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Fully automated landmarking 
and facial segmentation on 3D 
photographs
Bo Berends 1*, Freek Bielevelt 1, Ruud Schreurs 1,2, Shankeeth Vinayahalingam 3, 
Thomas Maal 1 & Guido de Jong 1

Three-dimensional facial stereophotogrammetry provides a detailed representation of craniofacial 
soft tissue without the use of ionizing radiation. While manual annotation of landmarks serves as 
the current gold standard for cephalometric analysis, it is a time-consuming process and is prone 
to human error. The aim in this study was to develop and evaluate an automated cephalometric 
annotation method using a deep learning-based approach. Ten landmarks were manually annotated 
on 2897 3D facial photographs. The automated landmarking workflow involved two successive 
DiffusionNet models. The dataset was randomly divided into a training and test dataset. The precision 
of the workflow was evaluated by calculating the Euclidean distances between the automated and 
manual landmarks and compared to the intra-observer and inter-observer variability of manual 
annotation and a semi-automated landmarking method. The workflow was successful in 98.6% of all 
test cases. The deep learning-based landmarking method achieved precise and consistent landmark 
annotation. The mean precision of 1.69 ± 1.15 mm was comparable to the inter-observer variability 
(1.31 ± 0.91 mm) of manual annotation. Automated landmark annotation on 3D photographs was 
achieved with the DiffusionNet-based approach. The proposed method allows quantitative analysis of 
large datasets and may be used in diagnosis, follow-up, and virtual surgical planning.
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The fields of genetics, orthodontics, craniomaxillofacial surgery, and plastic surgery have greatly benefitted from 
advances in imaging technology, particularly in three-dimensional (3D) imaging. Within these fields, cone-beam 
computed tomography (CBCT) has become a well-established imaging technique as an alternative for computed 
tomography (CT) imaging, the conventional imaging method for depicting hard  tissues1. CBCT provides a high-
resolution multiplanar reconstruction of the craniofacial skeleton and facial soft tissue. However, a drawback 
of CT and CBCT is the use of ionizing radiation. In contrast, 3D stereophotogrammetry can capture a detailed 
and accurate representation of craniofacial soft tissue without the use of ionizing radiation and, therefore, has 
gained popularity in soft-tissue  analysis2–4.

Cephalometric analysis can be performed on 3D stereophotographs to extract information about the position 
of individual landmarks or distances and angles between several landmarks, with the purpose of objectifying 
clinical  observations5. Despite being a commonly used diagnostic tool in the craniofacial region, landmarking 
often remains a manual task that is time-consuming, prone to observer variability, and affected by observer 
fatigue and skill  level6,7. Therefore, there has been a growing interest in using artificial intelligence (AI), such as 
deep learning and machine learning algorithms to automate the landmark identification process.

Several studies have described the use of deep learning algorithms for the automation of hard-tissue landmark 
extraction for cephalometric  analysis5,8. Studies that include soft-tissue landmarks utilize (projective) 2D imag-
ing, are pose dependent, or require manual  input9,10. Only a limited number of studies were performed on the 
automated extraction of facial soft-tissue landmarks from 3D  photographs11,12. Nevertheless, since the studies in 
question did not integrate deep learning algorithms into their methodologies, and considering that deep learning 
has demonstrated enhanced accuracy in hard tissue landmarking, the effectiveness of soft tissue landmarking 
could potentially see improvements through the integration of deep learning  techniques5. Therefore, this study 
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aimed to develop and validate an automated approach for the extraction of soft-tissue facial landmarks from 3D 
photographs using deep learning.

Material and methods
Data acquisition
In total, 3188 3D facial photographs were collected from two databases: the Headspace database (n = 1519) and 
the Radboudumc’s database (n = 1669)13,14. The Radboudumc’s data consisted of healthy volunteers (n = 1153) 
and Oral and Maxillofacial Surgery patients (n = 516). The Radboudumc dataset was collected in accordance 
with the World Medical Association Declaration of Helsinki on medical research ethics. The following ethical 
approvals and waivers were used: Commissie Mensgebonden Onderzoek (CMO) Arnhem-Nijmegen (Nijmegen, 
the Netherlands) #2007/163; ARB NL 17934.091.07; CMO Arnhem-Nijmegen (Nijmegen, the Netherlands) 
#2019-5793. All data were captured using 3dMD’s 5-pod 3dMDhead systems (3dMDCranial, 3dMD, Atlanta, 
Georgia USA). Exclusion criteria were large gaps within the mesh, stitching errors, excessive facial hair interfer-
ing with the facial landmarks, meshes that lacked texture (color information), and mesh-texture mismatches. 
An overview of the data is presented in Table 1.

Data annotation
The 3D photographs were manually annotated by a single observer using the  3DMedX® software (v1.2.29.0, 
3D Lab Radboudumc, Nijmegen, The Netherlands; details can be found at https:// 3dmedx. nl). The following 
ten cephalometric facial landmarks were annotated: exocanthions, endocanthions, nasion, nose tip, alares, and 
cheilions. The 3D landmarks were annotated on the mesh surfaces (faces) independent of vertex coordinates. 
The texture of the 3D photographs was used in the annotation process as a visual cue. Manual annotation was 
repeated on 50 randomly selected 3D photos by the first observer, a second observer, and a third observer to 
assess the intra-observer and inter-observer variability.

Automated landmarking workflow
The automated landmarking workflow was developed for the same cephalometric landmarks (exocanthions, 
endocanthions, nasion, nose tip, alares, and cheilions). It consisted of four main steps: (1) rough prediction of 
landmarks using an initial DiffusionNet on the original meshes; (2) realignment of the meshes based on the 
roughly predicted landmarks; (3) segmentation of the facial region through fitting of a template facial mesh using 
a morphable model; (4) refined landmark prediction on the segmented meshes using a final  DiffusionNet15. The 
DiffusionNet models used spatial features only and did not use texture information for the automated landmark-
ing task. An overview of the workflow can be seen in Fig. 1.

DiffusionNet
DiffusionNet is a deep learning algorithm able to learn upon non-uniform geometric data, like 3D curved sur-
faces. It is designed to address challenges associated with the representation and analysis of surfaces in the field 
of geometric deep learning. DiffusionNet was used for this study as it is a highly accurate method for performing 
segmentation tasks, also when compared to other state-of-the-art mesh-based deep-learning algorithms. A key 
feature is the relative mesh sampling/resolution robustness of the algorithm as well as the invariance to input 
orientations. The DiffusionNet consists of three main components: a multilayer perceptron (MLP) for feature 
transformation, a diffusion layer responsible for information propagation, and a spatial gradient enabling the 
network to understand and learn. The architecture of the DiffusionNet depends on the configuration of several 
adjustable parameters. These include C-width, which corresponds to the size of the DiffusionNet and N-blocks, 
corresponding to the number of DiffusionNet blocks. In addition, the size of the (per-vertex) MLP can be altered 
by adjustment of its layer  size15.

Training
The data were randomly divided into two sets, 85% for training and 15% for testing of the DiffusionNet models. 
As a data augmentation step, the 3D meshes from the training dataset were mirrored over the YZ plane to double 
the number of scans available for training. No validation set was used during training.

Step 1: Rough prediction of landmarks
A DiffusionNet was utilized for initial prediction of the exocanthions, endocanthions, nasion, nose tip, alares, 
and cheilions as visualized in Fig. 215.

Table 1.  Dataset distribution with the percentage of the total dataset.

Dataset

Train Test Total

n % n % n %

Headspace 1053 36.3 192 6.6 1245 43.0

Radboudumc control 974 33.6 165 5.7 1139 39.3

Radboudumc patient 436 15.1 77 2.7 513 17.7

Total 2463 85 434 15 2897 100

https://3dmedx.nl
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Preprocessing
To speed up the training process for rough landmark prediction, each mesh was downsampled to a maximum 
of 25.000  vertices16. After downsampling, the 3D meshes had a mean inter-vertex distance of 2.035 ± 0.356 mm. 
Subsequently, a mask was applied, assigning a value of 1 to all vertices located within 5 mm Euclidean distance 
to the manually annotated landmarks and a value of 0 to the remaining vertices.

DiffusionNet configuration for the first semantic segmentation task
Six output channels were configured for the first semantic segmentation task. The two midsagittal landmarks 
(nasion and nose tip) were assigned an individual channel. The four bilateral landmark pairs were assigned to the 
four remaining channels. The DiffusionNet model was configured with a C-width of 256, an MLP of 256 and 256 
channels, and an N-block of 12. The network used an Adam optimizer with a Cosine Annealing learning rate of 
2 ×  10−5 and a  Tmax of 50 epochs, representing the number of epochs at which the learning rate is annealed to its 
minimum and starts increasing again. Furthermore, a binary cross-entropy loss and a dropout rate of 0.10 were 
applied. Since the orientation and position of the included 3D meshes was not fixed, the network was trained 
with Heat Kernel Signature (HKS) Features of the 3D meshes. The final output layer was linear. The model was 
implemented in PyTorch on a 24 GB NVIDIA RTX A5000 GPU and trained for 200 epochs.

Figure 1.  Automated landmarking workflow. Step 1: First semantic segmentation task for rough landmark 
prediction. Step 2: Realignment of the meshes using the roughly predicted landmarks. Step 3: Facial region 
segmentation (white) using MeshMonk (blue wireframe). Step 4: Second semantic segmentation task for refined 
landmark prediction.

Figure 2.  First semantic segmentation task. The manually annotated landmarks (spheres) and corresponding 
masks are visualized in green. The green areas represent the vertices within 5 mm of the manually annotated 
landmark. The roughly predicted landmarks are visualized in yellow. The yellow area represents the positively 
predicted vertices out of which the rough landmarks will be calculated.
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Post‑processing
After the semantic segmentation, the model was used to predict which vertices belonged to each of the configured 
channels. For the symmetrical landmarks, a 3D clustering algorithm was utilized to distinguish the predicted 
vertex clusters from each other. Subsequently, a weighted combination of the output values (activations), as well 
as the locations of each of the vertices that received a non-zero activation value, were used to determine the 
landmark positions using Eq. 1.

A plane was formed by connecting the predicted nasion, nose tip, and cheilion midpoint to establish if the 
bilateral landmarks were on the left or right side of the face using the plane equation.

Step 2: Realignment
Based on the rough prediction of the exocanthions, nasion, and cheilions, the 3D meshes were positioned in a 
reference frame. The nasion was defined as the origin, with the x-axis running parallel to the line connecting 
both exocanthions and the z-axis parallel to the nasion-cheilion midpoint line (Fig. 1).

Step 3: Facial region segmentation
Facial segmentation was used to standardize the realigned 3D meshes for refined landmark prediction and reduce 
processing time without the need for downsampling. The MeshMonk algorithm, which utilizes a combination 
of rigid and non-rigid template matching, was utilized for segmentation (implemented in C++)10. The default 
face template of MeshMonk was used. The exocanthions, nose tip, and cheilions (step 2) were used for the initial 
registration of the facial template mesh to the 3D meshes. The configuration of the MeshMonk fitting algorithm 
is given in the Appendix. An additional margin of 15 mm around the fitted MeshMonk template was included to 
supply the final DiffusionNet with more context while still excluding hair regions (Fig. 1). After facial segmenta-
tion, the mean inter-vertex distance of the 3D meshes was 1.39 ± 0.16 mm.

Besides facial segmentation, the MeshMonk algorithm can also be utilized for landmark annotation. The ten 
landmarks were collected using this semi-automatic approach to serve as a reference for the precision of the 
automated annotation approach. In contrast to the automated approach, the manually annotated landmarks were 
used for template fitting in the semi-automated approach to comply with the MeshMonk  workflow10.

Step 4: Refined landmark prediction
A second semantic segmentation task, using DiffusionNet, was used to predict the landmarks on the realigned 
and segmented 3D meshes (Fig. 3).

Preprocessing
In contrast to step 1, the meshes were not downsampled as it is made unnecessary by the facial region segmenta-
tion step. A mask was created in which the vertices within 3.5 mm of the manually annotated landmarks were 
assigned value 1 and the other vertices were assigned value 0. Default mesh normalization and scaling were 
applied as provided by the DiffusionNet  package15.

DiffusionNet configuration for the second semantic segmentation task
For the second semantic segmentation task, ten output channels were configured: each individual landmark was 
assigned to an individual channel. The DiffusionNet was configured with a C-width of 384, an MLP of 768, and 
an N-blocks of 12. Compared to the first network, the same optimizer, loss, and drop-out were used. However, 
this second network was trained with XYZ settings instead of HKS settings as the rotation invariance was no 
longer present after step 3 (Fig. 1). The model was implemented in PyTorch on a 24 GB NVIDIA RTX A5000 
GPU and trained for 200 epochs. The final output layer was linear.

(1)Predicted landmark location =

∑
(

10Activations1,2,...,i ∗ coordinate1,2,...,i
)

∑

10Activations1,2,...,i

Figure 3.  Second semantic segmentation task. The manually annotated landmarks and corresponding masks 
that were used for training are visualized in green. The green areas represent the vertices within 3.5 mm of the 
manually annotated landmark. The positively predicted vertices and the calculated refined predicted landmarks 
are visualized in red.
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Post‑processing
A weighted combination of the activations, supplemented by the locations of each of the vertices, was again used 
to determine the final landmark positions.

Statistical analysis
Statistical analyses were performed on available patient characteristics to assess differences between the source 
databases and between the training and test data. To assess the intra-observer and inter-observer variability 
of the manual annotation method, the Euclidean distances between the landmarks annotated by the different 
observers were calculated. Descriptive statistics were used to summarize the results. The Euclidean distances 
between the predicted and the manually annotated landmarks were calculated for every test set to evaluate the 
performance of automated landmarking; descriptive statistics were used for summarizing the results. This was 
done for both the rough (initial DiffusionNet) and the refined (final DiffusionNet) predictions. The performance 
of the automated landmarking workflow was compared to the intra-observer and inter-observer variability of 
the manual annotation method.

The Euclidean distances between the manually annotated landmarks and the predictions by the semi-auto-
mated MeshMonk method were calculated and compared to the precision of the refined predictions using a 
one-way repeated measures ANOVA test. A p value < 0.05 was used as a cut-off value for statistical significance.

Ethical approval and Informed consent
CMO Arnhem-Nijmegen (Nijmegen, the Netherlands) #2007/163; ARB NL 17934.091.07; CMO Arnhem-
Nijmegen (Nijmegen, the Netherlands) #2019-5793. Images of a 3D photo of the first author, who gave his 
informed consent to publish images in this online open-access publication, were used in Figs. 1, 2 and 3.

Results
Based on the stated exclusion criteria, 291 3D photographs were excluded, yielding a total of 2897 3D pho-
tographs that were used for training and testing of the developed workflow (Table 1). Most of the exclusions 
were due to the lack of texture information (n = 271). The age and gender characteristics are given in Table 2. 
A statistically significant difference was found for age and gender between the source databases (p < 0.001 and 
p < 0.001, respectively). However, there were no statistically significant differences between ages and genders of 
the training and test splits (p = 0.323 and p = 0.479, respectively). There were no unknown genders or ages in the 
test dataset. The training dataset held one transgender case and had five unknown ages.

The intra-observer and interobserver differences of the manual annotation method are summarized in 
Tables 3 and 4, respectively. The overall mean intra-observer variability for manual annotation of the ten land-
marks was 0.94 ± 0.71 mm; the overall mean interobserver variability was 1.31 ± 0.91 mm.

The initial DiffusionNet showed an average precision of 2.66 ± 2.37 mm, and the complete workflow achieved 
a precision of 1.69 ± 1.15 mm. The performance of both models is summarized in Table 5. The workflow could 
be completed for 98.6% of the test data; for six 3D photos (1.4%), one of the rough landmarks required for the 
consecutive steps could not be predicted by the first DiffusionNet. Upon visual inspection, the six excluded 3D 
photos contained large gaps and/or substantial amounts of information outside the region of interest, such as 
clothing or hair. Since the workflow could not be completed, these data sets were excluded from the results.

The precision was within 2 mm for 69% of the refined predicted landmarks, within 3 mm for 89% of the 
landmarks, and within 4 mm for 96% of the landmarks. Table 6 details the precision within these boundaries for 
the individual landmarks. The exocanthions and alares were found to perform the worst. The precision of the 
semi-automated MeshMonk method was on average 1.97 ± 1.34 mm for the ten landmarks (Fig. 4). Compared 
to this semi-automatic method, the DiffusionNet-based method was found to have significantly better precision 

Table 2.  Population characteristics per dataset.

Dataset

Age (years) Gender

Mean Std Min Max Male Female Transgender

Headspace 35.9 17.6 2 90 631 (50.7%) 613 (49.2%) 1 (0.1%)

Controls 42.1 19.4 0 90 492 (43.2%) 647 (56.8%)

Patients 27.8 10.9 13 69 190 (37.0%) 323 (63.0%)

Table 3.  The intra-observer variability for all ten landmarks is stated in millimeters ± standard deviation. 
The intra-observer variability was determined by computing the Euclidean distance between annotations 
performed in twofold by a single observer.

Exocanthion Endocanthion Nasion Nose tip Alare Cheilion

Right Left Right Left Right Left Right Left

0.85 ± 0.65 0.87 ± 0.55 0.79 ± 0.88 0.79 ± 0.72 1.32 ± 1.04 0.88 ± 0.43 1.04 ± 0.53 0.99 ± 0.58 0.99 ± 0.79 0.85 ± 0.64
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for the left exocanthion, endocanthions, nose tip, and cheilions and worse precision for the alares; no significant 
differences were found for nasion and right exocanthion.

Discussion
Soft-tissue cephalometric analysis can be used to objectify the clinical observations on 3D photographs, but 
manual annotation, the current gold standard, is time-consuming and tedious. Therefore, this study developed 
a deep learning-based approach for automated landmark extraction from randomly oriented 3D photographs. 
The performance was assessed for ten cephalometric landmarks: the results showed that the deep-learning-
based landmarking method was precise and consistent, with a precision that approximated the inter-observer 
variability of the manual annotation method. A precision < 2 mm, which may be considered a cut-off value for 
clinical relevance, was seen for 69% of the predicted  landmarks17,18.

In the field of craniofacial surgery, different studies have applied deep-learning models for automated cepha-
lometric landmarking, mainly focusing on 2D and 3D radiographs. Dot et al. used a SpatialConfiguration-Net 
for the automated annotation of 33 different 3D hard-tissue landmarks from CT images and achieved a precision 
of 1.0 ± 1.3  mm19. An automated landmarking method, based on multi-stage deep reinforcement learning and 
volume-rendered imaging, was proposed by Kang et al. and yielded a precision of 1.96 ± 0.78  mm20. A systematic 
review by Serafin et al. found a mean precision of 2.44 mm for the prediction of 3D hard-tissue landmarks from 
CT and CBCT  images5.

Some studies did describe automated algorithms for 3D soft tissue landmarking on 3D photographs, but 
these algorithms did not include deep learning models. Baksi et al. described an automated method, involv-
ing morphing of a template mesh, for the landmarking of 22 soft-tissue landmarks from 3D photographs that 

Table 4.  The interobserver variability is computed by comparing the Euclidean distance between annotations 
made by three different observers. The Euclidean distances are stated in millimeters ± standard deviation.

Exocanthion Endocanthion Nasion Nose tip Alare Cheilion

Right Left Right Left Right Left Right Left

Observer 1 versus 2 1.16 ± 0.65 1.14 ± 0.67 1.08 ± 0.69 0.87 ± 0.58 1.64 ± 0.91 1.16 ± 0.59 1.34 ± 0.93 1.27 ± 0.79 0.93 ± 0.55 0.97 ± 0.66

Observer 1 versus 3 1.02 ± 0.85 0.95 ± 0.63 1.03 ± 0.80 1.08 ± 0.73 1.80 ± 1.20 1.77 ± 0.86 1.68 ± 1.19 1.35 ± 0.80 1.65 ± 1.04 1.43 ± 1.05

Observer 2 versus 3 1.31 ± 0.88 1.03 ± 0.57 0.97 ± 0.73 1.05 ± 0.64 2.21 ± 1.30 2.20 ± 1.07 1.33 ± 0.98 1.35 ± 0.82 1.27 ± 0.83 1.25 ± 0.84

Average 1.16 ± 0.80 1.04 ± 0.63 1.03 ± 0.74 1.00 ± 0.66 1.88 ± 1.17 1.71 ± 0.96 1.45 ± 1.05 1.32 ± 0.80 1.28 ± 0.88 1.22 ± 0.88

Table 5.  The precision of the rough (first DiffusionNet) and refined (second DiffusionNet) is determined by 
computing the Euclidean distance between the DiffusionNet-predicted and manually annotated landmarks and 
is stated in millimeters ± standard deviation.

Exocanthion Endocanthion Nasion Nose tip Alare Cheilion

Right Left Right Left Right Left Right Left

Rough predictions 2.94 ± 2.38 2.86 ± 1.81 2.76 ± 2.40 2.83 ± 2.56 1.69 ± 1.05 1.58 ± 0.89 2.41 ± 1.98 2.52 ± 1.92 3.48 ± 3.67 3.51 ± 2.89

Refined predictions 2.25 ± 1.23 2.03 ± 1.27 1.37 ± 0.86 1.48 ± 1.00 1.48 ± 1.02 1.14 ± 0.73 1.79 ± 1.07 1.75 ± 1.11 1.71 ± 1.26 1.88 ± 1.34

Table 6.  Overview of the accuracy distribution of each landmark as predicted by the complete workflow.

Percentage of landmarks predicted with a precision 
within range

 < 2 mm (%)  < 3 mm (%)  < 4 mm (%)  < 5 mm (%)

Exocanthion right 47 77 90 97

Exocanthion left 56 80 82 97

Endocanthion right 80 96 99 100

Endocanthion left 76 92 98 99

Nasion 77 94 97 99

Nose tip 88 98 99 100

Alare right 62 88 96 99

Alare left 67 86 96 98

Cheilion right 71 89 95 97

Cheilion left 65 87 94 97

All Landmarks 69 89 96 98
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achieved a precision of 3.2 ± 1.6  mm11. An automated principal component analysis-based method, described by 
Guo et al., achieved an average root mean square error of 1.7 mm for the landmarking 17 soft-tissue landmarks 
from 3D  photographs12.

Studies that did apply deep learning for landmark detection on 3D meshes mostly focused on landmarking on 
intra-oral scans. Wu et al. utilized a two-stage deep learning framework for the prediction of 44 dental landmarks 
and achieved a mean absolute error of 0.623 ± 0.718  mm21. DentalPointNet, consisting of two sub-networks; a 
region proposal network and a refinement network, as described by Lang et al.22, achieved an average localization 
error of 0.24 mm for the detection of 68 landmarks. Even though the precision achieved in these studies is better 
than was achieved in this study, a direct comparison is infeasible to make due to the difference in landmarks, 
datasets, object size, and imaging modalities used. Therefore, future research should investigate the efficacy of 
these methods for cephalometric soft-tissue landmarking on 3D photographs. However, as the precision achieved 
by this method (1.69 ± 1.15 mm) closely aligns with the inter-observer variability (1.31 ± 0.91 mm) observed 
for the ten landmarks utilized, it is improbable that employing an alternative machine learning-based method 
trained and evaluated on the same dataset would yield large improvements in precision. Especially beyond the 
inter-observer variability, as the evaluation of the developed method is confined to the precision level dictated 
by the inter-observer variability of the manual annotation method.

The effect of landmark choice on established precision is underlined by the MeshMonk results found in this 
study. In the original publication by White et al., an average error of 1.26 mm for 19 soft-tissue landmarks was 
 seen10. The same methodology was used to establish the precision for the ten landmarks used in this study, and 
an overall precision of 1.97 ± 1.34 mm was found. This finding highlights the difficulty in comparing landmark-
ing precision from literature. Compared to the semi-automatic method, the fully-automated workflow yielded 
significantly improved precision for six landmarks, emphasizing the feasibility of fully-automatically annotating 
soft-tissue landmarks from 3D photos using deep learning.

The proposed workflow uses two successive networks and additional algorithms for alignment and facial 
segmentation. Advantages of this approach include that the DiffusionNet assures robustness against sampling 
densities and the HKS settings inherently account for rotational, positional, and scale invariance that may arise 
between different 3D photography systems. Input resolution can be considered a limiting factor for the maximum 
landmark detection performance. This can partially explain the differences as seen in the examples mentioned 
earlier (e.g. intra-oral scans have a much higher mesh resolution as compared to e.g. 3D photos or CT-scans). 
Furthermore, as DiffusionNet natively gives a per vertex prediction, the precision of the landmarking method is 
dependent on the vertex density of the 3D meshes. Therefore, the original high resolution meshes were used for 
the refined landmark prediction step. Since the achieved precision exceeded half the inter-vertex distance, it is 
expected that the impact of the inter-vertex distance on the precision was negligible. Moreover, employing the 
weighted mean vertex location for transforming the predicted vertices into landmark coordinates ensures that 
the predicted landmarks are not constrained solely to the vertex coordinates of the mesh.

A limitation of the current study is that the workflow was only applied to 3D photographs captured using one 
3D photography system. Despite the robust nature of DiffusionNet/HKS, the performance of the workflow might 
be affected when applied to 3D photographs captured with different hardware. Furthermore, the DiffusionNet 
models were only trained on spatial features, whereas in the manual annotation process texture information was 

Figure 4.  Precision of the landmarking methods. The precision of the prediction of the rough landmarks (first 
DiffusionNet), the refined landmarks (second DiffusionNet), and the semi-automated MeshMonk method 
are visualized for the right exocanthion (Exo R), left exocanthion (Exo L), right endocanthion (Endo R), left 
endocanthion (Endo L), nasion, nose tip, right alare (Alare R), left alare (Alare L), right cheilion (Cheilion R), 
and left cheilion (Cheilion L).
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used. Even though this has the advantage of making the DiffusionNet models insensitive to variations in skin 
tone or color, landmarks such as the exocanthions, endocanthions, and cheilions could presumably be located 
more precisely using manual annotation. This would not apply to the landmarks lacking color transitions, such 
as the nasion and nose tip. Based on these presumptions, the DiffusionNet-based approach might achieve a better 
precision if texture data of the 3D photographs would be available to the networks.

Another limitation of the proposed workflow arises from the utilization of HKS settings in the initial Diffu-
sionNet, leading to occasional issues with random left–right flipping in the predictions of symmetrical landmarks 
(e.g., exocanthions). To overcome this challenge, a solution was devised that involved detecting symmetrical 
landmarks within a single channel. Subsequently, both landmarks were distinguished from each other using a 
clustering algorithm, followed by a left–right classification based on the midsagittal plane. Although a success 
rate of 98.6% was achieved using this solution, the workflow failed when the initial DiffusionNet was unable to 
predict one of the landmarks in the midsagittal plane (nasion, nose tip, or cheilion midpoint). Since this was 
mainly due to suboptimal quality of the 3D photo, it might be prevented by optimizing image acquisition. For 
optimal performance of the workflow, it is important to minimize gaps and restrict the depicted area in 3D 
photos to the face.

Within this workflow, ten clinically relevant yet rather easily identifiable and reproducible landmarks, were 
incorporated to provide a solid gold standard. However, the constraint of utilizing only ten landmarks may 
impede the adaptability of the current method to a broader anatomical region or specific research objectives. The 
effectiveness of the developed workflow for the detection of more challenging landmarks should be investigated 
in future research. However, adapting the current workflow to accommodate additional landmarks or different 
anatomical regions may necessitate modifications.

Due to its high precision and consistency, the developed automated landmarking method has the potential 
to be applied in various fields. Possible applications include objective follow-up and analysis of soft-tissue facial 
deformities, growth evaluation, facial asymmetry assessment, and integration in virtual planning software for 3D 
backward  planning23,24. Considering that the proposed DiffusionNet-based approach only uses spatial features, 
it could be applied on 3D meshes of facial soft-tissue that are derived from imaging modalities lacking texture, 
such as CT, CBCT, or MRI. Nevertheless, further research is necessary to ascertain the applicability of this 
workflow to these imaging modalities. The fully-automated nature of the workflow also enables cephalometric 
analysis on large-scale datasets, presenting significant value for research purposes. The position-independency 
of the workflow might make it suitable for automated landmarking in 4D stereophotogrammetry and give rise 
to real-time cephalometric movement analysis for diagnostic  purposes25,26.

Conclusion
In conclusion, a deep learning-based approach for automated landmark extraction from 3D facial photographs 
was developed and its precision was evaluated. The results showed high precision and consistency in landmark 
annotation, comparable to manual and semi-automatic annotation methods. Automated landmarking methods 
offer potential for analyzing large datasets, with applications in orthodontics, genetics, and craniofacial surgery 
and in emerging new imaging techniques like 4D stereophotogrammetry.

Data availability
Coded scripts are available within the following GitHub repository: https:// github. com/ rumc3 dlab/ 3dlan dmark 
detec tion/.

Received: 17 November 2023; Accepted: 13 March 2024

References
 1. Ludlow, J. B. & Ivanovic, M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. 

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 106–114. https:// doi. org/ 10. 1016/j. tripl eo. 2008. 03. 018 (2008).
 2. Dindaroğlu, F., Kutlu, P., Duran, G. S. & Görgülü, S. Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct 

anthropometry and 2D photogrammetry. Angle Orthod. 86, 487–494. https:// doi. org/ 10. 2319/ 041415- 244.1 (2016).
 3. Heike, C. L., Upson, K., Stuhaug, E. & Weinberg, S. M. 3D digital stereophotogrammetry: A practical guide to facial image acquisi-

tion. Head Face Med. 6, 18. https:// doi. org/ 10. 1186/ 1746- 160X-6- 18 (2010).
 4. Liu, J. et al. Reliability of stereophotogrammetry for area measurement in the periocular region. Aesthet. Plast. Surg. 45, 1601–1610. 

https:// doi. org/ 10. 1007/ s00266- 020- 02091-5 (2021).
 5. Serafin, M. et al. Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: Systematic review and meta-

analysis. La Radiol. Med. 128, 544–555. https:// doi. org/ 10. 1007/ s11547- 023- 01629-2 (2023).
 6. Park, J.-H. et al. Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning 

methods YOLOV3 and SSD. Angle Orthod. 89, 903–909. https:// doi. org/ 10. 2319/ 022019- 127.1 (2019).
 7. Stewart, R. F., Edgar, H., Tatlock, C. & Kroth, P. J. Developing a standardized cephalometric vocabulary: Choices and possible 

strategies. J. Dent. Educ. 72, 989–997 (2008).
 8. Guo, Y. et al. Deep learning for 3D point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. https:// doi. org/ 10. 1109/ TPAMI. 

2020. 30054 34 (2020).
 9. Manal, E. R., Arsalane, Z. & Aicha, M. Survey on the approaches based geometric information for 3D face landmarks detection. 

IET Image Process. 13, 1225–1231. https:// doi. org/ 10. 1049/ iet- ipr. 2018. 6117 (2019).
 10. White, J. D. et al. MeshMonk: Open-source large-scale intensive 3D phenotyping. Sci. Rep. 9, 6085. https:// doi. org/ 10. 1038/ s41598- 

019- 42533-y (2019).
 11. Baksi, S., Freezer, S., Matsumoto, T. & Dreyer, C. Accuracy of an automated method of 3D soft tissue landmark detection. Eur. J. 

Orthod. 43, 622–630. https:// doi. org/ 10. 1093/ ejo/ cjaa0 69 (2021).
 12. Guo, J., Mei, X. & Tang, K. Automatic landmark annotation and dense correspondence registration for 3D human facial images. 

BMC Bioinform. 14, 232. https:// doi. org/ 10. 1186/ 1471- 2105- 14- 232 (2013).

https://github.com/rumc3dlab/3dlandmarkdetection/
https://github.com/rumc3dlab/3dlandmarkdetection/
https://doi.org/10.1016/j.tripleo.2008.03.018
https://doi.org/10.2319/041415-244.1
https://doi.org/10.1186/1746-160X-6-18
https://doi.org/10.1007/s00266-020-02091-5
https://doi.org/10.1007/s11547-023-01629-2
https://doi.org/10.2319/022019-127.1
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1049/iet-ipr.2018.6117
https://doi.org/10.1038/s41598-019-42533-y
https://doi.org/10.1038/s41598-019-42533-y
https://doi.org/10.1093/ejo/cjaa069
https://doi.org/10.1186/1471-2105-14-232


9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6463  | https://doi.org/10.1038/s41598-024-56956-9

www.nature.com/scientificreports/

 13. Dai, H., Pears, N., Smith, W. & Duncan, C. Statistical modeling of craniofacial shape and texture. Int. J. Comput. Vis. 128, 547–571. 
https:// doi. org/ 10. 1007/ s11263- 019- 01260-7 (2020).

 14. Pears, N. E., Duncan, C., Smith, W. A. P. & Dai, H. The Headspace dataset (2018).
 15. Sharp, N., Attaiki, S., Crane, K. & Ovsjanikov, M. DiffusionNet: Discretization agnostic learning on surfaces. ACM Trans. Graph. 

https:// doi. org/ 10. 1145/ 35079 05 (2022).
 16. Garland, M. & Heckbert, P. S. in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 

209–216 (ACM Press, 1997).
 17. Hsu, S. S. et al. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: A prospective multicenter 

study. J. Oral Maxillofac. Surg. 71, 128–142. https:// doi. org/ 10. 1016/j. joms. 2012. 03. 027 (2013).
 18. Schouman, T. et al. Accuracy evaluation of CAD/CAM generated splints in orthognathic surgery: A cadaveric study. Head Face 

Med. https:// doi. org/ 10. 1186/ s13005- 015- 0082-9 (2015).
 19. Dot, G. et al. Automatic 3-dimensional cephalometric landmarking via deep learning. J. Dent. Res. 101, 1380–1387. https:// doi. 

org/ 10. 1177/ 00220 34522 11123 33 (2022).
 20. Kang, S. H., Jeon, K., Kang, S.-H. & Lee, S.-H. 3D cephalometric landmark detection by multiple stage deep reinforcement learn-

ing. Sci. Rep. 11, 17509. https:// doi. org/ 10. 1038/ s41598- 021- 97116-7 (2021).
 21. Wu, T.-H. et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. 

IEEE Trans. Med. Imaging 41, 3158–3166. https:// doi. org/ 10. 1109/ TMI. 2022. 31803 43 (2022).
 22. Lang, Y. et al. Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, 444–452 (Springer, 2022).
 23. Memon, A. R., Li, J., Egger, J. & Chen, X. A review on patient-specific facial and cranial implant design using Artificial Intelligence 

(AI) techniques. Expert Rev. Med. Devices 18, 985–994. https:// doi. org/ 10. 1080/ 17434 440. 2021. 19699 14 (2021).
 24. Tel, A. et al. Systematic review of the software used for virtual surgical planning in craniomaxillofacial surgery over the last decade. 

Int. J. Oral Maxillofac. Surg. 52, 775–786. https:// doi. org/ 10. 1016/j. ijom. 2022. 11. 011 (2023).
 25. Harkel, T. C. T. et al. Reliability and agreement of 3D anthropometric measurements in facial palsy patients using a low-cost 4D 

imaging system. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1817–1824. https:// doi. org/ 10. 1109/ TNSRE. 2020. 30075 32 (2020).
 26. Shujaat, S. et al. The clinical application of three-dimensional motion capture (4D): A novel approach to quantify the dynamics of 

facial animations. Int. J. Oral Maxillofac. Surg. 43, 907–916. https:// doi. org/ 10. 1016/j. ijom. 2014. 01. 010 (2014).

Acknowledgements
The authors wish to thank Lisette Masselink for performing the annotations and Luca Carotenuto for exploring 
the different approaches and network architectures that led to the conceptualization of the research.

Author contributions
BB: Conceptualization, Methodology, Software, Validation, Writing—Original Draft. FB: Conceptualization, 
Methodology, Software, Validation, Writing—Original Draft. RS: Conceptualization, Writing—Review and Edit-
ing. SV: Writing—Review and Editing. TM: Supervision. GdJ: Conceptualization, Software, Formal Analysis, 
Supervision.

Funding
This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-
profit sectors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 56956-9.

Correspondence and requests for materials should be addressed to B.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1007/s11263-019-01260-7
https://doi.org/10.1145/3507905
https://doi.org/10.1016/j.joms.2012.03.027
https://doi.org/10.1186/s13005-015-0082-9
https://doi.org/10.1177/00220345221112333
https://doi.org/10.1177/00220345221112333
https://doi.org/10.1038/s41598-021-97116-7
https://doi.org/10.1109/TMI.2022.3180343
https://doi.org/10.1080/17434440.2021.1969914
https://doi.org/10.1016/j.ijom.2022.11.011
https://doi.org/10.1109/TNSRE.2020.3007532
https://doi.org/10.1016/j.ijom.2014.01.010
https://doi.org/10.1038/s41598-024-56956-9
https://doi.org/10.1038/s41598-024-56956-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Fully automated landmarking and facial segmentation on 3D photographs
	Material and methods
	Data acquisition
	Data annotation
	Automated landmarking workflow
	DiffusionNet
	Training
	Step 1: Rough prediction of landmarks
	Preprocessing
	DiffusionNet configuration for the first semantic segmentation task
	Post-processing

	Step 2: Realignment
	Step 3: Facial region segmentation
	Step 4: Refined landmark prediction
	Preprocessing
	DiffusionNet configuration for the second semantic segmentation task
	Post-processing

	Statistical analysis
	Ethical approval and Informed consent

	Results
	Discussion
	Conclusion
	References
	Acknowledgements


