optimization algorithm (DBO) has the advantages of high preci-
sion, faster convergence and stronger stability. According to the No Free Lunch  theorem20, no algorithm can 
perform optimally in any domain. Therefore, three DBO strengthening strategies are proposed in this section to 
accelerate the convergence speed and enhance the global search capability of the algorithm. IDBO enhances the 
optimization ability of DBO through greedy lens imaging reverse learning, fusion PID control optimal solution 
perturbation strategy and introduction of curve adaptive factors. The pseudo-code for the improved dung beetle 
optimization algorithm is shown in Algorithm 3.

Greedy lens imaging reverse learning to initialize the population
Ideally, a good algorithm should have the final optimal solution independent of the initial position, but for almost 
all random algorithms, the reality is the opposite, if the initial solution is established at the optimal position in 
the population, the probability of the population convergence to the optimal position is very high, and deter-
mines the convergence speed and accuracy of the future  algorithm21.Therefore, based on the uniform random 
initialization of the population, the introduction of lens imaging reverse learning to generate new populations, 
and the use of greedy idea to screen new populations from the combined population according to the fitness 
value, is conducive to reducing the optimization time in the algorithm iteration process. The lens imaging reverse 
learning strategy is mathematically expressed as,

(4)Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗)+ b2 × (Bi(t)− Ub∗)

(5)
Lbb = max(Xb × (1− R), Lb)

Ubb = min(Xb × (1+ R),Ub)

(6)xi(t + 1) = xi(t)+ C1 × (xi(t)− Lbb)+ C2 × (xi(t)− Ubb)

(7)xi(t + 1) = Xb + S × g × (
∣

∣xi(t)− X∗
∣

∣+

∣

∣

∣
xi(t)− Xb

∣

∣

∣
)
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In the formula, xj(i) is the ith individual of dimension j, ubj and lbj are the J-dimensional components of the 
upper and lower bounds of the decision variable, respectively. k is the scaling factor.

PID control optimal solution perturbation strategy
In the process of iteration, the individuals in the initial population are updated, and the diversity of the popula-
tion is lost. Researchers used variation-perturbation strategies to increase population diversity to obtain more 
search information. For example, Guo et al.22 integrated the follower position update mechanism in Sparrow 
search algorithm to perturb the algorithm, and combined Cauchy-Gauss variation strategy to help the algo-
rithm jump out of the local optimal solution. Pan et al.23 introduced adaptive Gauss-Cauchy hybrid mutation 
perturbation to enhance the ability of dung beetle algorithm to coordinate its local development and global 
exploration. Wang et al.24 proposed a decreasing control strategy for the convergence factor of disturbance index 
to achieve a good coordination between the exploration and development capabilities of Gray Wolf algorithm. 
Chen et al.25 designed a perturbation strategy for wavelet optimal solutions to improve population diversity and 
avoid the algorithm falling into local optimality. Vu-Huu et al.26 proposed a push-process technique to improve 
the effectiveness of the BA algorithm by reducing the wide distribution of the optimal global solution of its to 
produce an intervention in the BA algorithm, so as to achieve a true global optimal that can be exposed in several 
generations without many computational times. In this paper, PID control is designed to disturb the optimal 
solution to get new individuals, so that individuals in the population can be optimized in multiple directions, 
increase the diversity of the population and improve the search ability of the algorithm.

PID algorithm has excellent performance in the field of control, combining proportional control, integral 
control and differential control, aiming at fast and stable output of  setpoint27. In the fitting regression problem, 
the algorithm is optimized according to the value of the adaptation function. Therefore, the optimal individual 
is fine-tuned by PID controlling the optimal fitness function value, which helps the algorithm to jump out of the 
local extreme value and avoid premature maturity. The mathematical expression of PID control is:

In the formula,Kp is the proportionality constant,Ki = (Kp ∗ T)/Ti is the integral constant, Kd = (Kp ∗ Td)/T 
is a microconstant. The experiment Kp = 0.4 has obtained a good result.

Curve adaptive weight factor
In order to better coordinate the global search and local exploration capabilities, and enhance the optimization 
and later development capabilities of the algorithm iteration, Cuong-Le et al.28 proposed a new cuckoo search 
algorithm (NMS-CS) based on the Levy flight, which uses the Levy distribution to calculate the random step 
size, and randomly selects the newly created functions (convex function, concave function, linear function, etc.) 
to control the parameters in the CS algorithm, so as to expand the search space in the early stage of algorithm 
iteration and improve the development ability in the late iteration stage. Inspired by the idea of inertial weighting 
in the improved particle swarm  optimization29, this paper adds curve adaptive weights to the update formula 
(2) of the rolling ball dung beetle, and the weight factor is guided by the cosine function, and with the increase 
of the number of iterations, the curve changes similar to the cosine function (0-π range), so the weight factor 
keeps decreasing slowly in the early stage of iteration, the decline rate accelerates in the middle of iteration, and 
slowly decreases again in the late iteration, which can ensure that the algorithm slows down the global search 
performance in the early stage and improves the local optimal in the later stage. The expression is,

In the formula, t is the current number of iterations, Tmax is the maximum number of iterations, a is the adjust-
ment factor,wmax and wmin are the maximum and minimum values of the factor, respectively. In formula (2), the 
adaptive weight of the curve is added and modified as follows:

(8)xj(i + 1) =
ubj + lbj

2
+

ubj + lbj

2k
−

xj(i)

k

(9)u(k) = Kperr(k)+
KpT

Ti

k
∑

n=0

err(n)+
KpTd

T
(err(k)− err(k − 1))

(10)w1 = (cos(π · t/Tmax)+ wmax)(wmax + wmin)/2+ a

(11)xi(t + 1) = w1 × xi(t)+ tan θ |(1− w1)× xi(t)− xt(t − 1)|
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Algorithm 3.  IDBO pseudo-code

Function optimization simulation experiment and result analysis
Simulation experiment
In order to test the optimization performance of IDBO algorithm, 9 benchmark test functions in CEC2005 
 dataset30 are selected in this paper, as shown in Table 1. There are 4 categories: unimodal problem f1 − f4 , Basic 
multimodal problem f

7
, f

10
 , Extended multimodal and hybrid composite problems f13, f15, f20.

Analysis of algorithm test results
IDBO algorithm is compared with standard Dung Beetle algorithm (DBO), Grey Wolf algorithm (GWO), Firefly 
algorithm (FA) and Harris Eagle algorithm (HHO) to optimize test functions. In order to reduce the chance of 
the experiment, set the same experimental parameters, The population size of each algorithm N = 30, maximum 
number of iterations Tmax = 1000. Perform 30 independent experiments on 9 test functions respectively. Figure 1 
draws the fitness iteration convergence comparison curve, and evaluates and compares it by convergence speed 
and iteration number. The experimental results are shown in Table 2.

CEC2005 test set, f1 − f4 function structure is relatively simple, test algorithm convergence performance; 
The f

7
, f

10
 function has a local optimal solution and tests the algorithm’s ability to balance global development 

and local exploration in the search space. Function f13, f15 and f20 tests the ability of the algorithm to deal with 
mixed complex problems. From Fig. 1(a–d), it can be clearly seen that IDBO algorithm converges first and has 
a faster convergence speed as the number of iterations increases. It shows that the introduction of greedy lens 
imaging reverse learning to initialize the population can effectively improve the population quality and acceler-
ate the convergence speed. From Fig. 1e, f, IDBO can quickly jump out of the local extreme solution at the early 
stage of iteration, so as to achieve the global optimal explanation, and the introduction of curve adaptive weight 
factor and PID control optimal solution perturbation strategy can help the algorithm get rid of local extrema 
and enhance the global optimization ability. As can be seen from Fig. 1g–i, IDBO also has excellent optimiza-
tion ability in dealing with mixed complex problems. It can be seen that the improved strategy of dung beetle 
optimization algorithm is effective.

In Table 2, the IDBO algorithm and the evaluation indexes of the four algorithms are the best value, the 
worst value, the standard deviation and the average value respectively. By observing the optimization results in 
Table 2, we can see that except for f7, f10 and f13 , IDBO can find theoretical optimal values in other benchmark 
functions. Standard DBO can find the theoretical optimal value of the f1 function, the other algorithms failed 
to find the theoretical optimal value. IDBO, standard DBO, and HHO have the same standard deviation on 
the f1, f3 function, the mean and standard deviation of IDBO optimization results on unimodal function are 
0. The comprehensive performance of IDBO is obviously better than DBO, HHO, GWO and FA in terms of 
optimization accuracy and stability. For multi-modal functions, the optimization results of f7 function show 
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Table 1.  Benchmark functions.

Function D Search space fmin

f1(x) =
n
∑

i=1

x2i 30 [−100, 100]D 0

f2(x) =
n
∑

i=1

|xi | +
n
∏

i=1

|xi | 30 [−10, 10]D 0

f3(x) =
n
∑

i=1

(
i
∑

j−1

xj)
2 30 [−100, 100]D 0

f4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100]D 0

f7(x) =
n
∑

i=1

ix4i + random[0, 1) 30 [−1.28, 1.28]D 0

f10(x) = −20 exp(−0.2

√

1
n

n
∑

i=1

x2i )− exp( 1n

n
∑

i=1

cos(2πxi))+ 20+ e 30 [−32, 32]D 0

f13(x) =

n
∑

i=1

u(xi , 5, 100, 4)+

0.1{sin2(3πx1)+

n−1
∑

i=1

(xi − 1)2[1+ sin2(3πxi+1)] + (xn − 1)2[1+ sin2(2πxn)]}

30 [−50, 50]D 0

f15(x) =
11
∑

i=1

[

ai −
xi (b

2
i +bix2)

b2i +bix3+x4

]2

4 [−5, 5]D 0.0003

f20(x) = −
4
∑

i=1

ci exp(−
6
∑

j=1

aij(xj − pij)
2) 6 [0, 1]D − 3.3219

Figure 1.  Convergence curve of the test function.
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that IDBO and HHO have similar standard deviations and average values, and their orders of magnitude are 
 10–5, respectively, while DBO, GWO and FA are  10–4,  10–4 and  10–2, respectively. The optimization results of f10 
function show that IDBO, DBO and HHO have the same standard deviation and average value, which are 0 and 
4.44E−16 respectively. The index values of GWO and FA are not good. In conclusion, IDBO is significantly bet-
ter than the comparison algorithm in handling the balance between local exploration and global development. 
For the mixed composite function, the optimization results of f13 function show that the optimal value of DBO 
is  10–32, while IDBO is not good. The optimization results of function f15 and f20 show that the optimal values 
of the five algorithms are close to the theoretical optimal values, indicating that IDBO, DBO, HHO, GWO and 
FA algorithms have the ability to deal with this complex problem.

Model principle and parameter optimization process
Long short‑term memory regression prediction model
Long short-term memery (LSTM) is an improvement of recurrent neural networks (RNN), widely used in 
machine  translation31, speech  recognition32, and image description. The LSTM network structure newly estab-
lishes a memory unit with feedback connections in the direction of time, which is reflected in the addition of 
three gate structures, namely, forget gate, input gate and output gate. At time step t, input data is xt , Then the hid-
den state of the previous moment is ht−1 , and the cell state is ct−1 . The LSTM model structure is shown in Fig. 2.

Forgetting gate ft , control the forgetting degree of the unit state at the previous moment:

Table 2.  Comparison of test function results.

IDBO DBO HHO GWO FA

f1

Best 0 0 4.5E−221 1.5E−148 93.89529

Worse 0 1.4E−215 1E−192 2.2E−142 2378.495

Std 0 0 0 5.6E−143 631.0331

Avg 0 4.5E−217 3.4E−194 2.3E−143 665.1144

f2

Best 0 3.3E−160 1E−115 1.37E−84 1.580033

Worse 0 1.9E−97 7.7E−97 1.69E−79 10.562

Std 0 3.47E−98 1.41E−97 3.15E−80 2.098315

Avg 0 6.3E−99 2.57E−98 1.06E−80 5.926974

f3

Best 0 1.4E−277 8.6E−203 1.29E−76 225.8074

Worse 0 1.9E−162 1.3E−163 7.1E−63 1491.548

Std 0 0 0 1.3E−63 318.7335

Avg 0 6.3E−164 4.4E−165 2.37E−64 689.5716

f4

Best 0 6.3E−152 7.2E−107 4.74E−49 2.741784

Worse 0 5.9E−108 2.58E−93 8.44E−45 20.19865

Std 0 1.1E−108 4.71E−94 1.71E−45 5.200433

Avg 0 2E−109 8.6E−95 8.15E−46 10.32102

f7

Best 5.42E−06 4.86E−05 4.74E−07 3.05E−05 0.016502

Worse 0.00012 0.001928 0.000172 0.000636 0.29265

Std 2.37E−05 0.000422 4.03E−05 0.000153 0.079691

Avg 2.9E−05 0.000577 3.73E−05 0.000221 0.10475

f10

Best 4.44E−16 4.44E−16 4.44E−16 4E−15 3.43768

Worse 4.44E−16 4.44E−16 4.44E−16 7.55E−15 13.618

Std 0 0 0 6.49E−16 2.628233

Avg 4.44E−16 4.44E−16 4.44E−16 4.12E−15 9.729815

f13

Best 0.059958 1.35E−32 4.59E−09 1.81E−07 1.421995

Worse 0.511519 0.097371 9.58E−05 0.101882 740,146

Std 0.099024 0.017857 1.8E−05 0.03048 134,630.9

Avg 0.207361 0.003978 8.87E−06 0.009989 34,123.03

f15

Best 0.000338 0.000307 0.000308 0.000307 0.0005

Worse 0.017615 0.001271 0.001227 0.020363 0.001699

Std 0.001615 0.000705 0.00038 0.006385 0.000942

Avg 0.000745 0.000713 0.000316 0.000307 0.000843

f20

Best − 3.22025 − 3.322 − 3.31926 − 3.32199 − 3.18287

Worse − 1.82072 − 3.1327 − 3.09772 − 3.13448 − 1.56463

Std 0.359287 0.071029 0.071884 0.065279 0.508591

Avg − 2.82475 − 3.25912 − 3.2005 − 3.26297 − 2.56725
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In the formula, Wf  is the weight matrix of the input xt,Uf  is the weight matrix of the hidden state ht−1 at the 
previous time, bf  is the biased variable, σ is the sigmoid function.

Enter gate it to control the input of new information:

In the formula, Wi is the weight matrix of the input xt,Ui is the weight matrix of the hidden state ht−1 at the previ-
ous time, bi is the biased variable, σ is the sigmoid function.

Output gate A, control output degree:

In the formula, Wo is the weight matrix of the input xt,Uo is the weight matrix of the hidden state ht−1 at the 
previous time, bo is the biased variable, σ is the sigmoid function.

New cell status c̃t , update the current cell status:

In the formula, Wc is the weight matrix of the input xt,Uc is the weight matrix of the hidden state ht−1 at the 
previous time, bc is the biased variable,tanh is a hyperbolic tangent function.

Calculate the cell state A at the current moment and update the hidden state S:

In the formula,⊙ stands for element-by-element product.

Parameter optimization based on IDBO
The objective of IDBO algorithm is to help LSTM model select appropriate parameters, which are LSTM hid-
den unit number, maximum training period, initial learning rate and L2 regularization parameter. So the fitness 
function of dung beetles is defined as,

In the formula, N is the number of samples, ŷi is the predicted value for sample i, yi is the actual value for sample i.
Set the total number of dung beetles SearchAgent-n = 30, among them, the proportion of rolling dung beetles, 

laying dung beetles, small dung beetles and thieving dung beetles was 20%, 40%, 20% and 20% respectively. The 
maximum number of iterations Max_iter = 10, the number of variables dim = 4, and the search range of variables 
are determined. The parameter optimization process of LSTM model based on IDBO algorithm is shown in Fig. 3.

Example analysis
Data sources
The data comes from a series of experiments designed by our group, and the concrete with a wide range of 
strength grades C40 is selected as the experimental specimen, and the newly constructed model is verified by 
using this experimental data.

(12)ft = σ(Wf xt + Uf ht−1 + bf )

(13)it = σ(Wixt + Uiht−1 + bi)

(14)ot = σ(Woxt + Uoht−1 + bo)

(15)c̃t = tanh(Wcxt + Ucht−1 + bc)

(16)
ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(17)fitness =
1

N

N
∑

i=1

(

yi − ŷi
)

Figure 2.  LSTM cell structure.
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Concrete specimen preparation
The test specimen is a cylinder with a diameter of 70 mm and a height of 35 mm. The cement in the concrete 
material composition is ordinary Portland cement with a strength grade of 42.5, the coarse aggregate is made of 
pebbles and gravel with a particle size of 5–10 mm, and the fine aggregate is made of medium coarse river sand, 
with a large particle size of 5 mm, a fineness modulus of 2.8–3.0, and a mud content of less than 1%. The admix-
ture is polycarboxylic acid high-efficiency superplasticizer mother liquor. The mix ratio of steel fiber concrete 
specimens is: cement: 425 kg/m3, sand: 600 kg/m3, stone: 1132 kg/m3, water: 184 kg/m3, water reducer: 8 kg/m3, 
Steel fiber: 39 kg/m3. The concrete specimen is shown in Fig. 4.

Experimental results of separated Hopkinson bar (SHPB)
In order to verify the accuracy of the test results, we performed 6–10 repeated tests for each strain rate at room 
temperature, and took the average of the multiple tests as the test results for the loading condition. The concrete 
specimen after loading is shown in Fig. 5.

recessive modulus constitutive equation of concrete material
The dynamic failure of materials is a process in which different forms of micro-damage (micro-cracks, micro-
voids, micro-shear bands, etc.) accumulate at a finite rate over time. The macroscopic continuous damage D is 
defined as follows:

In the formula, σ0 is non-damaging material stress, σ is the apparent stress of the damaged material.
In general, material damage evolves with the rheological process, so damage D is ε function of strain ε . How-

ever, A large number of dynamic tests show that the evolution of material damage under impact load depends on 

(18)D =
σ0 − σ

σ0

Input normalized 

training data

Whether the 

termination 

condition is 

met

Determine the LSTM 

model structure

Parameter setting of dung 

beetle algorithm

Greedy lens imaging 

reverse learns to initialize 

the population

Rolling Dung Beetle 

location update

Calculate the curve 

adaptive factor

Updated position of oviposition 

dung beetle and dung beetle

Thieving dung beetle 

location update

PID control is the optimal 

solution to the disturbance

Calculate the fitness 

function value

Re-evaluate the 

fitness function values

Input normalized test 

data

Output optimal parameters

Dynamic damage identification 

model of concrete

Output prediction result

Interpretation of result

Calculate the value of dung 

beetle adaptation function

YN

Figure 3.  Flow chart of IDBO optimizing LSTM parameters.
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both strain and strain rate, i.e.D = D(ε, ε̇) . From a macroscopic point of view, from the perspective of systems 
science, the constitutive relation is equivalent to the relationship between the cause (input) and the effect (output) 
of a system, that is, the system identification problem. Therefore, the one-dimensional constitutive relationship 
of steel fiber reinforced concrete under different strain rates can be expressed as,

In the formula, εth is the damage threshold (0.75 times the peak strain), measured by the "damage freezing 
method". The damage value D cannot be directly determined in the test. Considering that the damage value D 
is a function of time, the inverse function of time with respect to the damage value D is taken as the damage.

Experimental parameter settings
See Table 3.

Analysis of simulation results
In order to verify the effectiveness of the proposed concrete dynamic constitutive identification model, a steel 
fiber reinforced concrete specimen with a strain rate of 113.05  s−1 is taken as an example. The experimental data 

(19)σ(t) = f [ε(t), ε̇(t)]ε ≤ εth

(20)σ(t) = f [ε(t), ε̇(t),D(t)] = f
[

ε(t), ε̇(t), t−1(D)
]

ε > εth

Figure 4.  Concrete sample.

Figure 5.  Concrete specimen after loading.
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were input into the trained LSTM, DBO-LSTM, GWO-LSTM and IDBO-LSTM models for identification, and 
the identification results of the four models are shown in Fig. 6.

As can be seen from Fig. 6, the LSTM model has the lowest recognition ability among the four constitutive 
recognition models. LSTM can define macroscopic continuous damage. However, after taking into account the 
damage data, the curve predicted by the LSTM model does not agree with the test curve, so it cannot be verified 
to be accurate in defining the damage. Figure 6b, c show that the LSTM model optimized with GWO or DBO has 
improved the accuracy of its definition of damage, and the verification ability of DBO optimization is relatively 
high. In Fig. 6e, within the scope of ε ≤ εth,the IDBO-LSTM prediction curve is in good agreement with the test 
curve, but after the deformation of the concrete specimen exceeds the limit of model learning, the test curve and 

Table 3.  The main parameters of the algorithm.

Algorithm Parameter

LSTM Initial learning rate: 0.005, Maximum number of iterations: 200, Number of implicit units:200, Descending factor = 0.2

GWO Linear weight: ω = 2 − t *(2/Tmax)

DBO Light source coefficient: b = 0.3, Disturbance coefficient: k = 0.1

IDBO Scale Factor: k = 10,000, Weight Factor: ωmin = 0.2, ωmax = 0.9, Adjustment Factor: a = 0.45, Proportionality Constant: kp = 0.4

Figure 6.  Comparison of model identification results. Annotation*: the damage-free curve (red dashed line) is 
obtained by using strain and strain rate as inputs and stress as output. The damage curve (blue line) is obtained 
by using strain, strain rate, and time as inputs, and stress as output.
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the prediction curve deviate, and we believe that it is the occurrence of damage that causes the deviation of the 
curve, as shown in Fig. 6d red dotted line. After considering the damage evolution, that is, adding time as the 
inverse function of damage, the prediction curve of the IDBO-LSTM model is in good agreement with the test 
curve in the whole strain range, as shown in Fig. 6d blue underlined.

In order to further verify the universality of the IDBO-LSTM model, a steel fiber reinforced concrete speci-
men with a strain rate of 143.13  s−1 was selected, and the sample test data was input into the IDBO-LSTM model, 
and the identification results are shown in Fig. 7.

From the above identification, the continuous damage is determined as a function of strain and strain rate 
according to Eq. (18), in the form of the evolution of damage D with strain for different constant strain rates as 
shown in Fig. 8.

Conclusions
In this paper, a concrete dynamic constitutive identification model (IDBO-LSTM identification model) based 
on improved dung beetle algorithm and optimized long short-term memory neural network is proposed. Based 
on the thermal activation damage evolution model, the damage and rheology are separated by the apparent 
stress–strain curve of concrete with damage evolution, and the LSTM method is used to model the system. The 
greedy lens imaging reverse learning strategy, curve adaptive weight factor and PID control optimal solution 
disturbance strategy are introduced to improve the original shortcomings of the Dung Beetle algorithm, and 
the improved Dung Beetle algorithm is combined with LSTM method to identify the dynamic constitutive of 
concrete, and the conclusions are as follows:

• The greedy lens imaging reverse learning strategy was introduced to initialize the population, which improved 
the uneven position of the initial dung beetles, and the greedy idea was used to greatly reduce the optimiza-

Figure 7.  Identification results of specimens with a strain rate of 143.13  s−1.

Figure 8.  Damage evolution curves.
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tion time in the algorithm iteration process, improve the quality of the initial population, and increase the 
diversity of the population.

• The combination of curve adaptive weight factor and PID control optimal solution disturbance strategy 
dynamically adjusts the balance between global development and local exploration of the algorithm, helps the 
algorithm quickly jump out of the local optimal value, and improves the optimization accuracy and stability 
of the algorithm.

• By combining IDBO-LSTM neural network technology with SHPB test, the constitutive response and damage 
evolution rate of concrete under impact load can be identified by different input and output modes according 
to the test data without any constitutive assumptions in advance.

Ethical and informed consent for data used
The data supporting the findings of this study are available within the supplementary materials.
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