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A novel group decision making 
method based on CoCoSo 
and interval‑valued Q‑rung 
orthopair fuzzy sets
Yan Zheng 1, Hongwu Qin 1,2* & Xiuqin Ma 1,2

Interval‑valued q‑rung orthopair fuzzy set (IVq‑ROFS) is a powerful tool for dealing with uncertainty. 
In this paper, we first propose a new method for aggregating multiple IVq‑ROFSs, which is easier 
to understand and implement in the multi‑attribute group decision making process compared to 
current aggregation operators. Secondly, this paper introduces a new fuzzy entropy with parameters 
based on IVq‑ROFS, which is highly flexible due to its adjustable parameters. Based on this, the 
IVq‑ROFS‑based attribute weight calculation method is proposed to obtain the objective weights 
of the attributes, which is more reasonable and objective than the existing methods. Then, for the 
dimensional differences between the three compromise scores in the original Combined Compromise 
Solution (CoCoSo) method, the enhanced compromise scores are proposed. These scores are obtained 
by normalizing the three dependent compromise scores, ensuring that they fall within the same 
range. Finally, a novel CoCoSo mothed on IVq‑ROFS using the proposed fuzzy entropy and enhanced 
compromise scores is presented. The proposed method is highly adaptable and scalable, not limited 
to IVq‑ROFS. The excellent performance and robustness of the proposed method are verified in sepsis 
diagnosis applications.
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The fuzziness and imprecision of the data in many real-world problems make it extremely difficult to make effec-
tive data-driven  decisions1–3. Numerous mathematical models have been developed in recent decades to deal 
with uncertainties.  Zadeh4 proposed the concept of fuzzy sets as a generalization of crisp sets.  Takeuti5 extended 
the traditional fuzzy set theory and introduced the concept of intuitionistic fuzzy sets (IFS). IFSs introduced the 
non-membership degree (NMD) as the supplement to the membership degree (MD), which has been exten-
sively applied in many fields, including decision  making6,7, cluster  analysis8,9, medical  diagnosis10,11, and pattern 
 recognition12,13.  Turksen14 proposed the concept of interval-valued fuzzy set.  Atanassov15 further extended IFSs 
and proposed the concept of interval valued intuitionistic fuzzy set (IVIFS) to make the consideration more 
comprehensive in practical applications. IVIFSs use subintervals in the interval [0,1] to describe the MD and 
NMD, making them more flexible and practical than IFSs when dealing with ambiguous or uncertain data. 
 Yager16 proposed Pythagorean fuzzy set (PFS), which extended the concept of IFS and provided new research 
ideas and methods for solving uncertainty problems. This theory is more widely used in the field of  MADM17. 
Compared with IFS, PFS have the sum of squares of MD and NMD, which are less than or equal to 1, allowing 
decision makers to give a wider range of values. Later,  Zhang18 further extended PFS and proposed the concept 
of Interval-valued Pythagorean Fuzzy Set (IVPFS). Furthermore, in order to cover more data, fermatean fuzzy 
 sets19,20 and interval-valued fermatean fuzzy  sets21 were presented. Integration of IFS, PFS and fermatean fuzzy 
sets described above, q-rung orthopair  fuzzy22–25 set was proposed. When the q-ROFS will degenerate to IFS, 
PFS, FFS. Similarly, interval valued q-rung orthopair fuzzy set (IVq-ROFS)22 was proposed, and when the IVq-
ROFS will degenerate to IVIFS, IVPFS, IVFFS. Compared with IVIFS, IVPFS, IVFFS, and IVq-ROFS have more 
data that can be covered than IVIFS, IVPFS, and IVFFS. Based on the above models, there are many extension 
models such as picture fuzzy  set26,27 , complex fuzzy set, fuzzy soft  set28 and their  extensions29–37. The current 
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research on IVq-ROFS mainly focuses on the aggregation  operators38–40, information  measures41–43, extended 
IVq-ROFS44–46, MADM  methods47–49.

Experts and scholars have studied IVq-ROFS and its applications in MADM from different perspectives and 
proposed many valuable decision-making methods. The q-connection number was shown  in50,51, and a new 
MAGDM method was proposed based on the q-connection number and IVq-ROFS. A scientific risk evaluation 
method based on IVq-ROFS capable of solving these deficiencies in the existing method was given  in51. Seker 
et al.52 proposed a COPRAS method for IVq-ROFS. Yang et al.53 focused on the preference relations of IVq-ROFS 
and presented a related GDM method. Gurmani et al.54 created a new approach to determining expert weights 
using distance and similarity measures for IVq-ROFS.

However, there are some research gaps below. From a theoretical point of view, firstly, for MAGDM for IVq-
ROFS, it is necessary to aggregate information from many different experts. However, the existing multi-source 
information aggregation method  in55, which used the Archimedean Muirhead mean operators to aggregate 
fuzzy data, is not easy to understand and implement. Secondly, the existing method  in52,55–57 related to attribute 
weight determination has a certain degree of subjectivity. Therefore, presenting a weight calculation method 
with complete objectivity is essential. Thirdly, for the original CoCoSo  method58 proposed by Yazidani et al., 
which combined three comprised scores to calculate the final rating, there is an unavoidable problem that the 
value domains of the three dependent compromise scores are different, which directly affects the final score 
calculation. It is necessary to convert three dependent compromise scores to a unified scale for the CoCoSo 
method. From a practical point of view, in diagnosing disease, the diagnostic process in clinical care cannot rely 
solely on test data, as there is often excessive variability in patients’ signs and symptoms and a lack of specificity. 
If a patient with suspected or confirmed infection presents with a worsening condition and is at risk of organ 
dysfunction, early recognition and prompt treatment as appropriate is critical to improving outcomes. By the 
time the diagnosis becomes apparent, and multiple physiologic parameters are abnormal, the risk of death is very 
high. Therefore, multi-expert collective decision making is crucial in clinical diagnosis because MAGDM can 
gather the decision-making ideas of multiple experts and finally unify them to complete the initial diagnosis of 
the disease at an early stage when the patient has fewer signs and data abnormalities. The rate of misdiagnosis 
of the conventional clinical diagnosis may be higher, doctors are in a state of uncertainty about the diagnosis of 
sepsis, the interval- value q-rung fuzzy MAGDM can be a good solution of this problem.

The main contributions of this paper are as follows:

(1) A novel multi-source aggregation method of aggregating multiple IVq-ROFSs from various specialists is 
introduced. Compared to the traditional method, it is easier to understand and implement.

(2) A novel fuzzy entropy with parameter derived from IVq-ROFS, which is more flexible and versatile com-
pared to conventional fuzzy entropy. Additionally, the IVq-ROFS-based attribute weight calculation method 
is proposed, utilizing this fuzzy entropy as a basis.

(3) This work aims to enhance the dimensional distinctions among the three compromise scores of the original 
CoCoSo approach.

(4) There is a limited number of fuzzy MAGDM methods available for sepsis diagnosis. Therefore, we want to 
validate the accuracy and applicability of our proposed method using a case study on sepsis diagnosis.

The structure of this paper is as follows: “Preliminaries” section describes the related concepts of IVq-ROFS 
and the original CoCoSo method. In “A novel CoCoSo group decision making method on IVq-ROFSs” section 
defines the multi-source information aggregation method, presents the new fuzzy entropy based on IVq-ROFS 
and the proposed CoCoSo group decision method. In “Case Study: Sepsis diagnosis” section describes the 
application of our method in Sepsis dignose case. In “Sensitivity analysis and comparative analysis” section, we 
make sensitivity analysis and the comparative analysis with other methods to verify feasibility of our method. 
And then the merits of our method are discussed. In “Conclusion” section we conclude this paper.

Preliminaries
This section introduces the definitions associated with interval-valued q-rung orthopair fuzzy sets. It then 
describes the fundamental principles of fuzzy entropy for existing interval-valued fuzzy sets. Finally, the algo-
rithmic flow of the original CoCoSo technique is presented.

Interval‑valued fuzzy set

Definition 1 14 Interval-valued fuzzy set (IVFS): Let the universe X be a non-empty set, then the IVFS on X 
can be expressed as:

where µ−
A (x) is the lower bound of MD, µ+

A (x) is the upper bound of MD.

A =
{(

x,
[

µ−
A (x),µ

+
A (x)

]

|x ∈ X
)}

,
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Interval‑valued intuitionistic fuzzy set

Definition 2 15 Interval-valued intuitionistic fuzzy set(IVIFS):Let the universe X be a non-empty set, then the 
IVIFS on X can be expressed as:

where µAI∗(x) ∈
(

µ−
AI∗ ,µ

+
AI∗

)

 ,  νAI∗(x) ∈
(

ν−
AI∗ , ν

+
AI∗

)

 and 0 ≤ µ−
AI∗ ≤ µ+

AI∗ ≤ 1 ,  0 ≤ ν−
AI∗ ≤ ν+

AI∗ ≤ 1 . 
µAI∗(x) : X → [0, 1] and νAI∗(x) : X → [0, 1] for all x ∈ X meet µ+

AI∗ + ν+
AI∗ ≤ 1 . µAI∗(x) and νAI∗(x) denote 

the MD and NMD of elements in X belonging to AI∗ ,respectively.

Interval‑valued pythagorean fuzzy set

Definition 3 18 Interval-valued Pythagorean fuzzy set (IVPFS):Let the universe X be a non-empty set, then the 
IVPFS on X can be expressed as:

where µAP∗(x) ∈
(

µ−
AP∗ ,µ

+
AP∗

)

 ,  νAP∗(x) ∈
(

ν−
AP∗ , ν

+
AP∗

)

 and 0 ≤ µ−
AP∗ ≤ µ+

AP∗ ≤ 1 ,  0 ≤ ν−
AP∗ ≤ ν+

AP∗ ≤ 1 . 
µAP∗(x) : X → [0, 1] and νAP∗(x) : X → [0, 1] for all x ∈ X meet 

(

µ+
AP∗

)2 +
(

ν+
AP∗

)2 ≤ 1 . µAP∗(x) and νAP∗(x) 
denote the MD and NMD of elements in X belonging to AP∗ , respectively.

Interval‑valued Fermatean fuzzy set

Definition 4 21 Interval-valued Fermatean fuzzy set (IVFFS): Let the universe X be a non-empty set, then the 
IVFFS on X can be expressed as:

where µAF∗(x) ∈
(

µ−
AF∗ ,µ

+
AF∗

)

 ,  νAF∗(x) ∈
(

ν−
AF∗ , ν

+
AF∗

)

 and 0 ≤ µ−
AF∗ ≤ µ+

AF∗ ≤ 1 ,  0 ≤ ν−
AF∗ ≤ ν+

AF∗ ≤ 1 . 

µAF∗(x) : X → [0, 1] and νAF∗(x) : X → [0, 1] for all x ∈ X meet 
(

µ+
AF∗

)3 +
(

ν+
AF∗

)3 ≤ 1 . µAF∗(x) and νAF∗(x) 
denote the MD and NMD of elements in X belonging to AF∗ , respectively.

Interval‑valued q‑rung orthopair fuzzy set

Definition 5 22 Interval-valued q-rung orthopair fuzzy set (IVq-ROFS): Let the universe X be a non-empty set, 
then the IVq-ROFS on X can be expressed as:

where µAQ∗(x) ∈
(

µ−
AQ∗ ,µ

+
AQ∗

)

 , νAQ∗(x) ∈
(

ν−
AQ∗ , ν

+
AQ∗

)

 and 0 ≤ µ−
AQ∗ ≤ µ+

AQ∗ ≤ 1 , 0 ≤ ν−
AQ∗ ≤ ν+

AQ∗ ≤ 1 . 
µAQ∗(x) : X → [0, 1] and νAQ∗(x) : X → [0, 1] for all x ∈ X meet 

(

µ+
AQ∗

)q +
(

ν+
AQ∗

)q ≤ 1 . µAQ∗(x) and νAQ∗(x) 
denote the MD and NMD of elements in X belonging to AQ∗, respectively. The values of MD and NMD of IVq-
ROFS are as shown in Fig. 1.

For each IVq-ROFS on XQ∗ , the hesitancy degree  in20 πAQ∗(x) ∈
(

π−
Q∗,π

+
Q∗

)

 is given, where

For IVq-ROFS the following basic operations are established.

AI∗ =
{

�x,µAI∗(x), νAI∗(x)�|x ∈ X
}

,

AP∗ =
{

�x,µAP∗(x), νAP∗(x)�|x ∈ X
}

,

AF∗ =
{

�x,µAF∗ (x), νAF∗(x)�|x ∈ X
}

,

(1)AQ∗ =
{

x,µAQ∗(x), νAQ∗(x)|x ∈ X
}

,

(2)















π−
Q∗ = q

�

1−
�

µ+
AQ∗

�q −
�

ν+
AQ∗

�q

π+
Q∗ = q

�

1−
�

µ−
AQ∗

�q −
�

ν−
AQ∗

�q

�

π−
Q∗,π

+
Q∗

�

∈ (0, 1)
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Fuzzy entropy
Fuzzy entropy is a measure used to scale the uncertainty of fuzzy elements which is come from statistics. The 
common fuzzy entropies are mainly as follows:

Definition 6 59 Intuitionistic fuzzy entropy: A real-valued function E
(

AI
)

: IF(X) → [0, 1] is named as an 
entropy on IFS, if E satisfies all the following properties:

 (I1)   0 ≤ E
(

AI
)

≤ 1;
(I2)   E

(

AI
)

= 0 if AI is a crisp set;
(I3)   E

(

AI
)

= 1 if µAI (x) = νAI (x) = πAI (x) = 1
3
;

(I4)   E
(

AI
)

≤ E
(

BI
)

 if A is crisper than B , which is defined as:

Definition 7 60 Interval-valued intuitionistic fuzzy entropy: A real-valued function E(AI∗) : IVIF(X) → [0, 1] is 
named as an entropy on IVIFS, if  E(AI∗) satisfies all the following properties:

  (I*1)

 0 ≤ E(AI∗) ≤ 1.

 (i) E
(

AI∗) = 0 if AI∗ is a crisp set.
 (ii) E(AI∗) iff µAI∗(xi) = νAI∗(xi).

(I*2)  E
(

AI∗) = E(
(

AI∗)C).

(I*3)   E
(

AI∗) ≤ E
(

BI∗
)

 if A is crisper than B, which is defined as:

(3)
A
Q∗
1 = A

Q∗
2 ⇔

[

µ
A
Q∗
1
(x), ν

A
Q∗
1
(x)

]

=
[

µ
A
Q∗
2
(x), ν

A
Q∗
2
(x)

]

⇔ µ−
A
Q∗
1

= µ−
A
Q∗
2

,µ+
A
Q∗
1

= µ+
A
Q∗
2

, ν−
A
Q∗
1

= ν−
A
Q∗
2

, ν+
A
Q∗
1

= ν+
A
Q∗
2

(4)
A
Q∗
1 ⊆ A

Q∗
2 ⇔

[

µ−
A
Q∗
1

,µ+
A
Q∗
1

]

≤
[

µ−
A
Q∗
2

,µ+
A
Q∗
2

]

,

[

ν−
A
Q∗
1

, ν+
A
Q∗
1

]

≥
[

ν−
A
Q∗
2

, ν+
A
Q∗
2

]

⇔ µ−
A
Q∗
1

≤ µ−
A
Q∗
2

,µ+
A
Q∗
1

≤ µ+
A
Q∗
2

, ν−
A
Q∗
1

≥ ν−
A
Q∗
2

, ν+
A
Q∗
1

≥ ν+
A
Q∗
2

(5)
A
Q∗
1 � A

Q∗
2 ⇔

[

µ−
A
Q∗
1

,µ+
A
Q∗
1

]

�

[

µ−
A
Q∗
2

,µ+
A
Q∗
2

]

,

[

ν−
A
Q∗
1

, ν+
A
Q∗
1

]

�

[

ν−
A
Q∗
2

, ν+
A
Q∗
2

]

⇔ µ−
A
Q∗
1

≤ µ−
A
Q∗
2

,µ+
A
Q∗
1

≥ µ+
A
Q∗
2

, ν−
A
Q∗
1

≥ ν−
A
Q∗
2

, ν+
A
Q∗
1

≤ ν+
A
Q∗
2

µA(x) ≤ µB(x)andνA(x) ≤ νB(x)formax{µB, νB} ≤
1

3
;

µA(x) ≥ µB(x)andνA(x) ≥ νB(x)formin{µB, νB} ≥
1

3
;

Figure 1.  The values of MD and NMD of IVq-ROFS.
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The combined compromise solution (CoCoSo) method
Yazdani et al.58 proposed an eclectic MADM, which is an efficient way to deal with complex decision question 
by using conflict analysis. CoCoSo method is implemented by the following steps for decision making after 
determining the alternatives and evaluation criteria:

Step 1 The original decision matrix is normalized by Eq. (6):

where τ = max xij −min xij.
Step 2 Calculate the weighted sum and weighted product for each alternative based on the attribute weights 

by Eqs. (7–8):

Step 3 Generate three dependent compromise scores for each alternative using the three dependent aggrega-
tion operators from different perspectives by using Eq. (9):

Step 4 Calculate the three dependent compromise scores using the mixed integration operator as shown as 
Eq. (10):

A novel CoCoSo group decision making method on IVq‑ROFSs
In this section, a new MAGDM method is proposed. Firstly, a new multi-source aggregation method is given 
for multiple IVq-ROFSs. And then a new fuzzy entropy with parameter and related weight calculation method 
is introduced. Finally, the new CoCoSo method on IVq-ROFS utilizing the proposed fuzzy entropy and the 
enhanced compromise scores is presented.

Multi‑source aggregation method on IVq‑ROFSs
The information aggregation method is the first step of fuzzy MAGDM method, this paper defines a multi-source 
aggregation method of IVq-ROFSs inspired by Petry’s  method61. Distinguishing from the complex aggregation 
operators proposed in other  studies62–64 for the MAGDM problem, a framework for multi-source aggregation 
methods and two simpler approaches that satisfied the framework are presented in this section.

Definition 8 Let the universe X be a non-empty set, then Multi-source Aggregation Interval-valued q-rung 
orthopair fuzzy set (MsAIVq-ROFS) is defined as follows:

where µ
A
Q∗
agg

= AGG
(

µ
A
Q∗
1
,µ

A
Q∗
2
, · · · ,µ

A
Q∗
n

)

 and ν
A
Q∗
agg

= AGG
(

ν
A
Q∗
1
, ν

A
Q∗
2
, · · · , ν

A
Q∗
n

)

 . AGG(x1, x2, · · · , xn) is 
the aggregation function of the MD and NMD to be defined for the IVq-ROFS, expanding the function we can 
obtain:

µAI∗(xi) ≤ µBI∗(xi), νAI∗(xi) ≥ νBI∗(xi) for µBI∗(xi) ≤ νBI∗(xi);

µAI∗(xi) ≥ µBI∗(xi), νAI∗(xi) ≤ νBI∗(xi) for µBI∗(xi) ≥ νBI∗(xi);

µAI∗ (xi)�µBI∗ (xi), νAI∗(xi)�νBI∗(xi) for µBI∗ (xi)�νBI∗(xi);

µAI∗ (xi)�µBI∗ (xi), νAI∗(xi)� νBI∗(xi) for µBI∗ (xi)� νBI∗(xi).

(6)

{

xij =
xij−min xij

τ
, for benefit criteria;

xij =
max xij−xij

τ
, for cost criteria,

(7)Sωi =
n

∑

j=1

ωjxij

(8)Mωi =
n
∏

j=1

(

xij
)ωj

(9)











S1i =
Sωi+Mωi

�m
i=1 (Sωi+Mωi)

;
S2i =

Sωi
min Sωi

+ Mωi
minMωi

;
S3i =

εSωi+(1−ε)Mωi
εmaxiSωi+(1−ε)maxiMωi

, 0 ≤ ε ≤ 1

(10)Si = 1
3

(

S1i + S2i + S3i
)

+
(

S1i S
2
i S

3
i

)
1
3

(11)AQ∗
agg =

{

x,µ
A
Q∗
agg
(x), ν

A
Q∗
agg
(x)|x ∈ X

}

,

µ
A
Q∗
agg

= AGG
(

µ
A
Q∗
1
,µ

A
Q∗
2
, · · · ,µ

A
Q∗
n

)

=
[

AGG

(

µ−
A
Q∗
1

,µ−
A
Q∗
2

, · · · ,µ−
A
Q∗
n

)

,AGG

(

µ+
A
Q∗
1

,µ+
A
Q∗
2

, · · · ,µ+
A
Q∗
n

)]

,
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and µ+
A
Q∗
n

,µ−
A
Q∗
n

,ν+
A
Q∗
n

,ν−
A
Q∗
n

 are the upper and lower bounds of the MD and NMD of IVq-ROFS. Next, considering 
the different requirements needed by different decision makers in a complex decision environment, this paper 
proposes two aggregation functions for IVq-ROFSs.

Definition 9 For n IVq-ROFSs of the same universe X , the compromised MsAIVq-ROFS is as follows:

Sµ+
A
Q∗
i

 , Sµ−
A
Q∗
i

 , Sν+
A
Q∗
i

 , Sν−
A
Q∗
i

 are the sets of upper and lower bounds of the MD and NMD to be aggregated. 

µ+
A
Q∗
i

∈ Sµ+
A
Q∗
i

 , µ−
A
Q∗
i

∈ Sµ−
A
Q∗
i

 , ν+
A
Q∗
i

∈ Sν+
A
Q∗
i

 , ν−
A
Q∗
i

∈ Sν−
A
Q∗
i

.

Definition 10 For n IVq-ROFSs of the same object set X, the inclusive MsAIVq-ROFS is as follows:

These two approaches to aggregation of information sources are illustrated below by a supplier selection 
problem.

Example 1 Let the existing supplier object set be O = {O1,O2,O3,O4,O5,O6} , data information sources 
S = {S1, S2} , attribute set A = {a1, a2, a3, a4, a5} . Here a1 is delivery capability, a2 is product price, a3 is technical 
support, a4 is service level, a5 is inventory level. The original IVq-ROFSs given by the two information sources 
are Tables 1 and 2 respectively.

The compromised MsAIVq-ROFS and inclusive MsAIVq-ROFS on the Tables 1 and 2 are obtained using the 
formulas of Definition 9 and Definition 10 as Tables 3 and 4 shown.

Among them, inclusive MsAIVq-ROFS may have a certain problem that the sum of the squares of the upper 
limit of MD and the upper limit of NMD of the elements to be aggregated may be greater than 1. Therefore, we 

ν
A
Q∗
agg

= AGG
(

ν
A
Q∗
1
, ν

A
Q∗
2
, · · · , ν

A
Q∗
n

)

=
[

AGG

(

ν−
A
Q∗
1

, ν−
A
Q∗
2

, · · · , ν−
A
Q∗
n

)

,AGG

(

ν+
A
Q∗
1

, ν+
A
Q∗
2

, · · · , ν+
A
Q∗
n

)]

,

(12)A
Q∗
pos =

{

�x,µ
A
Q∗
pos
(x), ν

A
Q∗
pos
(x)�|x ∈ X

}

(13)µ
A
Q∗
pos

=

[∑n
i=1 µ

−
A
Q∗
i

n ,

∑n
i=1 µ

+
A
Q∗
i

n

]

, ν
A
Q∗
pos

=

[∑n
i=1 ν

−
A
Q∗
i

n ,

∑n
i=1 ν

+
A
Q∗
i

n

]

(14)AQ∗
neg =

{

�x,µ
A
Q∗
neg
(x), ν

A
Q∗
neg
(x)�|x ∈ X

}

(15)µ
A
Q∗
neg

=
[

min
(

µ−
A
Q∗
s

)

,max
(

µ+
A
Q∗
s

)]

, ν
A
Q∗
neg

=
[

min
(

ν−
A
Q∗
s

)

,max
(

ν+
A
Q∗
s

)]

.

Table 1.  The original data set given by S1.

S1 a1 a2 a3 a4 a5

O1 <[0.1, 0.3], [0.4, 0.5]> <[0.4, 0.6], [0.2, 0.5]> <[0.2, 0.4], [0.4, 0.6]> <[0.2, 0.4], [0.2, 0.6]> <[0.1, 0.3], [0.1, 0.3]>

O2 <[0.5, 0.8], [0.1, 0.3]> <[0.3, 0.5], [0.3, 0.8]> <[0.4, 0.6], [0.2, 0.4]> <[0.4, 0.6], [0.2, 0.5]> <[0.1, 0.3], [0.1, 0.3]>

O3 <[0.8, 0.9], [0.3, 0.4]> <[0.4, 0.6], [0.2, 0.6]> <[0.1, 0.2], [0.6, 0.8]> <[0.3, 0.5], [0.1, 0.2]> <[0.1, 0.3], [0.1, 0.3]>

O4 <[0.5, 0.6], [0.2, 0.4]> <[0.4, 0.6], [0.4, 0.5]> <[0.2, 0.6], [0.4, 0.8]> <[0.4, 0.6], [0.2, 0.5]> <[0.3, 0.4], [0.5, 0.7]>

O5 <[0.6, 0.7], [0.3, 0.5]> <[0.1, 0.3], [0.3, 0.6]> <[0.4, 0.8], [0.1, 0.4]> <[0.1, 0.3], [0.1, 0.3]> <[0.3, 0.6], [0.2, 0.7]>

O6 <[0.4, 0.7], [0.3, 0.5]> <[0.4, 0.7], [0.2, 0.4]> <[0.2, 0.4], [0.5, 0.8]> <[0.1, 0.3], [0.1, 0.3]> <[0.3, 0.8], [0.2, 0.5]>

Table 2.  The original data set given by S2.

a1 a2 a3 a4 a5

O1 <[0.2, 0.4], [0.2, 0.6]> <[0.4, 0.7], [0.2, 0.3]> <[0.3, 0.5], [0.2, 0.3]> <[0.3, 0.4], [0.3, 0.5]> <[0.2, 0.4], [0.2, 0.3]>

O2 <[0.3, 0.5], [0.2, 0.3]> <[0.4, 0.5], [0.2, 0.6]> <[0.1, 0.2], [0.8, 0.9]> <[0.1, 0.2], [0.3, 0.4]> <[0.5, 0.7], [0.1, 0.3]>

O3 <[0.5, 0.6], [0.2, 0.3]> <[0.2, 0.4], [0.5, 0.6]> <[0.3, 0.7], [0.2, 0.8]> <[0.6, 0.7], [0.1, 0.3]> <[0.3, 0.6], [0.1, 0.3]>

O4 <[0.3, 0.5], [0.1, 0.2]> <[0.2, 0.6], [0.3, 0.4]> <[0.1, 0.2], [0.3, 0.5]> <[0.2, 0.3], [0.1, 0.6]> <[0.4, 0.6], [0.2, 0.3]>

O5 <[0.2, 0.8], [0.1, 0.2]> <[0.5, 0.7], [0.2, 0.6]> <[0.2, 0.6], [0.3, 0.6]> <[0.2, 0.4], [0.1, 0.4]> <[0.1, 0.2], [0.7, 0.8]>

O6 <[0.1, 0.3], [0.3, 0.5]> <[0.6, 0.8], [0.2, 0.4]> <[0.4, 0.6], [0.2, 0.3]> <[0.2, 0.6], [0.2, 0.4]> <[0.2, 0.3], [0.1, 0.3]>
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need to restrict the merge aggregation by setting the upper limit of NMD degree to 
⌊

q

√

1−
(

µ−
AQ∗

)q
⌋

 when the 

sum of the squares of the upper limit of MD and the upper limit of NMD of the aggregated elements is greater 
than 1, so as to solve this problem.

From the comparison of information before and after aggregation, it can be seen that the aggregated MsAIVq-
ROFS has the characteristics of two data information sources at the same time, and two methods bring radical 
and conservative strategies to the subsequent decision-making ideas. And compared with complex aggregation 
operators in recent  researches55, these two methods are more concise and more accessible to calculate.

In summary, the two aggregation methods for IVq-ROFSs proposed in this paper perform different operations 
on the upper and lower values of the interval values, respectively, and obtain two types of IVq-ROFSs decision 
datasets that can provide different decision-making opinions. The compromised method calculates the mean 
value of the upper and lower values of multiple IVq-ROFSs to reduce the range of intervals that can be calcu-
lated and contain the original data set’s characteristic information to achieve a more decision-making idea. The 
inclusive method calculates the maximum value of the upper and lower values of multiple IVq-ROFSs to ensure 
that all the original data set information can be includedto achieve a more accurate decision-making idea. Both 
approaches will work for different scenarios.

A new fuzzy entropy with parameter and related weight calculation method on IVq‑ROFS
Objective attribute weight calculation is the second step of fuzzy MAGDM, given the “Fuzzy entropy” section 
conditions, a new fuzzy entropy with parameters for IVq-ROFS is proposed here:

Definition 11 Interval-valued q-rung orthopair fuzzy entropy: A real-valued function E: IVq− ROF(X) → [0, 1] 
is named as an entropy on IVq-ROFS, if E satisfies all the following properties:

(Q1)

0 ≤ E(AQ∗) ≤ 1.

 (i) E
(

AQ∗) = 0 if AQ∗ is a crisp set.
 (ii) E

(

AQ∗) = 1 iff µAQ∗(xi) = νAQ∗(xi) = [ q
√
k,

q
√
k].

(Q2)  E
(

AQ∗) = E(
(

AQ∗)C).
(Q3)  E

(

AQ∗) ≤ E
(

BQ∗
)

 if AQ∗ is crisper than BQ∗,which is defined as:

where k ∈ [0, 1] . The parameter k is a balance parameter to improve the flexibility of the fuzzy entropy.

µBQ∗(xi) ≥ µAQ∗(xi) ≥ [ q
√
k,

q
√
k] and νBQ∗(xi) ≥ νAQ∗(xi) ≥ [ q

√
k,

q
√
k]

Table 3.  Compromised MsAIVq-ROFS.

a1 a2 a3 a4 a5

S1 <[0.15, 0.35], [0.3, 0.55]> <[0.4, 0.65], [0.2, 0.4]> <[0.25, 0.45], [0.3, 0.45]> <[0.25, 0.4], [0.25, 0.55]> <[0.15, 0.35], [0.15, 0.3]>

S2 <[0.4, 0.65], [0.15, 0.3]> <[0.35, 0.5], [0.25, 0.7]> <[0.25, 0.4], [0.5, 0.65]> <[0.25, 0.4], [0.25, 0.45]> <[0.3, 0.5], [0.1, 0.3]>

S3 <[0.65, 0.75], [0.25, 0.35]> <[0.3, 0.5], [0.35, 0.6]> <[0.2, 0.45], [0.4, 0.8]> <[0.45, 0.6], [0.1, 0.25]> <[0.2, 0.45], [0.1, 0.3]>

S4 <[0.4, 0.55], [0.15, 0.3]> <[0.3, 0.6], [0.35, 0.45]> <[0.15, 0.4], [0.35, 0.65]> <[0.3, 0.45], [0.15, 0.55]> <[0.35, 0.5], [0.35, 0.5]>

S5 <[0.4, 0.75], [0.2, 0.35]> <[0.3, 0.5], [0.25, 0.6]> <[0.3, 0.7], [0.2, 0.5]> <[0.15, 0.35], [0.1, 0.35]> <[0.2, 0.4], [0.45, 0.75]>

S6 <[0.1, 0.3], [0.3, 0.5]> <[0.6, 0.8], [0.2, 0.4]> <[0.4, 0.6], [0.2, 0.3]> <[0.2, 0.6], [0.2, 0.4]> <[0.2, 0.3], [0.1, 0.3]>

Table 4.  Inclusive MsAIVq-ROFS.

a1 a2 a3 a4 a5

S1 <[0.1, 0.4], [0.2, 0.6]> <[0.4, 0.7], [0.2, 0.5]> <[0.2, 0.5], [0.2, 0.6]> <[0.2, 0.4], [0.2, 0.6]> <[0.1, 0.4], [0.1, 0.3]>

S2 <[0.3, 0.8], [0.1, 0.3]> <[0.3, 0.5], [0.2, 0.8]> <[0.1, 0.6], [0.2, 0.9]> <[0.1, 0.6], [0.2, 0.5]> <[0.1, 0.7], [0.1, 0.3]>

S3 <[0.5, 0.9], [0.2, 0.4]> <[0.2, 0.6], [0.2, 0.6]> <[0.1, 0.7], [0.2, 0.8]> <[0.3, 0.7], [0.1, 0.3]> <[0.1, 0.6], [0.1, 0.3]>

S4 <[0.3, 0.6], [0.1, 0.4]> <[0.2, 0.6], [0.3, 0.5]> <[0.1, 0.6], [0.3, 0.8]> <[0.2, 0.6], [0.1, 0.6]> <[0.3, 0.6], [0.2, 0.7]>

S5 <[0.2, 0.8], [0.1, 0.5]> <[0.1, 0.7], [0.2, 0.6]> <[0.2, 0.8], [0.1, 0.6]> <[0.1, 0.4], [0.1, 0.4]> <[0.1, 0.6], [0.2, 0.8]>

S6 <[0.1, 0.7], [0.3, 0.5]> <[0.4, 0.8], [0.2, 0.4]> <[0.2, 0.6], [0.2, 0.8]> <[0.1, 0.6], [0.1, 0.4]> <[0.2, 0.8], [0.1, 0.5]>
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Definition 12 Let the theoretical domain X be a nonempty set X and AQ∗ = {< xi ,µAQ∗(xi), νAQ∗(xi) > |xi ∈ X} 
be an IVq-ROFS, the new entropy formula of IVq-ROFS is as follow:

w h e r e  µ
ց
AQ∗ = min

(∣

∣

∣
µ−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
µ+
AQ∗

q
(xi)− k

∣

∣

∣

)

,  ν
ց
AQ∗ = min

(∣

∣

∣
ν
−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
ν
+
AQ∗

q
(xi)− k

∣

∣

∣

)

, 

µ
ր
AQ∗ = max

(∣

∣

∣
µ−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
µ+
AQ∗

q
(xi)− k

∣

∣

∣

)

, νր
AQ∗ = max(

∣

∣

∣
ν
−
AQ∗

q
(xi)− k

∣

∣

∣
, |ν+

AQ∗
q
(xi)− k|).

Proof (Q1)(i)  If AQ∗ is a crisp set, then we have µAQ∗ = [0, 0] and νAQ∗ = [1, 1] or µAQ∗ = [1, 1] and 
νAQ∗ = [0, 0]

  When µAQ∗ = [0, 0] and νAQ∗ = [1, 1] , E
(

AQ∗) = 1
n

∑n
i=1

[1−k−(1−k)]+[1−k−(1−k)]
2

= 0. When 
µAQ∗ = [1, 1] and νAQ∗ = [0, 0],E

(

AQ∗) = 1
n

∑n
i=1

[1−k−(1−k)]+[1−k−(1−k)]
2

= 0.

(Q1)(ii)  F i r s t l y ,  s u f f i c i e n c y  i s  p r o o f e d  a s  f o l l o w s :  w h e n 

E
(

AQ∗) = 1
n

∑n
i=1

[

1−µ
ց
AQ∗−ν

ց
AQ∗

]

+
[

1−µ
ր
AQ∗−ν

ր
AQ∗

]

2
= 1 , so we have µց

AQ∗ = ν
ց
AQ∗ = µ

ր
AQ∗ = ν

ր
AQ∗ = 0 . 

It means that, min

(∣

∣

∣
µ−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
µ+
AQ∗

q
(xi)− k

∣

∣

∣

)

  = min

(∣

∣

∣
ν
−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
ν
+
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q
(xi)− k

∣

∣

∣

)
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(∣

∣

∣
µ−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
µ+
AQ∗

q
(xi)− k

∣

∣

∣

)

  = max

(∣

∣

∣
ν
−
AQ∗

q
(xi)− k

∣

∣

∣
,

∣

∣

∣
ν
+
AQ∗

q
(xi)− k

∣

∣

∣

)

= 0. So 

we have µAQ∗(xi) = νAQ∗(xi) = [ q
√
k,

q
√
k].Secondly, necessity is proofed as follows: when 

µAQ∗(xi) = νAQ∗(xi) = [ q
√
k,

q
√
k] , then we have µց

AQ∗ = ν
ց
AQ∗ = µ

ր
AQ∗ = ν

ր
AQ∗ = 0 . So we have 

E
(

AQ∗) = 1
n

∑n
i=1

[

1−µ
ց
AQ∗−ν

ց
AQ∗

]

+
[

1−µ
ր
AQ∗−ν

ր
AQ∗

]

2
= 1.

(Q2)   E

(

AQ∗
)

= 1
n

∑n
i=1

[

1−µ
ց
AQ∗

−ν
ց
AQ∗

]

+
[

1−µ
ր
AQ∗

−ν
ր
AQ∗

]

2
= 1

n

∑n
i=1

[

1−ν
ց
AQ∗

−µ
ց
AQ∗

]

+
[

1−ν
ր
AQ∗

−µ
ր
AQ∗

]

2
= E(

(

AQ∗
)C

)

(Q3)   E
(

AQ∗)− E
(

BQ∗
)

=  1n
∑n

i=1

[

1−µ
ց
AQ∗−ν

ց
AQ∗

]

+
[

1−µ
ր
AQ∗−ν

ր
AQ∗

]

−
[

1−µ
ց
BQ∗−ν

ց
BQ∗

]

+
[

1−µ
ր
BQ∗−ν

ր
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]

2
=  

1
n

∑n
i=1

[

(µ
ց
BQ∗−µ

ց
AQ∗ )+(ν

ց
BQ∗−ν

ց
AQ∗ )

]

+
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µ
ր
BQ∗−µ

ր
AQ∗

)

+(ν
ր
BQ∗−ν

ր
AQ∗ )

]

2
 . According to this equation, we 

k n o w  t h a t  t h e  v a l u e  o f  E
(

AQ∗)− E
(

BQ∗
)

 d e p e n d s  o n 
[

(µ
ց
BQ∗ − µ

ց
AQ∗)+ (ν

ց
BQ∗ − ν

ց
AQ∗)

]

+
[(

µ
ր
BQ∗ − µ

ր
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)
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ր
BQ∗ − ν

ր
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]

 .  W h e n 

µBQ∗(xi) ≥ µAQ∗(xi) ≥ [ q
√
k,

q
√
k]  a n d  νBQ∗(xi) ≥ νAQ∗(xi) ≥ [ q

√
k,

q
√
k]  ,  t h e n 

[

(µ
ց
BQ∗ − µ

ց
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ց
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ց
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]

+
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µ
ր
BQ∗ − µ

ր
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)
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ր
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ր
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]

≥ 0 . It means that 
E
(

AQ∗)− E
(

BQ∗
)

≥ 0.

It can be seen that the proposed new fuzzy entropy satisfies the condition that can represent the fuzziness 
of any IVq-ROFSs.

The traditional entropy weight calculation method generally uses Shannon entropy to calculate entropy 
values, a quantitative measure of information. However, fuzzy entropy is used for weight calculation instead 
of Shannon entropy to fit the fuzzy idea. Fuzzy entropy is based on fuzzy theory and expresses the quantitative 
fuzzy degree of a certain fuzzy element. Based on the fuzzy entropy formula proposed above and the traditional 
entropy weight method, an IVq-ROFS-based attribute weight calculation method is proposed.

IVq-ROFS-based attribute weight calculation method is introduced as follow:
Calculation of the corresponding attribute based on Eq. (16) is given by:

Further normalization is performed to obtain the final normalized attribute weights:

A new CoCoSo method based on IVq‑ROFS
The core of the fuzzy MAGDM method is the ranking calculation of alternatives, and the CoCoSo method is 
optimized by the multi-source aggregation method and IVq-ROFS-based attribute weight calculation method 
proposed in “Multi-source Aggregation method on IVq-ROFSs” and “A new fuzzy entropy with parameter and 
related weight calculation method on IVq-ROFS” sections. The original CoCoSo method has some defects. We 
find that because there is no normalization in the calculation of the eclectic score S2i  , so that S2i ≥ 2 , at the same 
time for the same set of data 0 ≤ S1i ≤ 1 , 0 ≤ S3i ≤ 1 , so in the final the ranking of alternatives will lead to the 
ranking results dominated by S2i  . To apply the new CoCoSo method to the IVq-ROFS environment, we calculate 

(16)E
(

AQ∗) = 1
n

∑n
i=1

[

1−µ
ց
AQ∗−ν

ց
AQ∗

]

+
[

1−µ
ր
AQ∗−ν

ր
AQ∗

]

2
,

(17)ωj =
1−E

(AQ∗)
j

n−
∑n

i=1 E
(AQ∗)
i

(18)ωj =
ωj

∑j
i=1 ωi
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the fuzzy entropy value of each fuzzy element and use the entropy value as the basic element of the decision 
matrix for subsequent decisions. Based on the IVq-ROFS-fuzzy entropy weight method and the improvement 
of the hybrid score operator of three dependent such scores, we propose a new CoCoSo method in this section.

Step 1 Standardization. The decision matrix is constructed using the new fuzzy entropy Eq. (16) for each 
attribute, while making k = 1

3
 in Eq. (16), using normalized fuzzy entropy values for benefit attributes and nor-

malized fuzzy entropy complements for cost attributes, the standardization process is as follows.

Step 2 Calculate the attribute weights. Use the Eq. (16) to calculate the weight of the sum of the original 
attribute fuzzy values for each attribute. The attribute fuzzy entropy is normalized by Eq. (21).

From the above equation, the normalized fuzzy entropy of each attribute is obtained, and the attribute weights 
are calculated using Eqs. (22, 18).

Step 3 Calculate the arithmetic weighted sum and arithmetic weighted product as shown as Eqs. (23, 24) for 
each alternative.

Step 4 Generate three dependent compromise scores as shown as Eq. (25) for each alternative.

where ε is an equilibrium parameter in the compromise scores to enhance the universality of the proposed 
method.

Step 5 Based on the above three dependent compromise scores, the final score of each alternative is calculated 
using the improved compromise score function as shown as Eq. (26).

The results of the alternative ranking are in descending order according to the final performance index, which 
can get more accurate ranking results. The process of proposed method is shown as Fig. 2.

Case Study: Sepsis diagnosis
In this section, the applicability of the proposed improved CoCoSo method will be demonstrated in terms of 
Sepsis diagnosis.

The description of Sepsis diagnosis
Sepsis65,66 is a vicious condition with a high morbidity and mortality rate. Early recognition and treatment of 
sepsis is the key to reducing sepsis mortality, which has been high in morbidity and mortality over the past 
decades. Early and accurate morbidity prediction can lead to more aggressive and effective treatment of sepsis, 
thereby reducing the incidence of multiorgan dysfunction and significantly reducing mortality. Early recognition 
can be complex due to the complexity of the disease in the clinical setting. Typically, sepsis can be judged based 
on  attributes67–71 such as temperature, pulse, pain level, SaO2, blood pressure, level of consciousness, capillary 
refill time, urine output, and degree of ScvO2/base deficiency, as shown in Table 5. The pain level and level of 
consciousness are subjective attributes, for initial diagnosis in case of suspected infection. To ensure data integrity 
while considering expert ability, we will use sepsis feature datasets from experts  P1 and  P2.

(19)

{
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1
3

(
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1
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The decision process of Sepsis diagnosis
The effectiveness of the method proposed in this paper for early sepsis diagnosis is demonstrated below. Simula-
tion dataset is used for the research data in this paper. These datasets are shown in Tables 6 and 7.

Equations (13) and (15) are used for  X1,  X2 to obtain Tables 8, 9.
The processing steps of proposed improved CoCoSo method are as follows:
Step 1 Firstly, IVq-ROFSs  X1 and  X2 obtained from  P1 and  P2 for one patient are aggregated as  X3 and  X4 which 

are obtained by the two proposed aggregation methods, as shown in Tables 8 and 9, respectively.
Step 2 From Table 5, we know that  C1,  C4,  C6,  C7,  C8 are benefit criteria,  C2,  C3,  C5,  C9 are cost criteria. So 

according to Eqs. (19) and (20), the aggregated set of patient attributes is normalized. Here we take  X3 obtained 
by inclusive MsAIVq-ROFS as an example, we can get the normalized decision matrix as Table 10.

Step 3 Calculate the objective weights of the attributes by using the Eqs. (21–22), and the corresponding 
weights of each attribute are shown as the following Table 11.

Step 4 According to the compromise calculation steps of the IVq-ROFS-CoCoSo method, the ranking algo-
rithm of the alternatives is carried out sequentially, and the arithmetic weighted sum and arithmetic weighted 
product of each alternative are first calculated by the Eqs. (23, 24) as shown as Table 12.

Next, the values of the three types of compromise functions are calculated for each alternative by the Eq. (25) 
as shown as Table 13, where ε = 0.5.

Finally, the alternatives are ranked by the improved score function Eq. (26). The result is as shown as Table 14.
Similar to the above process, the final scores of the inclusive MsAIVq-ROFS based on  X1,  X2 and the ranking 

results of the alternatives are shown in Table 15.

Figure 2.  The process of proposed method.

Table 5.  Description of attributes.

Attributes Description

C1 Temperature

C2 Pulse

C3 Pain level

C4 SaO2

C5 Blood pressure

C6 Level of consciousness

C7 Capillary refill time

C8 Urine output

C9 Degree of ScvO2/base deficiency
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Table 6.  Sepsis characteristics on IVq-ROFS  X1 by Expert  P1.

A1 A2 A3 A4 A5 A6

C1 <(0.2, 0.4), (0.5, 0.6)> <(0.1, 0.2), (0.6, 0.7)> <(0.1, 0.2), (0.6, 0.8)> <(0.4, 0.6), (0.2, 0.4)> <(0.2, 0.6), (0.7, 0.8)> <(0.1, 0.4), (0.7, 
0.8)>

C2 <(0.2, 0.3), (0.4, 0.5)> <(0.1, 0.3), (0.2, 0.6)> <(0.1, 0.2), (0.1, 0.7)> <(0.1, 0.2), (0.4, 0.5)> <(0.4, 0.8), (0.1, 0.2)> <(0.1, 0.4), (0.7, 
0.8)>

C3 <(0.3, 0.4), (0.5, 0.8)> <(0.2, 0.5), (0.5, 0.6)> <(0.3, 0.6), (0.6, 0.7)> <(0.2, 0.3), (0.5, 0.6)> <(0.1.0.5), (0.4, 0.7)> <(0.3, 0.4), (0.65, 
0.7)>

C4 <(0.5, 0.7), (0.1, 0.2)> <(0.4, 0.7), (0.1, 0.3)> <(0.5, 0.7), (0.1, 0.4)> <(0.2, 0.3), (0.1, 0.2)> <(0.4, 0.6), (0.5, 0.8)> <(0.2, 0.3), (0.6, 
0.9)>

C5 <(0.3, 0.4), (0.4, 0.6)> <(0.1, 0.4), (0.4, 0.6)> <(0.1, 0.2), (0.3, 0.7)> <(0.4, 0.6), (0.2, 0.3)> <(0.3, 0.4), (0.3, 0.4)> <(0.2, 0.6), (0.5, 
0.6)>

C6 <(0.1, 0.4), (0.3, 0.6)> <(0.2, 0.4), (0.3, 0.6)> <(0.5, 0.6), (0.1, 0.3)> <(0.2, 0.3), (0.1, 0.2)> <(0.1, 0.4), (0.5, 0.7)> <(0.2, 0.3), (0.4, 
0.6)>

C7 <(0.2, 0.8), (0.1, 0.2)> <(0.3, 0.7), (0.2, 0.3)> <(0.6, 0.8), (0.1, 0.3)> <(0.7, 0.8), (0.3, 0.4)> <(0.3, 0.4), (0.5, 0.8)> <(0.1, 0.2), (0.35, 
0.4)>

C8 <(0.4, 0.7), (0.1, 0.3)> <(0.2, 0.6), (0.2, 0.4)> <(0.1, 0.8), (0.2, 0.3)> <(0.5, 0.7), (0.3, 0.5)> <(0.3, 0.4), (0.5, 0.6)> <(0.1, 0.2), (0.4, 
0.5)>

C9 <(0.2, 0.7), (0.2, 0.3)> <(0.4, 0.7), (0.1, 0.3)> <(0.6, 0.8), (0.2, 0.3)> <(0.1, 0.3), (0.5, 0.6)> <(0.5, 0.6), (0.7, 0.8)> <(0.4, 0.5), (0.55, 
0.6)>

Table 7.  Sepsis characteristics on IVq-ROFS  X2 by Expert  P2.

A1 A2 A3 A4 A5 A6

C1 <(0.3, 0.4), (0.5, 0.6)> <(0.1, 0.3), (0.5, 0.7)> <(0.2, 0.3), (0.3, 0.4)> <(0.3, 0.5), (0.4, 0.5)> <(0.4, 0.6), (0.7, 0.8)> <(0.3, 0.4), (0.5, 
0.6)>

C2 <(0.1, 0.3), (0.4, 0.5)> <(0.1, 0.2, (0.4, 0.6)> <(0.1, 0.3), (0.1, 0.5)> <(0.3, 0.4), (0.2, 0.3)> <(0.6, 0.7), (0.3, 0.4)> <(0.1, 0.3), (0.5, 
0.7)>

C3 <(0.4, 0.5), (0.5, 0.8)> <(0.3, 0.5), (0.4, 0.5)> <(0.5, 0.6), (0.6, 0.7)> <(0.1, 0.2), (0.4, 0.6)> <(0.3, 0.7), (0.4, 0.5)> <(0.5, 0.6), (0.65, 
0.7)>

C4 <(0.6, 0.7), (0.1, 0.2)> <(0.6, 0.7), (0.1, 0.4)> <(0.3, 0.4), (0.2, 0.4)> <(0.2, 0.4), (0.4, 0.6)> <(0.2, 0.6), (0.5, 0.7)> <(0.4, 0.5), (0.5, 
0.7)>

C5 <(0.2, 0.4), (0.5, 0.6)> <(0.2, 0.4), (0.2, 0.6)> <(0.2, 0.3), (0.3, 0.7)> <(0.4, 0.6), (0.2, 0.3)> <(0.7, 0.8), (0.3, 0.4)> <(0.4, 0.6), (0.3, 
0.4)>

C6 <(0.2, 0.3), (0.1, 0.6)> <(0.3, 0.4), (0.2, 0.6)> <(0.3, 0.6), (0.1, 0.3)> <(0.1, 0.3), (0.6, 0.7)> <(0.1, 0.2), (0.7, 0.9)> <(0.3, 0.5), (0.6, 
0.7)>

C7 <(0.1, 0.8), (0.2, 0.4)> <(0.5, 0.7), (0.4, 0.5)> <(0.6, 0.8), (0.1, 0.3)> <(0.5, 0.6), (0.3, 0.4)> <(0.2, 0.7), (0.3, 0.7)> <(0.1, 0.2), (0.35, 
0.4)>

C8 <(0.4, 0.6), (0.2, 0.3)> <(0.5, 0.6), (0.1, 0.4)> <(0.2, 0.5), (0.2, 0.3)> <(0.5, 0.6), (0.1, 0.2)> <(0.1, 0.3), (0.6, 0.7)> <(0.5, 0.6), (0.5, 
0.6)>

C9 <(0.3, 0.7), (0.1, 0.3)> <(0.4, 0.5), (0.1, 0.2)> <(0.6, 0.8), (0.2, 0.3)> <(0.1, 0.2), (0.7, 0.8)> <(0.4, 0.5), (0.6, 0.7)> <(0.6, 0.7), (0.55, 
0.6)>

Table 8.  Compromised MsAIVq-ROFS  X3 based on IVq-ROFS  X1,  X2.

A1 A2 A3 A4 A5 A6

C1 <(0.25, 0.4), (0.5, 0.6)> <(0.1, 0.25), (0.55, 0.7)> <(0.15, 0.25), (0.45, 0.6)> <(0.35, 0.55), (0.3, 0.45)> <(0.3, 0.6), (0.7, 0.8)> <(0.2, 0.4), (0.6, 
0.7)>

C2 <(0.15, 0.3), (0.4, 0.5)> <(0.1, 0.25), (0.3, 0.6)> <(0.1, 0.25), (0.1, 0.6)> <(0.2, 0.3), (0.3, 0.4)> <(0.5, 0.75), (0.2, 0.3)> <(0.1, 0.35), (0.6, 
0.75)>

C3 <(0.35, 0.45), (0.5, 0.8)> <(0.2, 0.5), (0.45, 0.55)> <(0.4, 0.6), (0.6, 0.7)> <(0.15, 0.25), (0.45, 0.6)> <(0.2, 0.6), (0.4, 0.6)> <(0.4, 0.5), (0.65, 
0.7)>

C4 <(0.55, 0.7), (0.1, 0.2)> <(0.5, 0.7), (0.1, 0.35)> <(0.4, 0.55), (0.15, 0.4)> <(0.2, 0.35), (0.25, 0.4)> <(0.3, 0.6), (0.5, 0.75)> <(0.3, 0.4), (0.55, 
0.8)>

C5 <(0.25, 0.4), (0.45, 0.6)> <(0.15, 0.4), (0.3, 0.6)> <(0.15, 0.25), (0.3, 0.7)> <(0.4, 0.6), (0.2, 0.3)> <(0.5, 0.6), (0.3, 0.4)> <(0.3, 0.6), (0.4, 
0.5)>

C6 <(0.15, 0.35), (0.2, 0.6)> <(0.25, 0.4), (0.25, 0.6)> <(0.4, 0.6), (0.1, 0.3)> <(0.15, 0.3), (0.35, 0.45)> <(0.1, 0.3), (0.6, 0.8)> <(0.25, 0.4), (0.5, 
0.65)>

C7 <(0.15, 0.8), (0.15, 0.3)> <(0.4, 0.7), (0.3, 0.4)> <(0.6, 0.8), (0.1, 0.3)> <(0.6, 0.7), (0.3, 0.4)> <(0.25, 0.55), (0.4, 0.75)> <(0.1, 0.2), (0.35, 
0.4)>

C8 <(0.4, 0.65), (0.15, 0.3)> <(0.35, 0.6), (0.15, 0.4)> <(0.15, 0.65), (0.2, 0.3)> <(0.5, 0.65), (0.2, 0.35)> <(0.2, 0.35), (0.55, 0.65)> <(0.3, 0.4), (0.45, 
0.6)>

C9 <(0.25, 0.7), (0.15, 0.3)> <(0.4, 0.6), (0.1, 0.25)> <(0.6, 0.8), (0.2, 0.3)> <(0.1, 0.25), (0.6, 0.7)> <(0.45, 0.55), (0.65, 0.75)> <(0.5, 0.6), (0.55, 
0.6)>
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From the ranking results obtained by the proposed method for the compromised MsAIVq-ROFS and the 
inclusive MsAIVq-ROFS based on two identical IVq-ROFSs, it can be seen that the two different multi-source 
aggregation strategies can give the decision maker an optimistic or pessimistic opinion on the decision.

Sensitivity analysis and comparative analysis
In this section, we first make sensitivity analysis. Then we made the comparative analysis with other methods to 
verify the feasibility of our method. Finally, we describe the merits of our method.

Table 9.  Inclusive MsAIVq-ROFS  X4 based on IVq-ROFSs  X1,  X2.

A1 A2 A3 A4 A5 A6

C1 <(0.2, 0.4), (0.5, 0.6)> <(0.1, 0.3), (0.5, 0.7)> <(0.1, 0.3), (0.3, 0.8)> <(0.3, 0.6), (0.2, 0.5)> <(0.2, 0.6), (0.7, 0.8)> <(0.1, 0.4), (0.5, 
0.8)>

C2 <(0.1, 0.3), (0.4, 0.5)> <(0.1, 0.3), (0.2, 0.6)> <(0.1, 0.3), (0.1, 0.7)> <(0.1, 0.4), (0.2, 0.5)> <(0.4, 0.8), (0.1, 0.4)> <(0.1, 0.4), (0.5, 
0.8)>

C3 <(0.3, 0.5), (0.5, 0.8)> <(0.2, 0.5), (0.4, 0.6)> <(0.3, 0.6), (0.6, 0.7)> <(0.1, 0.3), (0.4, 0.6)> <(0.1, 0.7), (0.4, 0.7)> <(0.3, 0.6), (0.65, 
0.7)>

C4 <(0.5, 0.7), (0.1, 0.2)> <(0.4, 0.7), (0.1, 0.4)> <(0.3, 0.7), (0.1, 0.4)> <(0.2, 0.4), (0.1, 0.6)> <(0.2, 0.6), (0.5, 0.8)> <(0.2, 0.5), (0.5, 
0.8)>

C5 <(0.2, 0.4), (0.4, 0.6)> <(0.1, 0.4), (0.2, 0.6)> <(0.1, 0.3), (0.3, 0.7)> <(0.4, 0.6), (0.2, 0.3)> <(0.3, 0.8), (0.3, 0.4)> <(0.2, 0.6), (0.3, 
0.6)>

C6 <(0.1, 0.4), (0.1, 0.6)> <(0.2, 0.4), (0.2, 0.6)> <(0.3, 0.6), (0.1, 0.3)> <(0.1, 0.3), (0.1, 0.7)> <(0.1, 0.4), (0.5, 0.9)> <(0.2, 0.5), (0.4, 
0.7)>

C7 <(0.1, 0.8), (0.1, 0.4)> <(0.3, 0.7), (0.2, 0.5)> <(0.6, 0.8), (0.1, 0.3)> <(0.5, 0.8), (0.3, 0.4)> <(0.2, 0.7), (0.3, 0.7)> <(0.1, 0.2), (0.35, 
0.4)>

C8 <(0.4, 0.7), (0.1, 0.3)> <(0.2, 0.6), (0.1, 0.4)> <(0.1, 0.8), (0.2, 0.3)> <(0.5, 0.7), (0.1, 0.5)> <(0.1, 0.4), (0.5, 0.7)> <(0.1, 0.6), (0.4, 
0.6)>

C9 <(0.2, 0.7), (0.1, 0.3)> <(0.4, 0.7), (0.1, 0.3)> <(0.6, 0.8), (0.2, 0.3)> <(0.1, 0.3), (0.5, 0.8)> <(0.4, 0.6), (0.6, 0.8)> <(0.4, 0.7), (0.55, 
0.6)>

Table 10.  The normalized decision matrix based on inclusive MsAIVq-ROFS.

A1 A2 A3 A4 A5 A6

C1 0.182420 0.153717 0.159079 0.174640 0.159815 0.1703290

C2 0.155580 0.165814 0.181164 0.182923 0.162936 0.1515831

C3 0.214251 0.157638 0.112250 0.216447 0.152269 0.1471450

C4 0.160550 0.164578 0.176102 0.141195 0.190311 0.1672634

C5 0.145770 0.182718 0.237836 0.178478 0.127599 0.1275994

C6 0.160046 0.173863 0.170409 0.152562 0.151986 0.1911341

C7 0.120456 0.182259 0.159961 0.203587 0.188439 0.1452982

C8 0.154684 0.167102 0.138998 0.172985 0.179847 0.1863834

C9 0.241146 0.195087 0.213716 0.190993 0.117912 0.0411464

Table 11.  Objective weighting of attributes.

Attributes Weights

C1 0.11373375

C2 0.10907751

C3 0.10671905

C4 0.11856914

C5 0.10717358

C6 0.11235538

C7 0.11573375

C8 0.11367079

C9 0.10480883
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Sensitivity analysis
This section focuses on the sensitivity analysis of the two parameters of the proposed method. The first parameter 
is the k in the IVq-ROFS-based attribute weight calculation method Eq. (21), and the second parameter is the 
equilibrium parameter ε in the Eq. (25). So, based on the inclusive MsAIVq-ROFS in the previous section data, 
the sensitivity analysis is performed for the two parameters set in increments of 0.1 from 0. The results obtained 
from the analysis are shown below in Fig. 3.

The figure shows that for different values of k, the balance parameter does not affect the ranking for any value. 
However, different values of k will have a particular impact on the difficulty of ranking the alternatives. It can 
be clearly seen in the above figure that when k = 1, the gap between the scores of  A1,  A2 and  A3 and between the 
scores of  A4 and  A5 is not clear. For other values of k, alternatives can be ranked more clearly.

Comparison analysis with Other MAGDM
Based on Table 8 in “The decision process of Sepsis diagnosis” section, we rank the alternatives using the tradi-
tional CoCoSo  method58, the extended WASPAS method proposed  by56, the improved PDM method proposed 
 in57, and the COPRAS method proposed  in52. After using the weights obtained from the weighting method 
proposed in this paper, the process of the rest of the steps is basically the same, and the final ranking of the 
alternatives is calculated. The calculations results are shown as Table 16 and Fig. 4 below.

From the Table 16 and Fig. 4, it can be seen that this paper’s method can obtain consistent optimal solutions 
with other methods in the same data set, and the ranking of alternatives are almost the same, which indicates 
the correctness of this paper’s method.

Advantages analysis
In this section, we compare the proposed method with the existing methods to discuss the advantages of our 
method.

Table 12.  Arithmetic weighted sum and arithmetic weighted product of each alternative.

Sωi Mωi

A1 0.17002150 7.37434996

A2 0.17155811 7.39336800

A3 0.17206130 7.38270240

A4 0.17916780 7.42561249

A5 0.16012616 7.32930866

A6 0.14890692 7.22983220

Table 13.  The values of the three types of compromise functions.

S
1

i S
2

i S
3

i

A1 0.167143782 2.161786281 0.992056466

A2 0.167599165 2.174736032 0.994759325

A3 0.167374019 2.176640035 0.993423006

A4 0.168482125 2.230299637 1

A5 0.165926673 2.089103153 0.984832504

A6 0.163474236 2 0.970276436

Table 14.  Score values and sort results based on compromised MsAIVq-ROFS.

A1 A2 A3 A4 A5 A6 Ranking of the alternatives

Score 1.670855 1.674434 1.673780 1.685323 1.655935 1.633128 A4 > A2 > A3 > A1 > A5 > A6

Table 15.  Score values and sort results based on inclusive MsAIVq-ROFS.

A1 A2 A3 A4 A5 A6 Ranking of the alternatives

Score 1.100536 1.110470 1.085934 1.008798 1.001094 0.961254 A2 > A1 > A3 > A5 > A4 > A6
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(1) Aggregation method

In this paper, we propose two new multi-source aggregation methods in a more straightforward form as a 
pre-data processing method for MAGDM. The method  in56 used the additive mean of fuzzy numbers to aggre-
gate fuzzy data, and  in55 the Archimedean Muirhead mean operators were used to aggregate fuzzy data. In other 
studies, the complex aggregation  operators62–64 were applied, which are complicated to implement and not easy 

Figure 3.  Sensitivity analysis for parameter changes.
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to understand. Compared with them, the proposed aggregation method is easier to understand and implement, 
and the proposed aggregation method can be extended into most of MAGDM.

(2) Weight Calculation method.

A novel fuzzy entropy with a parameter based on IVq-ROFS, which is more flexible and versatile due to the 
settable parameter, is proposed. The entropy weight method is a known proven weight calculation method with 
excellent performance, and fuzzy entropy with a parameter is combined with the traditional entropy weight 
method, and can be applied to IVq-ROFS. Scholars have yet to apply the entropy weight method to IVq-ROFS in 
previous studies, and this paper fills the gap in this area. Compared with the method  in55,56,58, the more objective 
attribute weights will be obtained in the method proposed.

(3) Enhanced compromise score in CoCoSo method.

In the original CoCoSo method, there is an unavoidable problem, as shown in Eq. (9) and (10), in which 
0 ≤ S1i ≤ 1 , 0 ≤ S3i ≤ 1 , S2i ≥ 2 , the value domains of the three dependent compromise scores are different, 
directly affecting the final score calculation. It is necessary to convert three dependent compromise scores to 
a unified scale for the CoCoSo method. So this paper uses the logarithmic function to limit the value domain 
of S2i  to [0, 1] which can eliminate dimensional differences among three dependent compromise scores of the 
existing CoCoSo methods.

(4) Higher versatility and scalability.

The proposed approach has excellent versatility and scalability, which is not only limited to the IVq-ROFS, 
but also applies to IVIFS, IVPFS and IVFFS.

We summarize the merits of our method in Table 17.

Conclusion
In this study, a novel MAGDM method based on IVq-ROFS is proposed. Firstly, a new multi-source IVq-ROFS 
aggregation method is proposed, which is simpler and easier to implement than the existing complex aggregation 
methods. Secondly, a parametric fuzzy entropy based on IVq-ROFS, which is more flexible and universal than 

Table 16.  Results analysis with other methods.

A1 A2 A3 A4 A5 A6 Ranking of the alternatives

Proposed method 0.921517 0.938470 0.932458 0.979045 0.867999 0.776336 A4 > A2 > A3 > A1 > A5 > A6

Original CoCoSo  method58 1.276959 1.303964 1.294251 1.369873 1.194671 1.061908 A4 > A2 > A3 > A1 > A5 > A6

WASPAS method  in56 0.342676 0.343585 0.344032 0.355813 0.314802 0.275809 A4 > A3 > A2 > A1 > A5 > A6

PDM method  in57 0.243821 0.255627 0.252879 0.268796 0.235792 0.212178 A4 > A2 > A3 > A1 > A5 > A6

COPRAS method  in52 0.843826 0.883425 0.982574 1.286425 0.683835 0.528759 A4 > A3 > A2 > A1 > A5 > A6

Figure 4.  Results analysis with other methods.
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the traditional fuzzy entropy, is introduced. Based on the fuzzy entropy, we propose a fuzzy entropy weighting 
method to determine the objective weights of attributes. After that, we improve the defects of the original CoCoSo 
method by restricting the three compromise scores to the same range. It solves the problem of dimensional dif-
ferences in the original one. Finally, a novel improved CoCoSo method based on IVq-ROFS is proposed. It is 
created based on these theoretical innovations and applied to sepsis case analysis.

Among the main implications of this study for sepsis diagnosis are: first, because early sepsis is difficult to be 
diagnosed exactly by doctors, this problem can be solved by using fuzzy theory. Secondly, CoCoSo, as a multi-
attribute decision model, can synthesize the diagnoses of multiple experts to reduce the problem of misdiagnosis 
in the early stage of sepsis. Finally, doctors nowadays use precise instruments for medical diagnosis, however, the 
early symptoms of sepsis make doctors uncertain even with precise instruments, CoCoSo in a fuzzy environment 
allows multiple doctors to consider the summed assessment of multiple experts from a fuzzy point of view in the 
early stages of sepsis, which helps to minimize the risk of disease for the patient.

Some outstanding issues require additional investigation in future research. The MAGDM method in this 
study is proposed based on IVq-ROFS and does not consider hesitant fuzzy information and complex fuzzy infor-
mation. In later work, more diverse fuzzy information will be considered. The application of the study focuses 
on sepsis diagnosis, and future work will try to apply it to psychological diagnosis or supply chain location.

Data availability
The datasets generated and/or analyzed during the current study are available to gain in this paper.
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