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Denoising OCT videos based 
on temporal redundancy
Emmanuelle Richer 1,2, Marissé Masís Solano 2,3, Farida Cheriet 1, Mark R. Lesk 2,3 & 
Santiago Costantino 2,3*

The identification of eye diseases and their progression often relies on a clear visualization of the 
anatomy and on different metrics extracted from Optical Coherence Tomography (OCT) B-scans. 
However, speckle noise hinders the quality of rapid OCT imaging, hampering the extraction and 
reliability of biomarkers that require time series. By synchronizing the acquisition of OCT images 
with the timing of the cardiac pulse, we transform a low-quality OCT video into a clear version by 
phase-wrapping each frame to the heart pulsation and averaging frames that correspond to the same 
instant in the cardiac cycle. Here, we compare the performance of our one-cycle denoising strategy 
with a deep-learning architecture, Noise2Noise, as well as classical denoising methods such as BM3D 
and Non-Local Means (NLM). We systematically analyze different image quality descriptors as well 
as region-specific metrics to assess the denoising performance based on the anatomy of the eye. 
The one-cycle method achieves the highest denoising performance, increases image quality and 
preserves the high-resolution structures within the eye tissues. The proposed workflow can be readily 
implemented in a clinical setting.

Technological advances in OCT imaging have allowed unprecedented resolution and signal-to-noise ratio for 
the visualization of detailed anatomical structures in the eye that are relevant to diagnosis. Single B-scans, 
3-dimensional volume reconstructions and even the vasculature are routinely used to extract metrics that allow 
clinicians to identify oculopathies and monitor their progression. In the case of glaucoma, such quantifiable 
biomarkers include retinal nerve fiber layer (RNFL) thickness, cup-to-disk ratio, neuroretinal rim area, disk 
area, and ganglion cell layer thickness, to quantify disease stage and progression1,2. Much of current glaucoma 
research is focused on the mechanical properties of the eye, which can be extracted from the dynamics of ocular 
tissue. Hence the need for reliable methods that preserve the high quality of time series images obtained with a 
short integration time compatible with the clinical setting.

Intraocular pressure (IOP) is the only actionable risk factor for glaucoma patients. Treatments, whether drugs, 
laser, or surgery, all aim to decrease pressure to limit the progression of the disease2. However, not all glaucoma 
subjects have elevated IOP and increased IOP is not necessarily an indicator of glaucomatous damage3. Further-
more, the mechanisms and pathogenesis of glaucoma are still unclear2 and research aims to find other biomarkers, 
straying away from IOP-based descriptors. The characterization of ocular biomechanics, and particularly the 
calculation of stress and strain in retinal tissues driven by several stimuli was characterized in numerical simula-
tions based on finite element modeling4–6, or in non-human primates subjected to acutely elevated IOP7–9. Human 
subjects with high and normal-tension glaucoma were studied using a digital volume correlation technique to 
map deformations10, a 3D tracking algorithm based on optimizing numerical transformations of OCT volumes 
was used to quantify strains in optic nerves of glaucoma subjects after IOP reduction by trabeculectomy11, and 
displacement maps were obtained to characterize the behavior of the retina and optic nerve head in normal and 
myopia cohorts subjected to optic nerve physiological traction due to eye movement12.

The cardiac and ocular systems are closely intertwined, and many believe that one system can bring informa-
tion to the other13,14, for example by imaging retinal structures to enhance cardiovascular pathologies detection 
protocols15–18. OCT angiography utilizes the variation of the OCT signal taken at the same cross-section of the 
eye to visualize ocular vasculature19. This visualization helps clinicians in identifying several pathologies, from 
age related macular degeneration to diabetic retinopathy and more. Doppler OCT enables the visualization and 
quantification of retinal blood flow, in addition to the structural anatomy given by OCT20. Another study used 
a pulse oximeter to monitor retinal blood flow using OCT imaging21. A second group, using a methodology 
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similar to the one proposed here, used the cardiac signal of an additional pulse oximeter to improve the sampling 
of pulsatile blood flow using lower frame-rate systems in Doppler OCT applications22.

Advances in OCT engineering have enabled faster frame rates and larger fields of view, enabling the per-
formance of dynamic imaging of ocular structures, such as the retina, optic nerve head (ONH) and the lamina 
cribrosa. Dynamic imaging and analysis help to understand physiological changes due to pulsatile blood flow 
deformations and pulsatile IOP changes23. However, speckle noise significantly hinders the quality of these 
images. Biomarkers computed on the scans themselves, i.e., RNFL thickness, cup-to-disk ratio, and even new 
approaches that quantify local strain, are all dependent on signal quality and are severely affected by noise. 
Averaging successive B-scans, either temporally or spatially, can remove the noise naturally present in OCT 
images and is the most efficient noise removal technique used to this day in clinical devices24. Yet, this averaging 
cannot be applied naively to suppress noise in movies, as it erases the small variations due to tissue movement 
and temporal changes.

Several groups have focused on OCT denoising methods in recent years, most of them using new and 
improved deep learning architectures. The Noise2Noise architecture25 was first introduced for non-medical 
images and later applied to OCT scans26. The Noise2void architecture was proposed as a modification of 
Noise2Noise27, where the unsupervised training is done without the need for paired noisy images, instead using 
a blind-spot masking scheme with single noisy images. The latter model was applied to OCT scans as well28. 
Researchers proposed a conditional generative adversarial network to produce contrast-enhanced and speckle-
reduced scans29. Another study put forward a convolutional neural network (CNN) trained to learn the differ-
ence between noisy OCT scans (with added Gaussian noise) and their corresponding multi-frame OCT scan30. 
Similarly, one group trained a CNN (a modified deep CNN) to denoise scans based on their multi-frame denoised 
versions31. This special architecture used a multi-scale structural similarity index as the loss function to obtain 
denoised images that preserve the structural information present in the images. Although all these methods have 
been applied to static OCT images or volumes, they could potentially be adapted to dynamic imaging.

Several drawbacks can be found in these methods: a large quantity of data is needed to train these networks 
without overfitting, they are complex and require significant resources (large amounts of memory, multiple high-
performing GPUs), and they lack ground truth images for training supervised architectures. While the trained 
networks enable fast inference times, the main challenge of using deep learning methods, especially those using 
a generative workflow, is the lack of reliability of the resulting pixel intensity values. The black-box problem 
inherent in such models is well known and is especially important in biomedical imaging32–35. Measurements 
computed from the scans will influence diagnosis and treatment, and therefore the reliability of the pixel values 
in denoised scans is paramount.

Using the heart pulsation captured with a simple pulse oximeter synchronized to the OCT video acquisition, 
we propose instead a video denoising pipeline based on averaging images corresponding to the same structures 
taken at equivalent instants in the cardiac cycle. Our workflow (one-cycle video denoising) is particularly easy 
to implement in a clinical setting as it only requires a pulse sensor, and the computational workload is very light. 
Furthermore, all manipulations to the scans can be interpreted to support reliability of the numerical metrics 
extracted. The implementation details of our method are presented in the methods below and the code is made 
available in a public repository. We compare our denoising methods performance with four other denoising 
techniques: BM3D36,37, Non-Local Means (NLM)38, and a deep-learning architecture, Noise2Noise, trained in 
unsupervised and supervised ways. This architecture was selected for the comparison due to its well-established 
denoising capability and straight-forward implementation. The capability of neural networks to develop high 
complexity algorithms could allow the development of a single scan denoising scheme producing high quality 
images. Furthermore, we present a set of global and region-specific image quality metrics to estimate the denois-
ing performance in terms of tissue anatomy in the retina and optic nerve head.

Results
We used ten metrics (five global and five local, as described in Sections “Global image quality quantification”, 
“Region-specific image quality quantification” and “Movement preservation quantification” below) to assess 
the denoising performance and compare all methods both globally and in specific anatomically defined ROIs. 
The Wilcoxon test was applied between the one-cycle workflow metrics and every other method (including no 
denoising, i.e., the original B-scans). Every metric was computed on 100 different images from each video (i.e., 
each of the 21 scanned eyes). For our method, this was simply all the frames of the one-cycle video. For the other 
denoising methods, the 100 images per subject were randomly selected from the test sets.

Figure 1 shows examples of the output of the algorithms applied to individual B-scans, while the whole movies 
for these same subjects can be found in the Supplementary material.

Image quality metrics: all five methods show improved contrast and higher similarity between 
the scans
We measured the contrast and speckle noise in the images by calculating the CNR in the RPE, and the pres-
ervation of image information by evaluating the Mattes Mutual Information (MMI) on whole B-scans. Noise 
reduction was also quantified by analyzing the intensity of the 2-dimensional Fast Fourier Transform (FFT) 
outside of an ellipse representing the resolution limit of our OCT machine (Fig. 2); no useful information can 
be contained in the spatial frequency spectrum beyond the resolution of the images. We found that the SNR 
and CNR computed in the choroid, RNFL and RPE regions yielded quite similar results; thus, only the CNR is 
discussed further, but both metrics are presented in the Supplementary Fig. A1.

Figure 2 shows the denoising performance as measured by the global image metrics. In Fig. 2A, all five 
denoising methods show similar CNR. A significant difference was found between the original B-scans and 
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the one-cycle workflow, but none was found between the one-cycle method and any other denoising method. 
(The Wilcoxon test results are seen at the top the graphs: the horizontal bars and asterisks indicate differences 
between pairs of methods and their statistical strength). There is a fold-change increase in CNR of 1.57, 1.41, 
1.31, 1.56 and 1.55 between the original B-scans and the one-cycle, N2N, N2C, BM3D and NLM denoising 
methods respectively (fold changes were computed between the median values, with the methods always in 
the same order: one-cycle, N2N, N2C, BM3D and NLM). The MMI (Fig. 2B) increases by fold changes of 1.27, 
1.19, 1.22, 1.24 and 1.25. While the trend is analogous to the CNR, a smaller but significant difference was found 
between the one-cycle and N2N denoised images. The high frequency components outside the theoretical limits 
of the OCT resolution display a significant reduction after denoising (fold change decreases of 5.59, 7.46, 9.03, 
9.71 and 4.13). All methods showed reduction of signal outside the OCT resolution; a significant decrease was 
also found between the one-cycle denoised images and each of the denoising methods. Note however that the 
NLM method doesn’t achieve the same reduction with a fold change of only 4.13 compared to other methods, 
indicating that a higher quantity of high-frequency noise persists after denoising.

The CNR and MMI both increase significantly using all five denoising techniques, indicating improved con-
trast and highest similarity between the scans after denoising. The signal present in the FFT spectrum outside 

Figure 1.   Visual comparison of the denoised scans with all five denoising workflows. Qualitative comparison 
between the original B-scans (left) and the denoised scans using the one-cycle workflow (second column), the 
Noise2Noise (N2N) model (third column), Noise2Clean (N2C) model (fourth column), BM3D (fifth column) 
and NLM (sixth column) on two different eyes (rows). Separate rows show the whole scan after denoising as 
well as a zoomed portion of the RNFL to RPE layers of the retina. These B-scans were not part of the training 
sets of the neural networks.
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the theoretical OCT resolution decreases for every denoising technique, which is consistent with reduced speckle 
noise. However, there is also a significant decrease in that metric between the one-cycle, N2N, N2C and BM3D 
denoised images close to the resolution limit. This highlights the blurring of the images by both neural networks 
and BM3D method (visible also in Fig. 1). Thus, while the speckle noise is reduced, denoising produced by 
those strategies induces a loss of real spatial information, which can also be seen in the retina-specific metrics 
(Fig. 3G,H). These three global image quality metrics assess the overall quality improvement of the denoised 
images by all five methods but are not able to discriminate between them or explain certain effects remarked on 
specific regions of the scans.

Region‑specific metrics: retinal biomarkers are blurred by CNN‑based denoising strategies
Figure 3 shows the results of comparing the denoising methods based on region-specific metrics. The standard 
variation computed in the sclera, expected to be close to zero (Fig. 3B), clearly decreases between the original 
B-scans and all denoising strategies. While the trend is similar between the N2C and one-cycle denoised images, 
a significant difference is found between the one-cycle images and all other denoised images. The fold change 
decreases for this metric are of 1.83, 0.96 (increase of 1.04), 1.10, 1.50 and 1.55.

Both the mean and standard deviation of the pixel intensities in the vitreous humor should be close to zero 
(Fig. 3D,E). All denoising methods cause an increase in the mean pixel intensity values, with fold changes of 
1.15, 1.16, 1.95, 1.04 and 1.02. The standard deviation is more discriminative between the denoising methods, 
with fold change decreases of 4.63, 2.20, 1.89, 3.61 and 4.06.

We assumed the retina is composed of 11 layers with an average thickness of approximately 50 µm. This metric 
is highly discriminative between denoising methods, with median values of 7, 5, 3, 8 and 9 layers detected (fold 
change decrease of 2.46, 3.37, 7.04, 2.38 and 1.93) and 51, 77, 151, 45 and 35 µm (fold change increase of 2.77, 
4.20, 8.28, 2.44 and 1.92) for their respective average thickness (Fig. 3G,H).

Ocular structures of homogenous tissue characteristics (sclera and vitreous humor) are denoised by all strate-
gies. The one-cycle workflow produces images with small standard deviations, nevertheless increasing the average 
pixel intensity in the vitreous humor compared to raw data (Fig. 3D,E). The performance of the N2N network 
is relatively close to the one-cycle workflow, however this network shows significant increases in the mean pixel 
intensity in the sclera as well as in standard variation in the vitreous humor compared to the proposed method. 
While the variation in the sclera is not significantly different between the one-cycle and N2C-denoised images, 
the performance in the vitreous humor, both for mean intensity and standard deviation, is significantly worse for 
the supervised network. The BM3D and NLM methods achieve slightly better performance in terms of standard 
deviation of pixel intensities in the sclera and vitreous humor.

Distinguishing the layered structure of the retina, a key clinical landmark, is best achieved with the non-AI 
denoising strategies. A lower-than-expected number of layers is found for the N2N model, and an abnormally 
low number of layers for the N2C model. While the extracted number of layers for the one-cycle denoised 
images is higher, it still falls short of the expected value. This is mainly due to the low contrast between certain 
layers (e.g., the ganglion cell and inner plexiform layers) that are often detected as one homogeneous layer, even 
in highly contrasted denoised images. This phenomenon is noticed for the BM3D denoising method, while the 
layer detection in the NLM-denoised scans is closest to the expected values. We observe the same trend for the 
mean distance detected between layers. While the one-cycle method yields an average of 51 µm between layers, 
BM3D of 45 µm, NLM of 35 µm (lower than expected) and the N2N method a value of 77 µm (higher than 
expected), the N2C method produces an abnormal mean distance of 151 µm. This is caused by the excessive 
blurring induced by the AI strategies, resulting in fewer peaks with larger distances between them; in the noisy 
original scans, the opposite situation yields many peaks and smaller distances.

Figure 2.   Image quality after denoising characterized by three different global metrics. All metrics were 
computed in the original B-scans (black violin plots) and for the five denoising methods studied (one-cycle 
workflow in red, N2N in turquoise, N2C in lavender, BM3D in yellow and NLM in orange). The Wilcoxon test 
was applied between the one-cycle workflow metrics and every other method (including no denoising, i.e., the 
original B-scans). Significant differences between methods are indicated by horizontal bars; asterisks indicate 
statistical strength. (A) CNR computed in the RPE. (B) MMI computed in whole images. (C) Mean intensity of 
the FFT spectrum beyond theoretical OCT resolution (D). (D) Ellipse (green) constructed using the axial and 
transverse OCT resolutions for the values of the half axes (pink and blue dots). The intensities of the frequency 
spectrum are averaged outside this ellipse.
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Movement preservation: AI, BM3D and NLM denoising strategies hide physiologically induced 
movement in scans
Denoising strategies must preserve true intensities of the scans, the anatomy of tissues and, in temporal acquisi-
tions, allow quantification of movement of these tissues. In order to benchmark this capacity, we calculated the 
tissue displacement fields from artificially deformed images, and using consecutive frames of a movie acquired 
only 10 ms apart. Figure 4A shows the average median relative error after inducing a Gaussian expansion of the 
choroid of 5 pixels of amplitude and 20 pixels of standard deviation on consecutive pairs of images after denois-
ing. This deformation metric illustrates fold changes between every metric and the original B-scans cohort of 
3.69, 1.13 and 1.24 decreases for the one-cycle, N2N and N2C methods respectively, and of 1.35 and 1.35 increases 
for BM3D and NLM. The one-cycle method outshines the other denoising methods in preserving an induced 
deformation in pairs of images. The neural networks perform slightly better than the noisy scans, while the tra-
ditional methods seem to modify the induced deformation (if they erase, amplify, or misdirect the deformation 
was not studied). Figure 4B assesses the displacement present between pairs of consecutive frames after denoising 

Figure 3.   Region-specific assessment of denoising using five different metrics. All metrics were computed in 
the original B-scans (black violin plots) and the five denoising methods studied (one-cycle workflow in red, 
N2N in turquoise, N2C in lavender, BM3D in yellow and NLM in orange). The Wilcoxon test was applied 
between the one-cycle workflow metrics and every other method (including no denoising, i.e., the original 
B-scans). Significant differences between methods are indicated by horizontal bars; asterisks indicate statistical 
strength. Horizontal dotted lines show the expected values of the metrics when applicable. (A,C,F) Region 
considered to compute the metrics and an example. (A,B) Variation of pixel intensity in the sclera (expected 
value = 0); (C–E) metrics in the vitreous humor (expected mean and variation of 0); (F–H) number of retinal 
layers detected and average thickness (ideally 11 detected layers with a mean thickness of 50 µm).
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by all strategies. Consecutive scans are obtained at 100 Hz and, as such, should contain small but non-null tissue 
deformation. Figure 4B shows an average median displacement in the order of a pixel for every denoising strategy.

Discussion
All five methods achieve a significant reduction of speckle noise, but a closer look at the results reveals impor-
tant differences. Overall, the one-cycle workflow produces the highest quality scans, in terms of speckle noise 
reduction, definition of ocular structures and preservation of movement. Figure 1 shows that the N2C model 
increases the overall intensities of the scans, a trend corroborated in Fig. 3D, while the N2N model enhances 
the contrast of different structures. Figure 4 shows that BM3D and NLM strategies, while obtaining good results 
in terms of region-specific metrics (Fig. 3), are not reliable regarding the accuracy of movement quantification. 
Whether this phenomenon comes from induced artefacts in the denoised images needs to be further investigated.

Overall, the one-cycle denoising presents several advantages compared to the other alternatives. First, our 
method is simple and effective in the context of dynamic OCT acquisition. It is easy to implement and requires 
only the addition of a pulse sensor connected to the subject’s finger during the video acquisition. The computa-
tional workload is quite low, and the code needed to synchronize the pulse signal and OCT timestamps can be 
adapted to clinical OCT equipment. Most importantly, the rationale for the algorithm is rooted in basic physiol-
ogy and hence clear and understandable. The result follows a well-known method, and the output can be easily 
comprehended, and even debugged, for clinical decisions.

Denoising methods requiring pairs of images, such as our one-cycle method and both neural networks 
approaches, depend heavily on the accuracy of the eye tracking system of our OCT machine. This system’s 
precision is an ongoing challenge in both commercial and research available OCT apparatus. Averaging images 
corresponding to different ocular structures, or trying to transform one ocular plane into another, would result 
in overall bad behavior of those three methods. Those same approaches depend on the accuracy of the image 
registration as well. The global registration removes large changes due to breathing, head and eye movement, 
while the finer A-scan registration corrects tilt motion artefacts that occur during a B-scan acquisition and fixa-
tion issues. These tilting artefacts are typically not corrected by common rigid registration techniques, nor by the 
hardware-based motion artefact correction modules of commercial OCT machines. For videos spanning long 
periods (30 s in our case), A-scan tilts can accumulate over time and severely hinder the registration and match-
ing of structures between pairs of images. Left uncorrected, they lead to blurring artefacts in ocular structures 
when averaging several images; they can also bias the reconstruction of denoised scans in CNN approaches. The 
cross-correlation A-scan registration technique we use is an efficient and simple method to correct these tilts.

It is important to note that what renders the one-cycle method efficient can also be considered a shortcoming: 
as it assumes temporal redundancy between cardiac cycles, any non-periodic information in the video will be 
lost. An approach not relying on averaging between cycles could, in principle, detect abnormalities manifest-
ing a non-periodic behavior. Alternatively, averaging to several cycles rather than a single one is possible, but 
the quality of the denoised images would be affected. In order to reach the same level of image enhancement as 
one-cycle, the OCT acquisition time would need to be increased proportionally. This could lead to difficulty in 
registering the images, for example due to increased subject movement caused by fatigue.

Figure 4.   Movement preservation after denoising with the five different strategies. (A) The average absolute 
error between an induced and a computed displacement field was calculated for 100 pairs of images. The metric 
was computed in the original B-scans (black violin plots) and the five denoising methods studied (one-cycle 
workflow in red, N2N in turquoise, N2C in lavender, BM3D in yellow and NLM in orange). The Wilcoxon test 
was applied between the one-cycle workflow metrics and every other method (including no denoising, i.e., the 
original B-scans). Significant differences between methods are indicated by horizontal bars; asterisks indicate 
statistical strength. (B) The average absolute median displacement was computed between consecutive frames 
after denoising, for 100 pairs of denoised images by each strategy.
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In comparison, the N2N workflow can train a network in an unsupervised way that still gives high quality 
results. Once trained, the model only needs the current image to output a denoised version, and temporal infor-
mation from multiple heart cycles is preserved. However, the reliability of the denoised scans at the pixel level 
is not assured, even if in the present case, only simple convolution and pooling operations are used. In order 
to use the AI-denoised images for biomarker quantification (pixel-wise), more work would need to be done in 
understanding how the network’s operations affect its reliability. This is true for BM3D and NLM as well, being 
single scans denoising methods which obtain high image quality metrics, but where the trustworthiness of the 
pixel intensities is not guaranteed. In contrast, the one-cycle method establishes a reliability that is lacking in 
these other automated approaches.

Limitations of the study
The Noise2Noise (and Noise2Clean) workflows were used in this work with a simple U-net architecture. This 
training scheme and architecture could potentially be improved, as has been tried in the past (e.g., GANs or fully 
connected convolutional networks) in the OCT denoising field. A more complete comparison between image-
processing-based and neural network denoising methods could be carried out with more complex models as 
well (e.g., vision transformers). However, these architectures come with increased complexity of data acquisi-
tion and training. Moreover, the reliability of denoised pixel intensities would need to be extensively assessed, 
especially in the case of generative methods.

Conclusion
The proposed one-cycle workflow is a simple and effective denoising method to facilitate analysis of dynamic 
OCT data. The temporal redundancy of single-scan video acquisitions allows to average scans without the risk 
of blurring small movements needed for dynamic analysis of the tissues, as is risky with classical averaging 
techniques. Compared to traditional denoising strategies such as BM3D and NLM in addition to convolutional 
neural network (CNN) architectures in both unsupervised and supervised training schemes, our one-cycle 
method achieves the highest denoising performance, increases image quality globally and in specific areas of 
the eye, and preserves physiological motion before and after denoising. In comparison, CNNs, particularly in 
unsupervised training, achieve remarkable performance but blur the images. Hence, they achieve high denoising 
performance in terms of CNR and MMI, but at the cost of losing high-resolution details of ocular structures. 
BM3D and NLM strategies are easy to use and quantitatively improve image quality, but do not preserve induced 
deformation. While the one-cycle method benefits from multiple input images, all other denoising techniques 
are single-scan methods and thus achieve impressive performance.

Methods
One‑cardiac‑cycle OCT videos
We present a denoising strategy based on the assumption that ocular tissue images in a temporal sequence will 
repeat periodically with the heart cycle. Images from the same cardiac phase can thus be averaged without blur-
ring changes due to movement or physiological processes. Rigid registrations applied to the B-scans in a video are 
sufficient to correct global movement due to eye saccades, lack of gaze fixation and breathing. The resulting video 
captures changes due only to the blood flow in and out of tissues. As such, the registered frames corresponding 
to the same instant in a cardiac cycle, i.e., all frames taken at equal delays with respect to systole, should look the 
same. Averaging only those specific images reduces speckle and other noise sources present in the images while 
preserving visible pulsation-driven movements.

We acquire OCT videos at a B-scan rate of 100 Hz for a duration of approximately 30 s (see section “Data 
acquisition”). These videos image a single plane of the retina and optic nerve head throughout multiple heart 
cycles. The heart cycle is simultaneously measured with a pulse sensor and digitized. The peaks of the cardiac 
signal are detected, and the period is divided into 100 intervals, referred hereafter as bins. Images are assigned 
to bins using the timestamps that indicate the moment of acquisition of every frame of the OCT movie. The 
3000 frames of our movies are thereby split in 100 bins; each bin receives approximately 30 frames representing 
identical instants of different cycles. For every bin, the registration steps described in section “Image registration” 
are applied, using the first frame of that bin as the reference frame. After registration, all images in every bin are 
averaged together, yielding a single denoised image. To align the averaged frames together and recreate a spatially 
coherent movie, a second registration is applied, using the same workflow as in section “Image registration”. This 
transforms a 30-s-long OCT video of 3000 frames into a one-cycle, approximately 1-s-long video, where every 
frame is the average of approximately 30 images. See Fig. 5 for a visual representation of this workflow.

Data acquisition
Time series are obtained using the Zeiss PlexElite 9000, a swept-source OCT machine. We use a custom mode 
to acquire 30-s-long videos at a B-scan frame rate of approximately 100 Hz and an A-scan rate of approximately 
100 kHz. An eye tracker ensures that the same region of the eye is being imaged throughout the whole 30 s. This 
set-up produces 3000-frames B-scan movies mapping a single plane of the optic nerve head (ONH) in less than a 
minute. The output images have a size of 1536 × 1024 pixels, with pixel size of 1.95 µm axially and approximately 
5.9 µm transversally. The OCT resolution is of 6.3 µm axially and 20 µm transversally. A more detailed descrip-
tion of the data acquisition protocol was previously published12.

The subject’s heart beats are measured simultaneously with the OCT video using a pulse sensor (PulseSensor, 
World Famous Electronics llc.) in contact with the subject’s finger. This sensor shines light (λ = 515 ± 15 nm) on 
the finger and a photodiode measures the backscattering intensity, which is proportional to oxygenated hemo-
globin. Signal digitization is achieved with an analog-to-digital-converter (ADS1263, Waveshare) connected to 
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a Raspberry Pi (Model 4B). This set-up was first described elsewhere39. 21 videos of different eyes were analyzed 
in total, corresponding to 15 different subjects (some were imaged in both eyes).

Image registration
We use a two-step registration workflow: a global translation using an arbitrary reference frame (described in 
section “One-cardiac-cycle OCT videos”), followed by a fine A-scan alignment. The latter step serves to correct 
a progressive rotational misalignment (tilt) that can affect the individual A-scans. We correct the A-scan tilt 
by calculating the correlation between pairs of A-scans from the reference and moving images. The maximum 
correlation between pairs of A-scans is the axial shift that could be applied to the moving A-scan to optimally 
register it to the reference image. This shift is calculated for all pairs of A-scans and a linear fit is obtained. Axial 
shifts are applied based on the linear fits computed for every image. In the interest of speed, correlations are only 
computed every 20 A-scans.

An outlier detection scheme is used to detect frames where the registration process would not have worked. 
The Mattes Mutual Information (MMI)40 metric is computed between all frames corresponding to the same 
cardiac phase, where the first frame of each bin is taken as the reference. This similarity metric allows to detect 
images where the registration would have diverged, resulting in artifacts. Otsu thresholding is used to split the 
whole set of MMIs computed on every frame of the movie, after which a binomial distribution is fitted on the 
split. Goodness of fit indicates whether frames can be detected as outliers as such the lower MMIs correspond-
ing frames are removed.

Global image quality quantification
Different metrics are used to quantify image quality before and after denoising has been applied.

We use Mattes Mutual Information (MMI)40 to compute the similarity between whole image pairs before 
and after denoising:

Figure 5.   Visual representation of the one-cycle workflow. (A) OCT B-scans are assigned to time bins 
according to the correspondence between their timestamp and the pulse signal. (B) All frames assigned to the 
same bin are registered and averaged to create the one-cycle images with reduced speckle noise.
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Mattes Mutual Information:

where P represents the probability distribution of pixels in an image, and x and y are pixel intensity values of 
images X and Y.

We use the signal-to-noise ratio (SNR) (Eq. (2)) and the contrast-to-noise ratio (CNR) (Eq. (3)) to quantify 
the noise present in structures of interest:

Signal-to-noise Ratio:

Contrast-to-noise Ratio:

where µ and σ are the mean and the standard deviation of the intensity, respectively, and index i refers to a 
region of interest (ROI) and b to the background. SNR and CNR are calculated in manually segmented ROIs 
corresponding to the choroid, retinal nerve fiber layer (RNFL) and retinal pigment epithelium (RPE). ROIs were 
identified on one B-scan for every video by the same observer. The ROI corresponding to the background was 
located in the bottom portion of the B-scan on both sides of the ONH.

We use the 2-dimensional Fast Fourier Transform (FFT) to compute the signal content of the images in 
the frequency domain. Based on the specifications that determine axial and transverse resolutions of the OCT 
machine, we define an ellipse that contains useful information. We calculated the semi-axes of this ellipse at the 
cut-off frequencies corresponding to the axial and transverse resolution of the OCT machine. Signal outside this 
ellipse necessarily corresponds to noise, thus the average spectral intensity in that region measures the overall 
noise level. See Fig. 2D for a visual representation of the FFT spectrum and the ellipse.

Region‑specific image quality quantification
To allow more meaningful comparisons between different denoising strategies, we designed several metrics to 
describe the image clarity of different ocular structures. ROI-specific metrics are defined and computed for the 
sclera, vitreous humor and retinal layers. All ROIs are manually segmented on one frame in each video by the 
same observer.

At the resolution provided by an OCT, the sclera is a homogeneous collagenous layer. Thus, variation of 
intensities in this region should be minimal; the standard deviation is computed and expected to be close to zero.

As the OCT signal in the vitreous humor should be null, the mean and the standard deviation of the pixel 
intensities are computed in this region, and both are expected to be close to zero.

The different retinal layers are expected to be clearly defined and distinguishable. Starting from the inner limit-
ing membrane and ending with the Bruch’s membrane, we count 11 interfaces that should be found in denoised 
OCT scans. These interfaces include the transitions between the retinal nerve fiber layer, ganglion cell layer, inner 
plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, external limiting membrane (very 
thin layer that would be counted as one delimitation), photoreceptor inner and outer segments (that are visibly 
divided into three sub-layers) and finally the retinal pigment epithelium. The thicknesses of these layers vary 
along the retina and depend on the exact position of the scan, as well as on inter-subject variability. We consid-
ered as optimal an average thickness of approximately 50 µm41. To measure this, we extract the locations and the 
distances between peaks of the vertical gradient across the retina, from the RNFL to the RPE (Fig. 3F). An average 
of the number of detected layers and their average thickness was computed over all lines extracted in the ROI.

Movement preservation quantification
A good denoising strategy removes noise while preserving tissue anatomy. Furthermore, using temporal data 
allows the analysis of the dynamics and biomechanical properties of tissues. As such, we designed a metric 
assessing whether physiological movement induced in scans was still visible after denoising.

We followed a methodology we have used in the past12: a known displacement field simulating the expansion 
of the choroid was created. 100 pairs of consecutive scans in the original and the one-cycle videos were identi-
fied, after which the second scan of each pair was warped with the known deformation field (for the one-cycle 
videos, those hundred scans were simply the one-cycle video itself). All pairs of scans were denoised using their 
respective denoising strategies, after which the displacement field was computed again between both denoised 
scans with the demons algorithm42,43. The average absolute median error was computed between the known and 
computed displacement fields in the retina.

We also quantified the displacement occurring between pairs of consecutive frames after denoising (without 
inducing artificial deformation). The average median displacement was computed in the retina over 100 pairs 
of images for each denoising strategy.
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∑
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BM3D and NLM denoising approaches
The Non-Local Means (NLM) approach denoises images based on averaging neighborhood pixels based on 
their similarity. The similarity is computed using the Euclidean distance between the pixel values. We used the 
MATLAB implementation of the algorithm provided by the authors38.

The Block-matching and 3D filtering (BM3D) algorithm37 was originally inspired by the NLM approach, and 
is based on the Wiener filtering of similar groupings of pixels called blocks. The MATLAB implementation of 
the algorithm published by the authors was used.

Neural networks implementation
We implemented supervised and unsupervised training schemes for the Noise2Noise architecture. The model 
architecture, training sets, hyperparameters and metrics used are described in the following subsections.

Noise2Noise
The Noise2Noise (N2N) neural network framework denoises images in an unsupervised manner. The method is 
based on training the network using pairs of images representing the same structures with different noise levels. 
In the original article25, synthetic noise was added to the images to simulate these pairs.

Using the same assumption as for the one-cycle videos, we suppose that registered frames corresponding to 
the same instant in the cardiac cycle represent the same structures but with different noise distributions. Hence, 
frames detected to be in the same temporal bin are considered as pairs and used as input and output of the N2N 
framework (registration is described in section “Image registration”). All combinations of these pairs of frames 
are used as the N2N training set. Images are cropped to facilitate training to a fixed size of 512 by 512. Cropped 
patches are located randomly in the images, 20 patches are extracted from each image to introduce variation 
to the training set, and a total of 16,812,180 patches are used. We use a U-net-like architecture as the network 
backbone44. The convolutional blocks are composed of two convolutional layers as well as a max pooling (resp. 
upsampling) layer on the encoder (resp. decoder) pathway. Skip connections are used, as in the original U-net. 
No drop-out is used. The ReLU activation is used whenever applicable. We choose the Adam optimizer with 
β1 = 0.9,β2 = 0.99, ε = 10−8.

Noise2Clean implementation
As in other works that tested N2N, we compared the performance of the unsupervised framework to a supervised 
counterpart, which we named Noise2Clean (N2C). The N2C model architecture and gradient descent optimizer 
are the same as in the N2N workflow, the difference lying in the training dataset. In N2C, the network is trained 
to transform a noisy B-scan into its corresponding one-cycle averaged frame. As such, N2C corresponds to a 
supervised training scheme where the inputs are the noisy frames and the outputs are the corresponding denoised 
frames, using the one-cycle workflow to provide the ground truth samples. All combinations of these pairs of 
frames are used to compose the N2C training set. The training set comprises a total of 1,196,480 patches.

Training
We use a batch size of 4 cropped images. The total image sets are split into training, validation, and testing, with 
proportions 64%, 16% and 20%, respectively. We choose a grid search approach to vary several parameters such 
as the number of convolutional blocks used in the U-net-like architecture, the number of features present at 
each convolutional layer, the starting learning rate and the loss function used. Monitoring of the training uses 
the weights and biases library. The model architectures and training were implemented using the Keras library 
in Python. A fixed number of 300 epochs is used for training, with early stopping to end the training when the 
validation loss stops improving. The same training sets are used for all combinations in the grid search.

Four different loss functions are tested: mean squared error (MSE), mean absolute error (MAE), cosine simi-
larity function and L0 error function, as defined elsewhere25. We use the peak signal-to-noise ratio (PSNR) and 
Structural Similarity Index Metric (SSIM)45 (Eqs. (4) and (5)) to evaluate the performance of the models. Those 
that achieve the highest validation SSIM and PSNR while limiting the presence of artefacts are chosen as best.

Peak signal-to-noise ratio (PSNR):

Structural Similarity Index Metric (SSIM):

The final N2N model consists of a U-net architecture made up of 6 convolutional blocks in each pathway, 
using a starting number of 64 filters per convolutional layer, and training with an initial learning rate of 10–5. 
The final N2C model consists of the same optimal hyperparameters, apart from the starting learning rate which 
is of 10–4.

Ethical compliance
Human subjects were included in this study. This study was approved by the institutional review board of 
Maisonneuve-Rosemont Hospital and was performed in accordance with the 1964 Declaration of Helsinki and 
its amendments. Written informed consent was obtained from all participants. No animal subjects were used 
in this study.
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Data availability
The datasets used and analyzed during the current study will be available from the corresponding author on 
reasonable request.

Code availability
The MATLAB code used to generate the one-cycle videos is available at https://​github.​com/​Emman​uelle​Richer/​
One-​cycle-​denoi​sing.
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