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Empowering coffee farming using 
counterfactual recommendation 
based RNN driven IoT integrated 
soil quality command system
Raveena Selvanarayanan 1, Surendran Rajendran 1*, Sameer Algburi 2, 
Osamah Ibrahim Khalaf 3 & Habib Hamam 4

Soil health is essential for whirling stale soil into rich coffee-growing land. By keeping healthy soil, 
coffee producers may improve plant growth, leaf health, buds, cherry and bean quality, and yield. 
Traditional soil monitoring is tedious, time-consuming, and error-prone. Enhancing the monitoring 
system using AI-based IoT technologies for quick and precise changes. Integrated soil fertility 
control system to optimize soil health, maximize efficiency, promote sustainability, and prevent 
crop threads using real-time data analysis to turn infertile land into fertile land. The RNN-IoT 
approach uses IoT sensors in the coffee plantation to collect real-time data on soil temperature, 
moisture, pH, nutrient levels, weather, CO2 levels, EC, TDS, and historical data. Data transmission 
using a wireless cloud platform. Testing and training using recurrent neural networks (RNNs) and 
gated recurrent units gathered data for predicting soil conditions and crop hazards. Researchers 
are carrying out detailed qualitative testing to evaluate the proposed RNN-IoT approach. Utilize 
counterfactual recommendations for developing alternative strategies for irrigation, fertilization, 
fertilizer regulation, and crop management, taking into account the existing soil conditions, forecasts, 
and historical data. The accuracy is evaluated by comparing it to other deep learning algorithms. 
The utilization of the RNN-IoT methodology for soil health monitoring enhances both efficiency and 
accuracy in comparison to conventional soil monitoring methods. Minimized the ecological impact by 
minimizing water and fertilizer utilization. Enhanced farmer decision-making and data accessibility 
with a mobile application that provides real-time data, AI-generated suggestions, and the ability to 
detect possible crop hazards for swift action.

Keywords  Soil monitoring system, Monitoring sensor, Recurrent neural network (RNN), Gated recurrent 
units (GRU), IoT sensor, Counterfactual recommendation

In the nineteenth century, coffee cultivation in Brazil began to expand into the Cerrado region. The Cerrado 
is a vast region of savanna with poor soils. However, Brazilian coffee farmers developed new techniques for 
improving the soil, such as using lime and fertilizer. As a result, the Cerrado is now the world’s largest coffee-
producing region. The components nitrogen, phosphorus, potassium, calcium, magnesium, Sulphur, and iron 
can all be found in soil that is considered fertile1. The optimal soil for growing coffee is loamy soil, found in the 
state of north Karnataka, India which has a good combination of texture, drainage, and water retention. Coffee 
plantation soil requires well-drained soil to prevent waterlogging and root rot. Coffee plants have extensive root 
systems that extend deep into the soil to absorb nutrients and water2. The presence of nutrient-rich soil serves as 
the fundamental basis for the optimal growth and development of coffee plants, hence facilitating the production 
of superior-grade coffee beans. Fertility refers to the soil’s ability to provide essential nutrients for plant growth, 
such as nitrogen, phosphorus, and potassium. Healthy soil leads to healthier coffee plants, which produce higher 
yields of high-quality beans. Coffee plants thrive in slightly acidic soil with a pH of 5.0–6.5.
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Crop covering, composting, organic fertilizer, reduced tillage, water conservation, and shade management 
are ancient soil fertility strategies. Restoration of dry land to rich soil using IoT sensors to monitor and enhance 
coffee plantation soil health is creative and successful3. Soil sensors measure nitrogen, phosphorus, and potas-
sium. Soil temperature sensors show how temperature affects plant growth and nutrient uptake. Farmers can 
protect coffee plants from extreme temperatures by tracking soil temperature patterns. Soil temperature sensors 
show how temperature affects plant growth and nutrient uptake. Analyzing soil temperature patterns protects 
coffee plants from extreme temperatures4. IoT sensors help farmers optimize irrigation, fertilization, and other 
soil management activities for healthier soil and higher crop yields by giving real-time soil data. Recurrent neural 
networks (RNNs) are a type of artificial neural network (ANN) that are well-suited for processing sequential 
data like IoT sensor time-series data. RNNs are useful for time series prediction, anomaly detection, and natural 
language processing because they can learn and understand temporal patterns and interdependencies in datasets. 
Recurrent neural networks (RNNs) provide the capability to analyze records of soil moisture data, enabling the 
prediction of forthcoming moisture levels. Conduct a comprehensive examination of soil nutrient data to predict 
potential nutrient deficits, hence facilitating the efficient and effective application of fertilizers by farmers. This 
research gap identifies characteristic patterns in soil sensor data, with a special emphasis on sudden changes in 
moisture and nutrient levels. Regular soil monitoring will monitor the alterations in soil condition and prompt 
safeguards will be implemented5. Develop predictive models that provide suggestions for optimal irrigation, 
fertilization, and other soil management practices. The limited scope of traditional soil testing often focuses on 
soil organic matter, microbial activity, and soil structure. However, the use of organic improvement in soil may 
result in delayed progress. Generalized suggestions derived from past data may not consider the particular soil 
characteristics, regional climate, or contemporary methods of management. The information provided Errone-
ous interpretation of soil test findings and suggestions might result in misguided conclusions and unproductive 
actions. Insufficient historical analysis, which fails to account for previous management techniques and local 
environmental conditions, can have an influence on evaluations of soil health status and long-term patterns. 
This paper is organized as follows: “Literature review” section presents a review of related work in Recurrent 
Neural Networks with the Internet of Things using deep learning. “The proposed model” section describes the 
proposed RNN-IoT approach in detail. “Results and discussion” section presents the experimental setup and 
results. “Conclusion” section discusses the results and compares RNN-IoT with existing methods. “Challenges 
and future possibilities” section concludes the paper and discusses future research directions.

Literature review
Aarthi, R., Sivakumar, D., et al., proposed the optimal watering schedule and fertilizer application rate. IoT soft-
ware platforms that can be used to develop smart soil property analysis systems such as Thing Speak, Blynk, Cay-
enne, Node-RED, and Azure IoT Hub. Smart soil property analysis systems can provide real-time soil conditions 
data, allowing farmers to respond quickly to any changes. Future work is to develop more sophisticated machine 
learning models to improve the accuracy of the predictions6. Na, A., Isaac, W., Varshney, S, et al., proposed an 
Internet of Things (IoT)-based system for remote monitoring of soil characteristics a system that employs sen-
sors to collect data on soil properties, such as pH, electrical conductivity (EC), moisture, temperature, and then 
communicates this data to a cloud platform or another remote location. These soil qualities include electrical 
conductivity (EC), pH, and temperature7. Jain, N., Awasthi, Y et al., proposed an IoT-based soil analysis system 
using optical sensors and multivariate regression is a system that uses optical sensors to measure the color and 
reflectance of soil and then uses multivariate regression to predict soil properties, such as pH, organic matter, and 
nutrient content. IoT-based soil analysis systems can be made small and portable, making them ideal for field 
use. Future work on IoT-based soil analysis systems could focus on making IoT-based soil analysis systems more 
affordable and accessible to small-scale farmers8. Patil, P et al., proposed the implementation of IoT to determine 
the level of bicarbonate in the soil a system that uses sensors to measure the pH and electrical conductivity (EC) 
of soil and then uses this data to calculate the bicarbonate level. IoT-based bicarbonate detection systems can 
provide users with the data they need to make informed decisions about irrigation, fertilization, and other agri-
cultural practices9. Adrian Z et al. proposed integrating soil pH measurement into an Internet of Things (IoT) 
application a concept that involves using sensors to measure soil pH and then transmitting this data to a cloud 
platform or other remote location using a wireless communication protocol. The dataset collected by IoT-based 
soil pH measurement systems typically includes soil pH, Temperature, Humidity, Electrical conductivity (EC), 
and Timestamp10 as illustrated in Table 1.

IoT (Internet of Things) is a key enabling technology for smart agriculture, as it allows for the collection and 
analysis of data from sensors in real-time. IoT-based soil parameter measurement systems can provide real-time 
data on soil parameters, which allows farmers to respond quickly to changes. Future work on IoT-based soil 
parameter measurement systems could focus on making the systems easier to set up and maintain18. The materials 
and methods section describes how the soil is fertilized using IoT sensors and Cloud storage.

The proposed model
The primary objective of this research study was to monitor the overall condition of the soil and to design an 
advanced algorithm called RNN-IoT. The present techniques for measuring soil health based on existing and 
past guidelines have yielded inaccurate results. The suggested approach has successfully addressed all of the 
aforementioned limitations and obtained a predictable outcome in transforming barren land into sustainable 
and rich soil suitable for coffee cultivation.

Build an IoT sensor network to monitor soil health
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•	 Moisture and temperature sensors, Purpose: Measure soil moisture and temperature, Version used: N95S31B 
outdoor NB.

•	 Carbon dioxide level sensors, Purpose:Measure CO2 concentration, Version used: CO2 concentration trans-
mitter with 0–10 V, Measurement: CO2 concentration (0–10 V).

•	 Soil water level indication, Purpose: Indicate soil water level, Version used: Nordic nRF9160 SiP.
•	 GPS sensors, Purpose: Record location data, Version used: U-blox NEO-M8N.
•	 LDR soil color sensors, Purpose: Measure NPK color value, Version used: MNS2-9-W2-CM-020.
•	 Time stamps, Purpose: Record timestamps, Version used: Maxim Integrated DS3231.
•	 GPS units, Purpose: Record location data.

Sensors measure soil potassium, phosphorus, and nitrogen levels and concentrations together with NPK color 
value indicators19. As demonstrated in Fig. 1, the N95S31B NB-IoT outdoor temperature and humidity sensor 
accurately measures air temperature and relative humidity.

It subsequently sends data to an IoT server over NB-IoT. CO2 sensors measure CO. The waterproof, sturdy 
CO2 concentration transmitter outputs 0–10 V. Nordic nRF9160 SiP is a low-power, single-chip cellular IoT 
solution. Its Arm Cortex-M33 CPU, low-power RF transceiver, and multiple ports make it adaptable. The Nor-
dic nRF9160 SiP’s ADC peripheral measures soil moisture. SiP receives soil moisture sensor data20. The Soil EC 

Table 1.   Literature review for soil health based on different proposed models.

Author Concept Software Disadvantage Future scope

Ajit et al.11

Sensor-based IoT pH readers monitor 
liquid pH and wirelessly provide 
data to a cloud platform or remote 
location. Assess pH over time to 
make smart water, food, and chemical 
manufacturing decisions

Cayenne, Node-RED, Azure IoT Hub
The cost of the sensors and IoT hard-
ware can be high, especially for large 
industrial facilities

Developing lower-cost sensors and 
IoT hardware

Kamelia et al.12
IoT-based monitoring system for 
humidity and soil acidity using wire-
less communication

Humidity, soil acidity (pH), tempera-
ture, and timestamp sensors Cost, complexity, reliability

Developing lower-cost sensors and 
IoT hardware, making the systems 
easier to set up and maintain, improv-
ing the reliability of the sensors

Ogudo et al.13
Measurement and monitoring of soil 
moisture using cloud IoT and Android 
system

Soil moisture, temperature, timestamp 
sensors Cost, complexity, reliability

Integrating IoT-based soil moisture 
monitoring systems with other agri-
cultural technologies, such as preci-
sion agriculture and smart irrigation

Deshpande et al.14 IoT-based low-cost soil moisture and 
soil temperature monitoring system

ThingSpeak, Blynk, Cayenne, Node-
RED, Azure IoT Hub Complexity, reliability

Potential areas for future work on 
IoT-based soil moisture and soil 
temperature monitoring systems

Pechlivani et al.15 IoT-based agro-toolbox for soil analy-
sis and environmental monitoring

Air temperature, barometric pressure, 
intensity of visible light Cost, complexity, reliability

Developing lower-cost sensors and 
IoT hardware, making the systems 
even easier to set up and maintain

Vidhya et al.16 IoT-based soil content analysis Soil moisture, pH, temperature, EC, 
nutrient content

Accuracy, calibration, data manage-
ment

More precise and resilient sensors, 
more complex multivariate regression 
models, integrated IoT-based soil 
content analysis systems, and making 
them

Ayyasamy et al.17 Role of IoT in the protection of soil 
and plant life from acid rain disasters

Soil pH, soil moisture, temperature, 
humidity, wind speed, wind direction, 
rainfall pH

Cost, complexity, reliability of sensors 
and IoT hardware

IoT hardware, making the systems 
even easier to set up and maintain, 
improving the reliability of the 
sensors and IoT hardware, and 
developing even more sophisticated 
data analysis

Figure 1.   Working prototype for testing soil fertility.
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NPK PH Sensor monitors NPK, EC, and pH. Soil electrical conductivity (EC) may indicate salt concentration. 
Higher EC values imply plant-harming soil salt. Growing plants need nitrogen, phosphorus, and potassium. It 
means 20% nitrogen, phosphorus, and potassium in the soil. Soil pH indicates acidity or alkalinity. Acidic soils 
have pH < 7, while alkaline soils have pH > 7. Electrical conductivity sensors detect soil solution. NPK sensors 
evaluate soil solution light absorption at different wavelengths. This data can track soil health trends and identify 
areas that need specialist soil management. LDR soil color sensors like the MNS2-9-W2-CM-020 improve coffee 
plantation soil health monitoring21. The Maxim Integrated DS3231 time stamp may improve coffee plantation 
soil health monitoring in numerous ways. Plantation operators can use time stamps to find patterns and trends 
in soil health data as indicated in Fig. 2.

Protocol for interfacing serial technology (IST)
Soil moisture sensors measure volumetric water content. Two electrodes detect soil electrical resistance, which 
fluctuates with water content. Sensor output is usually a soil moisture-proportional voltage or frequency as indi-
cated in Eq. (1). Where VWC is the volumetric water content which finds the percentage of soil volume occupied 
by water, can be calculated based on the weight of the wet soil minus the weight of the dry soil which divides the 
weight of the dry soil. εa is the apparent dielectric permittivity of the soil, εb is the dielectric permittivity of dry 
soil, εc is the dielectric permittivity of water. Where ρn is the neutron count rate in the soil, ρd is the neutron 
count rate in dry soil, and ρw is the neutron count rate in water as indicated in Eq. (2).

where R is soil electrical resistance and M and N are calibration constants from Eq. (3). A soil temperature sensor 
is needed to understand soil activity and plant growth22. It employs thermistors or thermocouples, whose resist-
ance changes with temperature. Equation (4) shows that the sensor’s voltage or current output is proportional to 
soil temperature. Where T is soil temperature, R is thermistor electrical resistance, and A and B are calibration 
coefficients.

Water level indicators assess soil water table depth. It employs a pressure transducer or ultrasonic sensor to 
detect water-induced pressure or sound reflection. Sensor output is generally a water level-proportional voltage 
or frequency. An NPK color value indicator evaluates soil nitrogen, phosphorus, and potassium levels. It meas-
ures soil extract color with a colorimetric sensor. Sensor output is generally an RGB color value or a numerical 
NPK level value. A GPS sensor locates the soil monitoring spot. GPS satellites inform it of its latitude, longitude, 
and altitude. The sensor sends NMEA messages with location coordinates as indicated in Eqs. (5), (6), and (7).

(1)VWC = (εa− εb)/(εw− εc)

(2)VWC = (ρn− ρd)/(ρw− ρd)

(3)VWC = M+N ∗ R

(4)T = A+ B ∗ ln (R)

Figure 2.   Virtual abstract for proposed system.
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where ϕ is the geodetic latitude, � is the longitude, δ is the sun’s declination, R is the Earth’s mean radius 
(6371 km), R0 is its equatorial radius (6378 km), h is the GPS antenna’s height above the Earth’s surface, and 
ϕ0 is the reference ellipsoid’s latitude (43.66° LDRs (light-dependent resistors) measure soil color to determine 
nutrient content. It usually uses an LDR, which changes resistance when exposed to different wavelengths of light. 
Sensor output is generally a resistance value that fluctuates proportionately with soil color as indicated in Eq. (8).

where R is the reflected light, Cr is the red light component of the incident light, Cg is the green light component 
of the incident light, Cb is the blue light component of the incident light, and Cw is the white light component of 
the incident light. Soils with higher organic matter content tend to reflect more red light and less blue light, while 
soils with lower organic matter content tend to reflect more blue light and less red light. A pH sensor monitors 
the acidity or alkalinity of the soil. Typically, it employs a glass electrode that generates a voltage that varies by 
the pH of the solution that it is surrounded by. The output of the sensor is often in the form of a voltage, and its 
magnitude is typically proportional to the pH of the soil as shown in Eq. (9).

pH is soil acidity or alkalinity and pH+ is hydrogen ion activity in the soil solution. Each soil health measurement 
is timestamped. Even when the gadget is off, its real-time clock (RTC) preserves precise time. Synchronizing soil 
health data with other sources and tracking changes requires the timestamp. Table 2 estimates dry land-rich soil 
in coffee plantations2. IoT sensors may be connected to Arduino using IST. The simple and efficient IST protocol 
is ideal for connecting many sensors to an Arduino microcontroller. It includes Master Out Slave, in Master in 
Slave Out, Slave Select, and Serial Clock. SCLK synchronizes master–slave data transfer. MOSI and MISO signals 
send data from master to slave and slave to master. The owner chooses the slave via SS. A start condition from 
the master device starts IST communication with the slave. Most starts are high-to-low SS signal changes. After 
supplying the start condition, the master device can send a MOSI bit per SCLK clock pulse to the slave device. 
The slave device receives MISO data and delivers a bit to the master device for each SCLK clock pulse. Stop sig-
nals from master devices to slave devices halt IST communication. SS signals typically rise during a standstill. 
Arduino microcontroller board with enough computing power for data handling and communication interfaces. 
Use appropriate cables to connect each sensor to the microcontroller board for proper pinout and voltage. In 
Algorithm 1, each sensor’s communication protocols are configured for data acquisition.

(5)Latitude = ArcTan2(sin(ϕ), cos(ϕ) ∗ cos(�))

(6)Longitude = ArcTan2(sin (�), cos (�) ∗ cos (ϕ)− sin (ϕ) ∗ sin (δ))

(7)Altitude = R ∗ (sin (ϕ− ϕ0)− (R0 + h)/R ∗ sin (ϕ0))

(8)R = (Cr+ Cg+ Cb)/(Cw+ Cg+ Cb)

(9)pH = −log10(aH+)

Table 2.   Parameters to fertile the coffee plantation soil from dry land.

Parameter Ideal value Range Effect on coffee plants

Humidity 60–70% 50–80% Too low humidity—stress the plants and reduce their yields. Too high humid-
ity—create favorable conditions for pests and diseases

Temperature 18–25 °C (64–77°F) 15–30 °C (59–86°F) Temperatures below 15 °C (59°F) can damage the plants
Temperatures above 30 °C (86°F) can reduce their yields

Moisture Moderate Not too wet or too dry Too much moisture—lead to root rot and other fungal diseases. Too little mois-
ture—stresses the plants and reduces their yields

Soil pH 6.0–7.0 5.5–7.5 Too low pH—difficult for the plants to absorb nutrients. Too high pH—reduce 
the availability of iron and other essential nutrients

Soil EC 0.5–2.0 ds/m 0.2–3.0 ds/m Coffee plants are sensitive to high levels of salinity. Higher EC levels can stress 
the plants and reduce their yields

Nutrient value Varies depending on the nutrient Varies depending on the nutrient Nutrient deficiencies can reduce the yields and quality of the coffee beans

Timestamp Track changes in soil conditions over time Not applicable By tracking the timestamp of the data collected, farmers can identify trends and 
patterns in the soil parameters
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Initiate the IST bus 

def IST_Init():           [Configures the IST sensor for communication.]

IST.set_clock_frequency (1000000)

IST.set_mode (0)

def SS_LOW ():                                      

IST.select ()

def Send Command (Sensor)  [Selects the sensor and sends a command to request data]

IST.write (command)

def Receive Data ():       [Receives the soil data from the sensor.]

data = IST.read()

return data

Set the signal high def SS_HIGH ():                                                    

IST.deselect() [Deselects the sensor and sends the data to an IoT interface.]

Send the slave to select the signal for the soil sensor 

def Send Data (soil Data, IoT Interface)                

IoT_INTERFACE. Send (Soil Data)

def Communicate Soil Data (): 

Ss_Low ()

Send a command to the soil sensor to request data

Send Command (Request_Data)

Receive the soil data from the sensor

Soil Data = Receive Data ()

Ss_High ()

Send Data (Soil Data, IoT Interface)   

Algorithm 1.   Interfacing Serial Technologies (IST)

Configuration of sensor data transmission for arduino microcontroller
For analysts to collect precise measurements of crucial soil characteristics like temperature, moisture, PH, CO2, 
fertilizer level, and nutrient concentrations, sensors are submerged far below the surface of the soil23. The Arduino 
microcontroller serves as the system’s primary central processing unit (CPU). It is in charge of gathering infor-
mation from the sensors, processing that information, and then sending it to a computer or Laptop, Mobile 
Phone for utilization as indicated in Fig. 3. Arduino Uno, Wi-Fi module ESP8266, Jumper wires, breadboard, 
and 5 V Power Supply.

From an Arduino microcontroller to a Node MCU to the cloud
Arduino microcontrollers capture soil health data from connected sensors as the main data acquisition unit 
communicating with linked sensors, reading output values, and processing sensor data as requested. Arduino 
microcontrollers gather soil health data from sensors as the main data-collecting unit communicating with linked 
sensors, reading output values, and processing sensor data24. The Node MCU stores data in the cloud and uses 
AWS IoT Core for visualization, and these services are accessed through the Node MCU as indicated in Fig. 4.

Cloud Interface provides dashboards or visualization tools to monitor the uploaded sensor data in real time 
or over time. The data can be analyzed to identify patterns, trends, and anomalies, providing valuable insights 

Figure 3.   Sensors connected to an Arduino microcontroller.
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into the monitored environment or process. Analyzed sensor data can be used to trigger actions, such as sending 
alert messages based on soil health conditions.

Recurrent neural network
The raw data was delivered to the input layer, where it was often preprocessed and normalized to ensure network 
interoperability. Load the CSV file into Panda’s data frame. Preprocess the data by performing necessary steps 
such as cleaning, handling missing values, and feature selection. Sequence formation has sequence length is a 
variable that determines the length of each sequence to be created. An empty list called sequences is initialized 
to store the generated sequences. Formula for GRU-based Soil Health Monitoring where, h_t is the hidden state 
of the GRU at time step t, h_{t − 1} is the hidden state of the GRU at time step t − 1, h_t ̃ is the candidate hidden 
state at time step t, gate_update is the update gate, gate_reset is the reset gate.

The update gate controls which information is allowed to flow into the hidden state from the previous time 
step where W_h is the weight matrix for the hidden-to-hidden state connection, U_x is the weight matrix for 
the input-to-hidden state connection, b_h is the bias vector for the hidden state, x_t is the input at time step t.

Loops from 0 to len(data)—sequence length + 1. This loop generates dataset sequences. Unfold the RNN into 
interconnected layers with input, forget, cell, and output gates. Input the current input into the input gate to 
regulate information flow into the hidden state. Apply the forget gate on the previous hidden state to determine 
how much to remember. Update the cell state depending on the input gate, forget gate and previous hidden state 
cell state that stores sequence long-term memory.

Consider Ct as the cell state at time step t, C{t−1} at time step t − 1, and h{t−1} as the forget gate it is the input 
gate, tanh is the hyperbolic tangent activation function, Wh and Ux are the hidden-to-hidden and input-to-hidden 
weight matrices, respectively. At time step t, bc is the bias vector for the cell state, xt is the input, and h{t−1} is the 
hidden state. Use the output gate to create the current time step output that passes cell state information. Gated 
recurrent units (GRUs) architecture trains the dataset properly depending on soil prediction features. At each 
time step, calculate the error between expected and actual output. Back propagates the error via the unrolled 
RNN to calculate weight error gradients. Update weights to reduce inaccuracy. Prediction and Analysis in the 
RNN model increase warnings and suggestions by predicting soil health metrics from real-time sensor inputs. 
Historical sensor data, growth trends, and FFNN soil health results train the model25. Change specifics to simu-
late scenarios.

Counter‑factual recommendation generation
Parameters within historical data to represent various ‘what-if ’ situations. It compares with the actual gener-
ated out with historical data to generate recommendations. They are comparing the recommendation using 
three ways Present data—Historical data, Historical data—Historical data, and Present data—Present data as 
illustrated in Fig. 5.

For example, let us contemplate a hypothetical situation in which a soil health monitoring system, based on 
feedforward neural network (FFNN) architecture, provides a recommendation for the optimal application rate of 
fertilizer for a particular agricultural area. Counterfactual suggestion has the potential to be employed to generate 
alternative fertilizer recommendations. Manhattan distance, often known as taxi cab distance, is calculated by 
adding the absolute coordinate differences of two places. Imagine traveling solely horizontally or vertically in 
Manhattan’s grid. Distance is calculated using present and historical data. Consider N points in K-dimensional 
space, where 2 <  = N <  = 10^ {5} and 1 <  = K <  = 5. Find the location with the lowest Manhattan distance from 

(10)ht = gateupdate ∗ h{t−1} + gatereset ∗ ht̃

(11)ht̃ = tanh
(
Wh ∗ h{t−1} + Ux ∗ xt + bh

)

(12)Ct = ft ∗ C{t−1} + it ∗ tanh
(
Wh ∗ h{t−1} + Ux ∗ xt + bc

)

Figure 4.   The connection between Arduino board to cloud storage.
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the N places. Manhattan distance is two points measured along right-angle axes. It is |x1 − x2| +|y1 − y2| on a plane 
with p1 at (x1, y1) and p2 at (x2, y2). Sorting the points in all K dimensions and outputting the middle components 
of each dimension reduces the Manhattan distance.

The Manhattan Distance, which indicates the dissimilarity between the current suggestion and several alter-
native fertilizer options, may be calculated as shown in Eq. (13), where |s1 − s2| denotes the absolute difference 
between the two points’ s-coordinates. |r1 − r2| is the absolute difference in r-coordinates. The calculation con-
siders nutritional content, application rates, and environmental effects. The system may create counterfactual 
suggestions with Manhattan Distances below a threshold. This keeps alternate options comparable to the original 
advice while allowing for varied perspectives. The implementation phase collects and analyzes data.

Results and discussion
The field implementation of the AI-powered system involved deploying IoT sensors in selected infertile agricul-
tural fields to collect real-time soil data. These sensors continuously monitor soil properties such as moisture, 
temperature, pH, nutrient levels, and electrical conductivity. XG-booster is used for the pre-training model for 
predicting specific soil properties (e.g., nutrient content, and moisture levels) based on sensor data. The collected 
data was then fed into the AI system, which employed RNNs and GRUs to identify patterns and trends in soil 
health indicators as indicated in Fig. 6.

(13)Manhattan Distance = |s1− s2| + |r1− r2|

Figure 5.   Counter-factual recommendations.

Figure 6.   Agriculture land setup for testing soil fertility. (a) Agricultural infertile land, (b) 5-week monitoring 
land, (c) 6–10 week monitoring land, (d) 11–15 weeks monitoring land, (e) 16–20 weeks monitoring land, (f) 
Fertile soil.
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Evaluation setup
Hardware setup has a Microcontroller—Arduino Uno heart of any IoT device, and it is responsible for col-
lecting data from sensors, processing that data, and sending it to the cloud. Sensors- Soil moisture sensor, soil 
temperature sensor, pH sensor, and nutrient sensor. Wireless Communication Modules—Wi-Fi communication 
module, Bluetooth communication module, cellular communication module, Irrigation system actuator, fertilizer 
applicator actuator. AC power supply, DC power supply, battery, SD card, USB flash drive. Software setup has 
Windows operating system, python 3.6 Amazon Web Services (AWS)0.5, Data Visualization Tools—Matplotlib, 
simulates the suggested model on PC i5-8600 k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. 
The suggested model is evaluated using False Negative, True Positive, True Negative, and False Positive metrics 
using the Recurrent Neural Network and Counter-Factual Recommendation Generation.

Field setup for improving soil fertility
Enhancing the fertility of the soil is essential for achieving sustainable agriculture and achieving maximum crop 
yields. To evaluate and enhance the fertility of the soil throughout a range of monitoring periods, this experi-
ment describes a field design that makes use of several land portions. Datasets are collected in real-time from 
Madikeri, Coorg, Karnataka total of 640, monthly monitoring based on historical data from the past three years 
recorded around 300582.

Performance evaluation compared with RNN
A proposed model is compared to existing models to determine its accuracy. Table 3 shows random forest, SVM, 
K-means clustering, GAN, and feed-forward neural network. This performance is measured using several met-
rics, including accuracy, precision, recall, and F1 score. Accuracy is the most straightforward metric, measuring 
the proportion of correct predictions made by the model. Precision measures the proportion of correct positive 
predictions. Recall, also known as sensitivity, measures the proportion of actual positive instances that are cor-
rectly identified as positive.

The proposed method achieves 94.25% accuracy, while random forest, SVM, K-means clustering, GAN, and 
FFNN obtain 81.22%, 81.66%, 82.12%, 88.12%, and 89.73%. Existing approaches take longer to calculate all 
datasets. Figure 7 shows that the suggested technique detects events better than current methods. High EC and 
TDS readings indicate excessive salinity, which can stress and reduce coffee plant output. Most of the 30-day 
monitoring period had optimum EC and TDS values. NPK levels reflect coffee plant nutrient availability. Low 
nitrogen, phosphorus, and potassium (NPK) levels can decrease coffee plant output. The reduction in NPK 
levels from day 11–30 suggests dietary replenishment. During days 1–10, the soil moisture was a little dry, but 
otherwise, it was excellent. The rain prevented soil desiccation and reduced coffee plant stress. Figure 8 shows 
that soil temperature also affects coffee plant development. Coffee plants like soil temperatures between 20 and 

(14)Accuracy = (True Positives + True Negatives)/(Total Samples)

(15)Precision = True Positives/(True Positives + False Positives)

(16)Recall = True Positives/(True Positives + False Negatives)

(17)F1 Score = 2 ∗ (Precision ∗ Recall)/(Precision+ Recall)

(18)Specificity = True Negatives/(True Negatives + False Positives)

Table 3.   Performance analysis for the proposed model.

Sensor Parameter Measurement range Optimal range

EC and TDS sensor Electrical conductivity (EC) 0–4 ms/cm 0.5–1.5 ms/cm

TDS sensor Total dissolved solids (TDS) 0–3000 ppm 500–1000 ppm

Fertilizer sensor Nitrogen (N) 0–200 ppm 50–100 ppm

Fertilizer sensor Phosphorus (P) 0–50 ppm 20–30 ppm

Fertilizer sensor Potassium (K) 0–300 ppm 150–250 ppm

NPK sensor Nitrogen (N) 0–200 ppm 60–100 ppm

NPK sensor Phosphorus (P) 0–50 ppm 30–40 ppm

NPK sensor Potassium (K) 0–300 ppm 200–300 ppm

Humidity sensor Soil moisture 0–100% 40–60%

temperature sensor Soil temperature 10–40 °C 20–25 °C

Carbon dioxide sensor Carbon dioxide (CO2) 0–10,000 ppm 300–500 ppm

pH meter Soil pH 4–10 5.5–6.5

Optical rain gauge Rainfall 0–1000 mm/year 500–800 mm/year
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25 °C. During the monitoring period, soil temperature stayed within the optimal range, promoting root growth 
and nutrient absorption.

Optimization of the model
To keep the coffee plants healthy and the farm skiing, it is important to monitor the soil health of the plantations. 
Beans with more robust scents and tastes are a product of soil that is both healthy and well-tended. Farmers may 
maximize water and fertilizer efficiency and cut down on production expenses by learning what their soil requires 
to be healthy. To maintain healthy and fertile soil over the long term, it is important to evaluate it regularly for 
signs of nutrient imbalances. Weekly data analysis utilizing the RNN model is used to monitor soil conditions, 
and farmers are updated on health-related information and comments about soil quality. For a more precise 
prediction, we compare the soil condition from the second week of monitoring with that from the first week. 
In a similar way comparing week 2 with week 1 generates correct results, comparing week 3 with week 2 and so 
on also yields accurate results.

Measurements taken to enrich the soil of coffee plantations in arid regions
When substantially monitoring and tracking various essential indicators such as electrical conductivity (EC), 
total dissolved solids (TDS), nitrogen (N), phosphorus (P), potassium (K), soil moisture, soil temperature, car-
bon dioxide (CO2), and soil pH, agricultural practitioners can promptly detect potential issues and implement 
appropriate measures to uphold an optimal ecosystem for their coffee crops. The soil solution’s EC and TDS levels 
indicate salt content as indicated in Table 4.

CO2 levels rose somewhat from day 11–20, indicating a healthier soil microbial community. Coffee plants 
thrive best at 5.5–6.5 soil pH as illustrated in Fig. 9. The soil pH remained within the correct range during the 
monitoring period, ensuring that coffee plants could easily obtain nutrients as shown in Table 5. Rainfall is vital 

Figure 7.   Result analysis for the proposed approach.

Figure 8.   Mobile application.
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Table 4.   Measurement Range to fertile the coffee plantation soil from dry land.

Performance Precision Recall F1 score Specificity Accuracy

Random forest 79.67 78.33 79.77 81.46 81.22

Support vector machine 79.69 80.23 81.56 82.56 81.66

K-means clustering 82.15 82.63 82.99 84.23 82.12

GAN 86.98 87.23 88.12 88.89 88.12

Feedforward neural network 86.97 89.23 89.91 90.12 89.73

Proposed model
RNN 92.14 92.45 93.22 94.78 94.25

Figure 9.   Weekly monitoring using the IoT Platform.

Table 5.   Parameters to fertile the coffee plantation soil from dry land.

Weekly monitoring EC (ms/cm) TDS (ppm) N (ppm) P (ppm) K (ppm) Soil moisture (%) Soil temperature (°C) CO2 (ppm) Soil pH Rainfall (mm)

Week 1 1.2 700 60 25 180 50 22 350 6.0 10

Week 2 1.1 650 55 23 170 45 23 320 6.1 5

Week 3 1.0 600 50 20 160 40 24 300 6.2 15

Week 4 1.3 800 65 28 190 55 21 380 6.0 20

Week 5 1.2 750 60 25 180 50 22 350 6.1 10

Week 6 1.1 700 55 23 170 45 23 320 6.2 5

Week 7 1.0 650 50 20 160 40 24 300 6.3 15

Week 8 1.3 800 65 28 190 55 21 380 6.1 20

Week 9 1.2 750 60 25 180 50 22 350 6.2 10

Week 10 1.1 700 55 23 170 45 23 320 6.3 5

Week 11 1.0 650 50 20 160 40 24 300 6.4 15

Week 12 1.3 800 65 28 190 55 21 380 6.2 20

Week 13 1.2 750 60 25 180 50 22 350 6.3 10

Week 14 1.1 700 55 23 170 45 23 320 6.4 5

Week 15 1.0 650 50 20 160 40 24 300 6.5 15

Week 16 1.3 800 65 28 190 55 21 380 6.3 20

Week 17 1.2 750 60 25 180 50 22 350 6.4 10

Week 18 1.1 700 55 23 170 45 23 320 6.5 5

Week 19 1.0 650 50 20 160 40 24 300 6.6 15

Week 20 1.0 650 50 20 160 40 24 300 6.6 15
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to soil hydration. The monitoring period was without significant precipitation from day one to day fourteen. This 
shows that irrigation was needed to maintain soil moisture levels throughout this era. Day 15 brought 15 mm of 
rain, restoring soil moisture. Coffee plant soil health measurements were within optimal levels for most of the 
140-day monitoring period from week 1 to week 20.

Counter‑factual recommendation
RNN-IoT model uses historical data and real-time sensor readings to predict future soil states and potential crop 
threats. Based on these predictions, the system generates counterfactual recommendations—alternative actions 
your farm could take to achieve desired outcomes.

Mobile application sample
The mobile application was created with the open-source Google framework Flutter, employing JavaScript. The 
RCNN model has been integrated and implemented, resulting in the generation of recommendations. These 
recommendations are created using Counterfactual suggestions.

Figure 10 is a discussion based on the question raised by the agriculturist from various parts of the coffee 
plantation growers. Soil-rich mobile-based applications will provide recommendations after analyzing sensor 
data. Agriculturist question was “How do soil conditions that are too dry, too wet, too cold, or too hot affect 
coffee plants”. The recommendation is generated as High or low soil pH can make it difficult for coffee plants 
to absorb nutrients. Solution: Apply soil amendments to adjust the pH to the optimal range. The specific type 
of soil amendment to apply will depend on the current soil pH and the desired pH range. Similarly, “How does 
rainfall affect coffee plants, and what can coffee growers do to mitigate the negative effects of extreme rainfall 
events”. The recommendation is generated as Insufficient or excessive rainfall can lead to water stress or soil 
erosion. Irrigate during periods of low rainfall and implement erosion control measures during periods of high 
rainfall. Monitoring rainfall patterns is important to ensure that coffee plants receive the right amount of water26. 
The proposed model is trained using the Training Set, which enables it to discover hyperlinks and patterns in 
the data. To minimize loss and enhance predictions. To evaluate the model’s performance and adjust its hyper-
parameters, a validation set is utilized during its development. Evaluates the model’s ability to be extrapolated 
to new data, which helps avoid excess fitting. The testing set is utilized for the final and unbiased evaluation of 
the model’s performance once all training and hyper-parameter adjustments have been finished. Ensures the 
model’s ability to apply knowledge to unfamiliar data and offers an accurate evaluation of its capabilities as 
shown in Fig. 11. The total dataset is divided into 60% for training, 20% for validation, and 20% for testing. The 
difference between predicted and actual values is computed using a loss function by mean square error. The loss 
is propagated backward through time, updating model parameters (weights and biases) to minimize the loss.

A confusion matrix is an illustrative format that exhibits the success of a proposed theory27. The data repre-
sents the observed vs projected results for each week of monitoring. Within the realm of soil fertility, weekdays 
may be classified as several tiers of fertility. For instance, weeks 1–7 exhibit low fertility, weeks 8–14 demonstrate 
medium fertility, and weeks 15–20 showcase high fertility, making them suitable for cultivation as shown in 
Fig. 12.

By using IoT sensors to track soil moisture, temperature, pH, and nutrient levels, coffee farmers can gain 
valuable insights into their crops’ health and needs. Figure 13 data can then be used to make informed decisions 
about irrigation, fertilization, and other agricultural practices—a 20-week soil monitoring study that tracks 
the soil condition in a coffee plantation. The study was conducted in a coffee plantation in Madekari, Coorg, 
and Karnataka, India. Ten IoT sensors were installed on the plantation, and data was collected every hour for 
20 weeks. The sensors measured soil moisture, temperature, and pH at a depth of 10 cm throughout 20 weeks. 

Figure 10.   Farmer’s query-based recommendation.
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Due to heavy rainfall in the early weeks of the research, soil moisture was maximum. Dry weather diminished 
soil moisture. The study’s soil temperature peaked in the first weeks and then dropped as the weather cooled. 
pH was almost consistent throughout the investigation.

20-week. The investigation produced soil moisture, temperature, and pH maps. These maps helped identify 
under and over-watered crop regions and regulate the irrigation system. The maps were also utilized to identify 
acidic and alkaline soil on the farm and adapt the fertilization program.

Conclusion
The foreseeable future of coffee production demands beyond merely cultivating a diverse range of coffee beans; it 
involves establishing a sustainable and lucrative coffee business that will endure for future generations. Utilizing 
sophisticated sensors allows for the monitoring of environmental variables, including precipitation, humidity, 
and temperature, to optimize agricultural productivity. Internet of Things (IoT) devices have the potential to 
accurately assess the levels of water and nitrogen present in soil. Furthermore, by assessing the CO2 concen-
tration in agricultural areas, it is possible to accurately monitor evapotranspiration rates, therefore enhancing 
the monitoring of soil health. This requires equipping coffee growers with the necessary tools and expertise to 
develop intelligent soil—a flexible and robust ecosystem that supports the growth of healthy coffee plants while 
reducing environmental harm. Farmers are provided with immediate updates on the condition of their soil and 

Figure 11.   Training and validation loss versus accuracy of RNN over counterfactual recommendation.

Figure 12.   Multiple confusion matrix for monitoring soil accuracy.
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receive alerts on any potential issues. This enables farmers to promptly address any early signs of soil degrada-
tion. The Recurrent Neural Network and Counterfactual Recommendations utilize advanced algorithms to 
forecast future trends and provide tailored soil cures for youthful agriculturists. Knowledgeable farmers make 
well-informed choices regarding their soil, leading to higher crop production, better quality, and more profit-
ability. The proposed method has overcome all of the above drawbacks and achieved the predictable result for 
converting infertile land to fertile land sustainable for coffee plantations.

The future direction is moving towards installed outside Internet of Things devices are subject to severe 
weather, dust, wind, temperature, and other environmental hazards. This is one of the main issues with these 
devices. Unexpected mechanical failure of the complex devices could occur as a result of unfavorable envi-
ronmental circumstances. Therefore, the raw materials used to construct the Internet of Things (IoT) devices 
used in smart farming must be able to endure such harsh climatic conditions. This will ensure that the devices 
last longer and provide more consistent results. Coffee cherry early detection and recommendation based on 
advanced deep learning technology which empowers farmers to cultivate a sustainable future for coffee, one 
smart earth revolution at a time.

Challenges and future possibilities
Global research on the Internet of Things (IoT) and sensor-based smart farming have revealed positive results. 
It is employed in several small-scale agricultural domains a rural farm, where farmers have less technological 
expertise, may provide more challenges. Even so, the execution of the project on a broad scale is still awaiting 
completion. An obstacle of great importance is the financial burden associated with the deployment and instal-
lation of IoT-tagged sensors and accessories in vast agricultural areas. Furthermore, there is ambiguity regarding 
the expenses associated with implementation and the monetary benefits that may be obtained. Deploying IoT-
enabled technology incurs substantial expenses for hardware, software, and system operation. Supplementary 
costs may encompass energy usage, system upkeep, service enrollment, and labor fees for operating combined 
hardware and software. Enhancing farmers’ digital literacy on a global scale is crucial to facilitating the exten-
sive use of IoT technologies. Lack of comprehension and consciousness of IoT-based technologies in agricul-
ture might result in the underutilization of intelligent systems in farming28. Government policymakers should 
develop economic strategies to facilitate the successful and efficient implementation of Internet of Things (IoT) 
technology by farmers in agricultural areas. Data privacy and security issues might hinder large-scale IoT and 
smart system adoption. Attackers can manipulate cloud server data to harm automated agricultural activities in 
farmlands. Attacks can negatively impact agricultural output and prevent good environmental management. IoT 
data security concerns contribute to the sluggish adoption of smart farming systems. Encryption is crucial for 
protecting critical data and digital systems in smart farming from global cyberattacks. Integrating cryptography 
with strong keys can reduce cyber threats on cloud systems. Additional methods, such as integrating multiparty 
computing with homomorphic encryption or block-chain, can yield accurate results.

Figure 13.   IoT sensors monitoring land view.
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Experimental statement
No plants and Animals are disturbed for research work. All image datasets information regarding plant-based 
processes or applications was obtained from publicly available and ethically sourced data and publications. Plant 
Collection materials are complying with institutional, national, and international guidelines and legislation. So 
we confirm that all methods were performed in accordance with the relevant guidelines/regulations/legislation.

Data availability
The dataset utilized and analyzed in our research is publicly accessible to the public fertility land in the Zenodo 
communities Raveena. (2023). Empowering Coffee Farming Using Counterfactual Recommendation based 
RNN-IoT Integrated Soil Fertility Control System [Data set]. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​10416​
960. The coding system along with additional data are accessible upon adequate request from the initial and 
coauthor authors.
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