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Design and development of PI 
controller for DFIG grid integration 
using neural tuning method 
ensembled with dense plexus 
terminals
R. R. Hete 1, Tarun Shrivastava 2, Ritesh Dash 3, L. Anupallavi 3, Misba Fathima 3, 
K. Jyotheeswara Reddy 3, C. Dhanamjayalu 4*, Faruq Mohammad 5 & Baseem Khan 6*

In a DFIG grid interconnected system, the control of real and reactive power relies on various factors. 
This paper presents an approach to regulate the flow of real and reactive power using a Neural Tuning 
Machine (NTM) based on a recurrent neural network. The focus is on controlling the flow of reactive 
power from the rotor-side converter, which is proportional to the grid-side controller through a 
coupling voltage. The proposed NTM method leverages neural networks to fine-tune the parameters 
of the PI controller, optimizing performance for DFIG grid integration. By integrating dense plexus 
terminals, also known as dense connections, within the neural network, the control system achieves 
enhanced adaptability, robustness, and nonlinear dynamics, addressing the challenges of the grid. 
Grid control actions are based on the voltage profile at different bus locations, thereby regulating 
voltage. This article meticulously examines the analysis in terms of DFIG configuration and highlights 
the advantages of the neural tuning machine in controlling inner current loop parameters compared 
to conventional PI controllers. To demonstrate the robustness of the control algorithm, a MATLAB 
Simulink model is designed, and validation is conducted with three different benchmarking models. 
All calculations and results presented in the article strictly adhere to IEEE and IEC standards. This 
research contributes to advancing control methodologies for DFIG grid integration and lays the 
groundwork for further exploration of neural tuning methods in power system control.

The increase in population and global energy demand has drawn the attention of many energy practitioners to 
produce clean and green energy to meet the peak demand. Sustainable development of clean energy resources 
not only creates a friendly environment for every individual but also helps to achieve global energy demand. In 
this regard distributed energy resources such as Solar PV, Wind mill and Geothermal energy play a very vital 
role. However, extracting power from wind energy systems is gaining more popularity among all other types 
of resources. As of today, the total wind energy capacity of India is 43.7 GW. This shows that there is a huge 
potential for wind energy, however, the popularity in standard is limited because of the complexity of holding 
control and management1.

The DFIG control action generally consists of two interdependent control actions such as the Rotor side con-
troller (RSC) and Grid side controller (GSC). The stability operation requires a thorough balance between RSC 
and GSC2. Different control actions consisting of two independent loops, that is Inner current control loop and 
Outer voltage control loop based on conventional PI control, Fuzzy PI controller and ANFIS PI controller have 
been studied in the literature. Some of the modern PI control techniques to control the reactive power based on 
direct power control, fractional order control and sector field scale control have been proposed in the literature. 
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The power quality issues consisting of the classical PI technique suffer from large torque with current ripple 
and variable switching frequency3,4. All these things will have a negative impact on the switches of converter 
which generally incurs excess switching losses in GSC and RSC. The change in rotor flux current leads to the 
development of Space vector modulation (SVM) has been developed. One of the disadvantages of Space vector 
modulation is a small change in DC link voltage which may affect the performance of the voltage matrix in SVM. 
SVM also increases the switching loss. The change in DC link voltage because of changes in voltage across the 
coupling capacitor is a common parameter related to variations in wind velocity5.

Fractional order (FO) controller-based rotor side converter technology has played a vital role in tuning the 
KP and KI values for an FO-PI controller6. This is because the FO-PI controller has five tuning parameters against 
two tuning parameters in a conventional PI controller. The FO controller uses the concept of personal derivatives 
with fewer parameters to optimize and evaluate the reference values for the inner current control loop. Similarly, 
the outer voltage control loop can be tuned based on the requirement of reactive power, that is to be injected into 
the grid. However, the disadvantage associated with the FO-PI controller is the generation of more harmonics 
content at the output which increases the voltage at the Point of common coupling (PCC)7.

Starter frequency control in a DFIG requires control of the speed of wind turbines which in turn depends on 
the rotor pitch angle. Controlling the rotor pitch angle is not only the parameter which effects the performance of 
DFIG, some other parameters such as blade angle, hub, gear teeth ratio, frequency of the grid to which the DFIG 
is connected and the output voltage. To integrate all these parameters in the PI tuning system Fuzzy Logic Con-
troller (FLC) has been investigated. The advantage of FLC is that it does not require the mechanical parameters 
of the DFIG to decide the tuning parameters of the PI controller. The FLC can handle different power quality 
disturbances such as variation in frequency, voltage ride-through capability, fault ride-through capability and 
thereby making the system more user-friendly by integrating into the conventional grid system8,9.

The Authors in10, have proposed a Hidden Layer Recurrent Neural Network (HLRNN) for designing and 
developing the controller based on PI-Control scheme. They have applied the Indirect Vector Control scheme 
to implement the model and its associated logic. The proposed model not only enhances the self-adaptability of 
the PI controller but has also shown a track record of improved response time, minimization of static error and 
overshoot in the system performance. Although the model has several advantages but becomes sluggish response 
to variation in wind speed conditions. In11 the authors proposed an integral backstepping nonlinear controller 
for controlling three parameters such as grid level exchange power and bus capacitor voltage. The technique 
utilizes the Lyapunov function stability for backstepping control law. The model has been tested using a matlab 
Simulink model. Maximum power point strategies in an explicit manner have been presented. However, the 
stability concern over other models particularly under grid disturbance model has not been presented.

Mathematical modeling of DFIG wind turbine using PR controller has been proposed by author12. The 
proposed PR controller has been tested under grid harmonics and its correlation to generator torque. The PR 
controller is the major factor in eliminating the negative sequence from the harmonic component of rotor part. 
The proposed model has been investigated through experimental setup. In the paper13 the authors have proposed 
about the coupling of DFIG-WT with the grid and have investigated the performance under voltage imbalance 
conditions. The author is more concerned about the environmental impact and corresponding utilization of the 
wind energy system. The proposed Naslin polynomial technique for PI controller gains in removing the nega-
tive sequence component from the rotor current has been demonstrated. Although the proposed controller is 
robust in removing the negative sequence component from the rotor but its application becomes invariant to 
changes in different wind velocity and wind speed. Again, discussion about the performance of DFIG during 
grid imbalance conditions has not been investigated.

The regulation of active and reactive power with unit power factor using Back stepping control for wind 
power plant with adaptive weighted PSO has been investigated by authors14. The model presents a comparative 
analysis between Back stepping and PI control strategies. The robustness and fast response analysis has been 
carried out by using matlab Simulink model. The adaptive weighted PSO has shown best performance under 
certain conditions. However, the complexity increases with increase in the generator parameters and varying 
wind speed configurations.

Adaptive Neural Fuzzy Inference System (ANFIS) is superior as compared to the fuzzy-enabled system, it is 
because the ANFIS uses IF-THEN rules to determine the adaptability of the non-linear cost function involved 
in approximating the gain parameters. The membership function which determines the controllability of the 
tuning parameters is dynamic instead of static as in FLC15.

Vector control ANFIS model tp tune the KP and KI of RSC, which have has been investigated in the literature. 
The coupling voltage between GSC and RSC has been taken into consideration and referenced for deciding 
the vector. It is understood that during the fault condition, there will be a small to large fluctuation, for both 
voltages will occur at the coupling capacitor. These in turn change the decision of KP and KI , even if there is an 
incipient fault16–18.

Adaptive Neural Network (ANN) based PI controller has been investigated by many researchers. The back-
propagation algorithm has been used to decide the weight function of each neural network. The efficiency of the 
ANN-based PI controller depends on the training of each neuron and the number of hidden layers present in 
the system19. The complexity of the ANN-PI controller can be reduced with a reduction in the number of hidden 
layers and cross co-relation. In most of the literature study, it is observed that authors are limited to a maximum 
of five hidden layers. The transient analysis of ANN-enabled PI controller has reported better performance dur-
ing grid synchronization and under faulty conditions. The disadvantage associated with ANN fuzzy or ANFIS 
model is that there is no impact of past data on tuning the performance of gain parameters under dynamic sliding 
mode. To avoid all such conditions, researchers are focusing more on the real-time estimation of parameters with 
changing loading conditions at the output of DFIG grid interconnected system20. In this regard, machine learning 
approaches are taking initiation in configuring the time series-based pattern of different loading configurations 
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and the behaviour of gain sequence. These two parameters when combined, the evaluation of different gain can 
be made dynamic which will act in the PI controller as and when required21.

The data for the machine learning approach can be configured either based on seasonal variation or by mak-
ing the configuration static. LSTM-enabled models have been investigated by many researchers in the past to 
showcase the effect of seasonal patterns in configuring the gain for the PI controller22. One of the disadvantages 
associated with LSTM is the requirement of a large memory set and the activation function used for the optimiza-
tion. This problem can be addressed by using a recurrent neural network-based Neural Tuning Machine (NTM). 
This method provides the advantage of both fuzzy pattern and ANN capabilities to solve the complex problem. 
The use of external memory makes it easier to reduce the computational burden on system configuration. The 
data patterns used in NTM are differentiable thereby optimizing the search engine with gradient descent23. Based 
on the pre-feasibility study it is understood that the NTM along with PI controller can provide higher efficiency 
as compared to other models such as classical PI, ANFIS-PI and ANN-PI. The objectives of the research work 
can be summarised as follows,

•	 Design and development of closed-loop inner current control loop using NTM-PI controller for Rotor Side 
Controller (RSC)

•	 Design an outer voltage control loop using ANN-based NTM and optimise the tuning parameters with 
respect to different loading configurations. Three types of loading configuration have been taken into con-
sideration, such as 100% loading, 75% loading and 50% loading pattern.

•	 Validating the proposed NTM model with the standard bench-marking model strictly adhering to IEEE 
standards.

In lieu of the above objectives, the proposed research work focuses on novel application of neural network 
ensembles for PI controller design in DFIG grid integration. It includes a collective convergence of different 
multiple neural networks based PI controller in designing the DFIG grid interconnection system, which poten-
tially increases the performance of individual network and thereby increasing the overall system performance. 
Again, the interconnection of dense plexus terminals increases the learning capabilities of the network, thereby 
providing the superior PI controller tuning characteristics over conventional PI controller. In the ongoing dis-
cussion, a detailed literature survey concerning the DFIG grid interconnection system with various controlling 
architectures has been conducted. Three notable objectives derived for the present research have been outlined 
above. The section ’DFIG Modelling’ includes the mathematical formulation of the identified problem related to 
power flow for both DFIG and inverter-based control actions. In the ’Neural Tuning Machine’ section, the NTM 
optimization procedure is discussed. The ’Bench-Marking Models Performance Evaluation’ section analyzes 
three benchmarking models used to evaluate the performance of the proposed model. The ’Result Analysis’ 
section presents the MATLAB-based modeling of the proposed NTM-controlled architecture, followed by the 
results and discussion.

DFIG modelling
The wind turbine’s output power is based on the function of three inputs such as wind velocity, power genera-
tor, wind gust and transmission and distribution. Voltage sag, voltage swell and harmonics are the other terms 
through which power quality can be evaluated. In distribution networks generally, the power quality disturbances 
are introduced by the wind generator. By the use of a direct connection of the induction generator to the grid 
system, the operation wind generation system is carried out. This is one of the simplest methods. The various 
advantages of using an induction generator are cost-effectiveness and robustness. In order to inject the real power 
into the grid, reactive power for the magnetization of the induction motor is required. At the converter terminal, 
to control the production of active power, a regulated voltage control system is required24,25.

In the induction generator, the slip and speed fluctuations are kept at minimum during normal steady-state 
conditions. In this scenario, the machine’s reactive power is minimal but to increase in the power and load will 
also increase the motor’s reactive power consumption and motor slip. The equations for stator voltage and flux 
can be written as

Also, the equations for rotor side voltage and flux are given as:

From the above two equations, the rotor and stator voltage can be written as:

In the above equation, “S” is the slip of the system. And from equation 3, active power of rotor and stator becomes,

(1)
{
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dφs
dt
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(2)
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Here, three phase line voltage can be written as:

From Eq. 5,dq component can be derived

From Eq. 6, three different challenging features can be pointed out such as decoupling item, correction factor 
and voltage compensation. Therefore, reference current control loop equation becomes

To obtain unity power factor, Iq ∗ = 0 and hence,

Power converter voltage is proportional to DC reference voltage and therefore,

Therefore, from Eqs. 6, 8 and 9, the power balance equation becomes:

Neural tuning machine
Neural Tuning machine (NTM) is a type of recurrent neural network-based optimization algorithm, however, it 
holds the advantage of neural network for pattern recognition and computational models with enough time and 
memory to solve complex problems. The adaptive behaviour of the NTM makes it different from the recurrent 
neural network in terms of real-time assessment of controller behaviour. Basically, the NTM consists of two main 
parts such as a neural network controller and an external memory bank. The memory bank serves as a reference 
to the previous state of operation and acts as a back-supporting agent for decision disbursement. The content-
based searching mechanism makes it more suitable for implementing it along with the PI controller in DFIG grid 
interconnected system, however, such space varies unconditionally because the output of DFIG greatly depends 
upon the input factors such as wind velocity, temperature and wind pressure. Therefore a complex algorithm can 
be designed for NTM by incorporating the transient behavior of the loading pattern at the grid side controller 
and the intermittent nature of the wind system through the rotor side converter.

To start the NTM procedure it is required to process all the data by aligning them within [1, 0]. In order to 
achieve this Min–Max normalization method has been applied considering Xmin as the minimum value in the 
data set and Xmax as the maximum value of the data set. The formula used for such an operation is presented 
below,

Handling the window size in NTM-based optimisation requires shorter-length data. Therefore the time series 
data for KP and KI has been cut into smaller window sizes by using the sliding window technique. This procedure 
acts as a pre-requisition to NTM modeling.

At each time interval T, the PI controller contacts the RSC and GSC to share their captured parameters from 
DFIG and grid side respectively. This initiation brings autonomy to the system by updating their individual 
memory in line with the system parameters. To avoid the instability condition during the data processing phase, 
the system uses LSTM label of work without affecting the present KP and KI value. Thus the system continuously 
learns from the parameters extracted and re-written into the memory bank of the individual controller. In this 
way, the Grid Side Controller (GSC) regulates the DC linkage voltage thereby controlling the reactive power at 
the output terminal.

The discussed Dense Plexus Terminal is a fully connected layer usually being characterized by an inter connec-
tion pattern between the neuron setup. This allows the layer for an enhanced information exchanged potentials 
leading to improved learning capability of the system and a robust controller. Several ensembles techniques like 
bagging, boosting and stacking are also there, however, the Dense Plexus Terminal provides a linear complex 
meta- learner pattern for rich information exchange.

(5)











Vag = IaRa + L dIa
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Based on the above discussion the following items have been proposed to achieve in the model.

•	 Based on the operating conditions, the data-driven methodology enables the controller to retrieve data from 
past files and adjust the controller parameters accordingly to achieve zero error during execution. This leads 
to improvements in three parameters of the control system: reduced settling time, decreased overshoot, and 
minimized steady-state error over the time series data.

•	 The proposed neural network can adapt and adjust the gain value of the PI controller in response to real-time 
demands of various power quality issues. This reduces the need for human effort in tuning the controller’s 
gain, ultimately enhancing its effectiveness.

•	 The non-linear characteristics of the wind and DFIG can be taken into consideration for designing the hyper 
parameter tuning of the controller under different wind velocity by considering the complexity of the system.

Bench‑marking models performance evaluation
DFIG grid-connected system will regulate the output voltage and frequency depending upon the available wind 
energy at the input side of the turbine. In order to achieve good quality power at the terminal of DFIG it is 
required to tune the PI controller gain parameters in such a manner that the output must follow the standard 
IEEE values without compromising the DISCOM’s guidelines for renewable grid interconnection code for wind 
energy. In this connection, the three bench-marking models have been evaluated separately with three different 
loading conditions as presented in section I.

PI controller analysis
The classical PI controller plays a vital role in designing the gain for the inner and outer control loops. The Zie-
gler–Nichols has been adopted to determine the optimal value for KP and KI . The transient analysis with step 
input has been applied to the derived transfer function for checking the robustness of the control. The detailed 
gain parameters for the inner current control loop have been presented in Table 1.

As noticed from Table 1 the proportional gain is 0.85 and that of integral gain is 5. This shows that the upper 
boundary for proportional gain will be 0.87 and that of the lower boundary is 0.81. Similarly, the integral gain is 
5. The transfer function performance (Derived from curve fitting) for rise time and peak time is 0.17 and 0.174 
ms. These times show that the system has relatively low-performance subject to sudden changes in loading 
conditions at the output of the DFIG. The delay and settling time analysis is respectively 0.021 and 0.023 ms. A 
maximum overshoot of 17.08% has been noticed which leads to an under-damped system with four oscillations 
before settling at 0.23 ms. The overshoot represents the inner current control loop will suffer from any kind of 
transient disturbance by a % of 17.08. Similarly, the response time for the inner current loop using the PI control 
technique is 6.53 ms (Sluggish response).

Table 2 represents PI controller gain for the outer voltage control loop and transfer function performance. The 
outer voltage control loop is responsible for reactive power compensation at the converter loop. As observed the 
response time is 5.80 ms as compared to a response time of 6.53 ms in Table 1. This represents the outer voltage 
control loop using the PI controller is a little bit faster in performance

Figure 1 represents the block diagram of PI controlled DFIG grid interconnected system. As noticed the 
reference speed and actual speed have been taken at the output of DFIG by using a Phase Locked Loop (PLL) for 
frequency and phase angle respectively. The rotor side controller will act on DC reference voltage by using the 
PWM converter as a derived parameter of the PI controller. The Id and Iq will be derived using Park’s Transfor-
mation to control the respective reactive and active power at the terminal of the DFIG inverter system. Both KP 
and KI were tuned using the Ziegler–Nichols method. The detailed result analysis is presented under section v.

ANFIS controller
The modified version of the PI controller using ANFIS is presented in this section. Two parameters which have 
been taken into consideration for ANFIS are Id and Iq values, generated from Park’s Transformation. The ANFIS 
model consists of three hidden layers with an IF-THEN statement using a triangular membership function. Here 
five types of membership functions such as NL, NS, ZE, PS and PL (Refer. Fig. 4b) are used. The Iq reference 

Table 1.   PI controller gain for inner current control loop and transfer function performance.

S.N. Parameter Magnitude Remarks

01 Proportional gain 0.83 [0.81 0.82] NA

02 Integral gain 5 NA

03 Rise time 0.17 ms

04 Peak time 0.174 ms

05 Delay time 0.021 ms (sluggish response)

06 Setting time 0.23 ms

07 Maximum overshoot 17.08 %

08 Repose time 6.53 ms (sluggish response)
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value is set to zero to make zero reactive power at the output of the converter. The detailed block diagram is 
shown in Fig. 2

Figure 3 represents the surface view of the co-efficient and weight function used for ANFIS PI controller. As 
observed the slope surface becomes divergent with increasing wind velocity thereby capturing the maximum 
data required for calculating the gain parameters. However, if wind velocity increases beyond 20  m/s the slope 
becomes flattened thereby restricting the maximum wind velocity.

The rule table for the ANFIS PI controller is presented in Fig. 4a. Here altogether 25 situations arise scatter-
ing over three different configurations of loading which means the features mostly satisfy the five membership 
functions in order to be approved for changing the dynamic value of KP and KI . Figure 5 represents the time 
response analysis of ANFIS PI controller using a step function. As observed the system has shown only one 
maximum peak at time 1.2 ms.

Table 2.   PI controller gain for outer voltage control loop and transfer function performance.

S.N. Parameter Magnitude Remarks

01 KP 0.87 NA

02 KI 5.2 NA

03 Rise time 0.27 ms

04 Peak time 0.281 ms

05 Delay time 0.084 ms

06 Setting time 0.33 ms

07 Maximum overshoot 19.27 %

08 Response time 5.80 ms (sluggish response)

Figure 1.   Block diagram of PI-controlled DFIG grid interconnected system.
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Figure 2.   Block diagram of ANFIS controlled DFIG grid interconnected system.

Figure 3.   Surface view of coefficient and weight function.

Figure 4.   (a) Rule table for membership function using IF-THEN statement. (b) Triangular membership 
function for ANFIS PI controller.
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Algorithm 1 Calculate KP & KI perturb ≤ 2 cycles

ANN controller
The Adaptive Neural Network (ANN) differs from ANFIS in such a manner that the weight function of each 
hidden layer will be updated automatically based on the training rate of the neural network. The backward 
sweep along with back propagation provides memory-based intelligence from the training phase starting from 
output to input.

Here the dq parameters are used to control the real and reactive components at the converter output and the 
speed of the DFIG turbine and wind velocity will be taken into consideration for generating the reference volt-
age. Based on the reference magnitude the coupling capacitor voltage between RSC and GSC will be decided. 
One of the advantages of this method is, it can track the real-time output at the DFIG converter terminal if and 
only if during the training and testing condition, the ANN algorithm must satisfy 98% of accuracy and above.

The block diagram for ANN ANN-based DFIG controller is presented at Fig. 6. As observed the control algo-
rithm is having three sub-nets, each net corresponds to the reactive power measured at the grid side converter 
(GSC). Sigmoid-based activation function has been taken into consideration for each hidden layer. The output of 

Figure 5.   Time response analysis of ANFIS PI controller using step function.

Figure 6.   Block diagram of ANN control DFIG grid interconnected system.
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the ANFIS PI controller model is given to a low pass filter (LPF) for generating successive PWM firing pulse for 
the rotor side converter (RSC), which in turn fed to a 2-line stage converter connected in between DFIG and grid.

Figure 7 represents the training and testing of Id and Iq data collected as a reference of reactive power from 
PLL. As observed at Fig. 7a the Id component has 100% of accuracy in tracking the real power and that of Fig. 7b, 
the Iq component has 87.33% of accuracy in terms of tracking change in reactive power. The model has been 
validated for the 70:30 ratio of standard statistical procedure. Figure 8 represents the ANN PI controller perfor-
mance for (a) Input to controller (b) Output of controller (c) Error rate (d) Neural network output. As observed 
the error rate up to 30 ms of time is a constant magnitude of -1.55, However after that due to a change in wind 

Figure 7.   Training and validation of ANN data for Id and Iq ref. generation, (a) Training rate 0.999, (b) Training 
rate 0.998.

Figure 8.   ANN PI controller performance for, (a) Input to the controller, (b) Output of controller, (c) Error 
rate, (d) Neural network output.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7916  | https://doi.org/10.1038/s41598-024-56904-7

www.nature.com/scientificreports/

gust the error has increased to -1.69 leading to the over-fitting of the curve. At above 30 ms of time, the error 
rate has decreased to -1.58 and is maintained here after a constant value.

Algorithm 2 Calculate KP & KI perturb ≤ 2 cycles

Simulation setup
To check the performance characteristic of the proposed algorithm a MATLAB Simulink model has been 
designed by optimally sizing the internet parameters of various models by the IEEE-1547 grid interconnection 
protocol. All the interlocking facilities required for the successful operation of DFIG under grid interconnection 
mode have been provided by the latest state-of-the-art practices for the master trip relay, zone of protection, 
IP-63 protocol for inverter grid interconnection and IEC codes.

In a DFIG grid interconnected system, the first parameters to be considered are wind turbine parameters 
along with aerial data. Table 3 represents the wind turbine parameters for MATLAB simulation. Here the air 
density range has been defined as 1.2–1.25 Kg/m3 , thus taking into consideration the effect of temperature on air. 
However, during the simulation, 1.22 has been taken into consideration. The pitch angle range is given as 0–0.1 
Degree, however, during simulation 0◦ has been taken into consideration. The radius of the wind blade is 23 mm.

After deciding the wind turbine parameters it is required to fix the parameters for DFIG. Therefore Table 4 
represents 12 numbers of different DFIG configuration parameters. The stator and rotor power are 60 and 33 KW 
respectively, with a stator voltage of 400 V or 1 pu has been taken into consideration. Due to 4 number of poles the 

Table 3.   Wind turbine parameters for MATLAB simulation.

S.N. Parameters Rating Unit

01 Air density 1.2–1.25 kg/m3

02 Pitch angle 0–0.1 °

03 Wind speed 11–17 m/s

04 Radius of swept area 23 NA

Table 4.   DFIG parameters considered for simulation in accordance with IEEE 1547.

Sr. No. Parameters Rating Unit

01 Stator pole 4 NA

02 Stator power 60 KW

03 Rotor power 33 KW

04 Stator voltage 400 (1 pu) V

05 Slip variation 0.2 NA

06 Synchronous speed 1500 RPM

07 Nominal torque 238.7 NM

08 Stator resistance 0.018 �

09 Rotor resistance 0.02 �

10 Stator inductance 0.01 H

11 Rotor inductance 0.01 H

12 Moment of inertia 18 kg m2
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synchronous speed of the setup is fixed at 1500 RPM with a nominal torque of 238.7  Nm. All types of resistance 
related to stator and rotor side are fixed below 0.02ω , similarly, all the inductance values are set below 0.01H.

Again it is required to set the interlocking arrangements for different power quality issues, the RSC and GSC 
parameters were present in Table 5. As the stator output voltage is 400 V. Therefore the DC reference voltage is 
kept at 390V and that of capacitor capacitance is set at 500µ F. The grid frequency as per the Indian Standard Code 
has been fixed by an integrator limiter circuit with a lower boundary of 49.97 to 50.03  Hz. The proportional and 
integral gain as derived by using the Ziegler–Nichols method is set to 0.82 and 4.2 respectively.

Result analysis
In the above section, a detailed simulation setup has been presented by IEEE 1547 standards. Based on the above 
discussion the optimization model for the proposed algorithm has been designed and presented below.

Figure 9 represents a flow chart for tuning of KP and KI by NTM controller (DENSE-50) using Rotor side con-
troller (RSC) and Grid side controller (GSC) parameters. Four parameters include wind speed (N), wind velocity( 
Wv ), voltage at the stator terminal (V) and temperature(GT). Similarly, three parameters from GSC have been 
recorded, including voltage(V), transformer turns ratio (TFR-TR), and the reactive power demand at the output 
of GSC. To evaluate the dq parameters for each data entered into the system a PARK’s Transformation has been 
applied to the data set to evaluate the dq parameters separately. To avoid over-fitting each data during the curve 

Table 5.   Simulink model parameters for GSC.

Sr. No. Parameters Rating Unit

01 DC bus rated voltage 390 V

02 DC bus capacitor 500 µf

03 Grid frequency 49.97–50.03 Hz

04 GSC filter inductance 1.5 mH

05 GSC filter resistance 0.02 �

06 Proportional gain 0.82 NA

07 Integral gain 4.2 NA

Figure 9.   Flowchart for tuning of KP and KI by NTM controller (DENSE-50) using RSC and GSC parameters.
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fitting analysis, hyper-parameters search space has been set along with the corresponding training and testing 
data to 70% and 30% respectively. Auto-tune has been initiated after the evaluation of dq parameters through a 
pre-trained DENSE-50 and the first recurrent neural network set-1 to initiate the tuning procedure. The 2 sets 
of tuning procedures have been accompanied by 2 different cost minimization functions for evaluating the least 
error while finding the optimization point. To scale down the error rate both mean and variance have been given 
to the second R-Net-2 to evaluate and fine-tune the KP and KI value. To freeze the KP and KI value the cluster 
segmentation has been carried out by the mean and variance for curve fitting analysis thereby freezing the KP 
and KI for the proposed NTM PI controller. Thus the KP and KI become dynamic to the variation either in RSC 
parameters or GSC parameters respectively. The advantage of the proposed NTM PI controller over all other 
controllers is that both RSC and GSC parameters have been taken into consideration for deciding the KP and 
KI value using a pre-trained network. However, in other benchmarking models such as PI controller, Fuzzy-PI 
controller and ANN-PI controller, the effect of both RSC and GSC has not been taken into consideration because 
of the increase in membership function, hidden layer and time requirement in evaluating the PI controller. The 
NTM consists of a collection of neural networks, each with a different structure such as recurrent, feedforward, 
or Convolutional networks. The ensemble architecture of the NTM features dense plexus terminals or dense 
connections between the layers of the neural network, which facilitate the free flow of information and provide 
insight into each individual network. During the training phase, the ensemble of neural networks adaptively 
learns to map input to output by incorporating the ensemble of neural networks into the training data. Each 
neural network has its own structure, which helps to increase the robustness of the ensemble. Additionally, due 
to the dense plexus terminals, the ensemble of neural networks improves its performance on unseen data

Table 6 represents the performance analysis of the proposed NTM PI controller during the optimization 
process at 4 different levels of voltage THD. It is observed that for THD levels of 5.4 and 5.61 with 100 EPOCH 
levels the mini-batch loss is 0.3. This represents that during the clustering of data, equal segmentation has been 
applied uniformly throughout the data so that during gradient decent analysis the updation of each weight func-
tion has been updated to 30% . Similarly at THD level of 5.93, 70% of the cluster weight function is updated. This 
shows that for a change of 5.7% in the THD level (relative) there is an increased change in THD level of 40% . 
This makes the controller more dynamic to the change in grid parameters. Further, the analysis has been carried 
out for 6.04% of THD level. However, the mini-batch loss is found to be 20%.

Table 7 represents performance analysis of the proposed NTM PI controller during the optimization process 
at 2 different levels of current THD. As observed at a THD level of 8.17 with an EPOCH level of 50 the RMSE 
is 2.28 and that of 100 EPOCH level is 1.78 respectively. Similarly, at a THD level of 8.23, the RMSE for 50 
EPOCH is 2.69 and that of 100 EPOCH is 2.25 respectively. It is also noticed that the mini-batch loss is 1.6 for 

Table 6.   Performance analysis of Proposed NTM-PI controller during Optimization process at four different 
levels of Voltage THD.

S.N. THD% EPOCH Iteration Mini batch RMSE Mini batch loss

01 5.4

1 1 2.09 2.2

50 50 1.45 1.1

100 100 0.82 0.3

02 5.61

1 1 2.01 2.0

50 50 1.29 0.8

100 100 0.82 0.3

03 5.93

1 1 2.63 3.5

50 50 1.57 1.2

100 100 1.16 0.7

04 6.04

1 1 2.38 1.7

50 50 1.77 0.6

100 100 1.91 0.2

Table 7.   Performance analysis of Proposed NTM-PI controller during Optimization process at two different 
levels of Current THD.

S.N. THD% EPOCH Iteration Mini batch RMSE Mini batch loss

01 8.17

1 1 3.11 4.8

50 50 2.28 2.6

100 100 1.78 1.6

02 8.23

1 1 3.23 5.2

50 50 2.69 3.6

100 100 2.25 2.5
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100 EPOCH with THD level of 8.17. However, at a THD level of 8.23, a mini-batch loss of 2.5 at 100 EPOCH 
has been recorded. This means that under current THD the proposed algorithm is overfitted with 16% and 25% 
respectively, which is 17% less as compared to any other proposed algorithm namely ANN-PI controller.

Figure 12 represents a comparative analysis of VDC Ref. voltage waveform for (a) PI controller (b) ANFIS-
PI controller (c) ANN-PI controller (d) NTM-PI controller. As observed, in Fig. 12(a) the VDC ref. voltage has 
undergone a maximum shoot of 1.042 and a maximum variation of 0.97 during the initial transition period. 
During the second transition event, the minimum voltage is 0.98 pu. By IEEE standard the voltage variation 
should not increase to below 10% of the reference value or 0.9 pu. In Fig.  12b with ANFIS-PI controller, the 
maximum overshoot reached 1.041 during the first transient operation whereas during the second transient 
operation, a minimum value of 0.98 was recorded at 0.15 s. Again, in Fig.  12c, with ANN-PI controller, during 
the first transient analysis, the maximum overshoot of 1.02 has been noticed with a minimum value of 0.98 and 
that of Fig. 12d, NTM-PI controller, the maximum overshoot of 1.03 and a minimum overshoot of 0.99 has been 
observed which is exactly under IEEE and IEC standard. This reveals that the DC ref. voltage requires 0.05 s to 
settle down to the steady value of 1 pu with two transition oscillations as compared to all other bench-marking 
models it takes a minimum of four oscillations before getting settled down to 1 pu. Therefore, the proposed 
algorithm is robust for implementation and practicability.

Figures  10 and 11 represent the optimization process of NTM for two different activation functions ReLu 
and softmax function. As observed, at Fig. 10b the optimization process has undergone an exponential decaying 
function showing highest possibility of sensitivity to external parameters variation whereas for all other figures 
of Fig. 10 such as Fig. 10a,c,d, the decaying function is less sensitive to the parameters variation. Therefore, the 
rest of the research part has been concentrated on ReLu function with activation function wt. value of 0.73. 
During the softmax optimization process for NTM, it is observed that at Fig. 11c, initially the system has shown 
an exponential decaying performance up to 18 EPOCH level and thereafter it becomes constantly decaying. In 
contrast Fig. 11b the system has shown rectangular hyperbola function with a wt value of 0.73 making it suitable 
for analysis under transient conditions. Again, at Fig. 11a,d, the system has shown a non linear performance 
throughout the iteration level. Therefore the analysis with NTM has been carried out for Rotor Side Controller 
(RSC) with ReLu function and for Grid Side Controller (GSC). It is softmax based activation function (Fig. 12).

Figure 13 represents the active and reactive power flow waveform for (a) PI controller (b) ANFIS-PI controller 
(c) ANN-PI controller (d) NTM-PI controller. As observed in Fig.  13a the active power is maintained at 0.95 pu 
until the first transition occurs at 0.04 s. Here the reactive power has come down to 0.5 pu and it is maintained 
up to 0.5 pu till 0.14 s. At about 0.15 s the real power has increased to 1.5 pu. Similarly, it is also noticed that the 
reactive power also shows a similar type of performance before settling to 0.5 pu at the end of 0.15 s. The analysis 
has also been carried out for Fig. 13b ANFIS-PI controller and that of Fig. 13c ANN-PI controller. In Fig.  13d 
The NTM-PI controller analysis has been presented. However, the real power is maintained approximately at 1pu 
before undergoing a transition. Due to the use of a real-time dynamic PI controller, the performance of the active 
power is quite better as compared to other benchmarking models. During this time the reactive power has also 

Figure 10.   Optimisation process of NTM at, (a) ReLu function wt 0.6, (b) ReLu function wt 0.73, (c) ReLu 
function wt 0.81, (d) ReLu function wt 0.97.
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increased to 0.5 pu from 0 pu before reaching o.45  pu at 0.2  s. The proposed NTM-PI controller is more robust as 
compared to all other benchmarking controllers in terms of tracking the real-time variation in the DFIG output.

Figure 14 represents the Vabc voltage at the transformer for (a) PI controller (b) ANFIS-PI controller (c) 
ANN-PI controller (d) NTM-PI controller. As noticed, during the transition condition, the output voltage 
waveform with PI controller has shown two different transitions during loading and on-loading transformer 
at 0.04 and 0.014 s respectively. At 0.14 s, the PI controller-based waveform (Fig. 14a) showed three different 
sub-synchronous oscillations for two cycles before settling down to a THD level of 5. Similarly in Fig. 14b the 

Figure 11.   Optimisation process of NTM at, (a) Softmax function wt 0.6, (b) Softmax function wt 0.73, (c) 
Softmax function wt 0.81, (d) Softmax function wt 0.97.

Figure 12.   VDC Ref. voltage waveform, (a) PI controller, (b) ANFIS-PI controller, (c) ANN-PI controller, (d) 
NTM-PI controller.
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ANFIS-PI controller is presented however for the same type of fault condition, the voltage has undergone two 
cycles of oscillations before reaching the final steady state. In Fig. 14c, the voltage waveform is almost oscillating 
by the loading pattern. However, the system has undergone a maximum undershoot of − 1.1 pu in the second 
transition effect. As compared to the ANFIS-PI controller here the oscillation is limited to 2.5 cycles. With the 
proposed NTM-PI controller model, a maximum undershoot of − 1.1 pu has been achieved with a maximum 
deviation of 0.5 cycles. From the above voltage waveform analysis, it is noticed that the effect of different load-
ing patterns can be analysed with the half cycle of the voltage waveform with the proposed NTM-PI controller.

Figure 15 represents Iabc current waveform at source side bus (a) PI controller (b) ANFIS-PI controller (c) 
ANN-PI controller (d) NTM-PI controller. As observed with the PI controller during the initial stage of load 
transition, the grid has undergone a voltage swell of 13.6% . The synchronization between all three phases occurs 
after three cycles of disturbance. Similarly, with ANFIS-PI controller the disturbance was noticed for three cycles 
with a maximum deviation of voltage swell is 13.88% . Here the system is brought back into its initial condition 
after three cycles of disturbances. With a proposed NTM-PI controller the voltage swell goes up to 11.03% and 
synchronisation between all three phases occurs within two cycles of distribution.

Figure 16 represents Vabc voltage at B575 waveform (a) PI controller (b) ANFIS-PI controller (c) ANN-PI 
controller (d) NTM-PI controller. As observed with PI controller voltage near the PCC has undergone a voltage 
sag of 4% for three cycles. However, in Fig. 16b with ANFIS-PI controller the voltage disturbance has under-
gone up to 4.2% (voltage sag). This effect has been noticed upto 0.1 s thereby making it unsuitable for real-time 
implementation. To overcome that problem, the system has been modeled with the proposed NTM-PI controller 
and hence the voltage disturbance settled down within 0.04 s from the instant of the occurrence of the fault. It is 
also noticed that the wave-top has undergone a single transition event before settling into its normal state. This 

Figure 13.   Active and Reactive power flow waveform, (a) PI controller, (b) ANFIS-PI controller, (c) ANN-PI 
controller, (d) NTM-PI controller.

Figure 14.   Vabc voltage at B25 waveform, (a) PI controller, (b) ANFIS-PI controller, (c) ANN-PI controller, (d) 
NTM-PI controller.
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may be due to the variation in the load at the rate of 2.67% . All the IEEE and IEC standards have been validated 
concerning the voltage and current waveform as presented in Figs. 15 and 16 respectively.

The R2 error determines the fitting of the model at different parameter variations for the specified algorithm. 
A higher value of R2 error represents the model is best fitted to the data and it has taken 90% of data during 
regression analysis. The R2 error is evaluated along with variance.

Table 8 represents the performance comparison analysis of different algorithms during ±10% of voltage 
fluctuation at PCC. 7 parameters such as R2 , RMSE, MAE, Accuracy, Sensitivity, PPV and NPV of different 
bench-marking controllers such as PI-controller, ANFIS-PI, ANN-PI and NTM-PI are compared for ±10% of 
voltage fluctuation at point of common coupling. As observed for 10% of voltage fluctuation the R2 value of PI 
controller is 0.641 and for ANFIS-PI is 0.776 respectively. Similarly, for ANN-PI and NTM-PI, it is 0.863 and 
0.911. RMSE of the PI controller will be 0.098 and for ANFIS-PI it will be 0.081, whereas for ANN-PI and NTM-
PI the values will be 0.083 and 0.067 respectively. MAE of the PI controller is 1.178, whereas for ANFIS-PI it is 
1.124. Similarly, for ANN-PI and NTM-PI it is 1.993 and 0.816. During ±10% of voltage fluctuation at PCC the 
accuracy and sensitivity of the controller varies. The accuracy of the PI controller will be 81.177% and for ANFIS-
PI it is 85.091% . 91.279% and 93.268% will the accuracy of ANN-PI and NTM-PI. Similarly, the sensitivity of the 
controller is compared, where for the PI controller the sensitivity is 83.234% , ANFIS-PI sensitivity % is 84.003, 
ANN-PI sensitivity will be 86.418% and NTM-PI sensitivity is 89.546% . Here the PPV in % is also compared 
given the values are 91.017% for the PI controller, 93.271% for ANFIS-PI. 92.079% of ANN-PI and 93.587% for 
NTM-PI. Furthermore NPV in % is also a parameter which is compared for different controllers. As observed 
the NPV% of PI controller is 92.109, whereas for ANFIS-PI it is 91.312% . Similarly, NPV% values for ANN-PI 
and NTM-PI are 93.45425% and 92.173% respectively.

Figure 15.   Iabc current at source side waveform, (a) PI controller, (b) ANFIS-PI controller, (c) ANN-PI 
controller, (d) NTM-PI controller.

Figure 16.   Vabc voltage at B575 waveform, (a) PI controller, (b) ANFIS-PI controller, (c) ANN-PI controller, (d) 
NTM-PI controller.
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Table 9 represents the performance comparison analysis of different algorithms during ±5% of voltage fluc-
tuation at PCC. 7 parameters such as R2 , RMSE, MAE, Accuracy, Sensitivity, PPV and NPV of different bench-
marking controllers such as PI-controller, ANFIS-PI, ANN-PI and NTM-PI are compared for ±5% of voltage 
fluctuation at point of common coupling. As observed for 5% of voltage fluctuation the R2 value of PI controller 
is 0.800 and for ANFIS-PI is 0.813 respectively. Similarly, for ANN-PI and NTM-PI it is 0.891 and 0.930. RMSE 
of PI controller will be 0.132 and for ANFIS-PI it will be 0.147, whereas for ANN-PI and NTM-PI the values 
will be 0.097 and 0.073 respectively. MAE of PI controller is 1.461, whereas for ANFIS-PI it is 1.169, similarly, 
for ANN-PI and NTM-PI it is 2.018 and 0.833. During ±5% of voltage fluctuation at PCC the accuracy and 
sensitivity of the controller also varies. The accuracy of PI controller will be 79.564% and for ANFIS-PI it is 
81.163% , similarly 92.197% and 94.206% will be the accuracy of ANN-PI and NTM-PI. The sensitivity of the 
controller is compared, where for the PI controller the sensitivity is 87.41% , ANFIS-PI sensitivity % is 87.021, 
ANN-PI sensitivity will be 87.287% and NTM-PI sensitivity is 90.447% . Here the PPV in % is also compared given 
the values are 91.93% for PI controller, 94.938% for ANFIS-PI. 94.013% of ANN-PI and 94.996% for NTM-PI. 
Furthermore NPV in % is also a parameter which is compared for different controllers. As observed the NPV of 
PI controller is 93.96% , whereas for ANFIS-PI it is 92.687% . Similarly, NPV% values for ANN-PI and NTM-PI 
are 94.832% and 93.101% respectively.

Figure 17 represents Performance comparison Tracking time, error rate, efficiency and response time (a) PI 
controller (b) ANFIS-PI controller (c) ANN-PI controller (d) NTM-PI controller. As observed in Fig. 17d, the 
efficiency has increased for the NTM-PI controller and at the same time it takes lesser response time and also 
low error rate as compared to all other bench-marking controllers. This clearly states that the proposed NTM-PI 
controller is good in terms of tracking time, efficiency and response rate to any loading condition at the point 
of common coupling.

One potential application of this research in real-world power grids is its utility in parameter settling under 
dynamic load-changing patterns. It has been observed that the NTM-PI controller exhibits a maximum over-
shoot of only 8.23% and a settling time of 0.93 s, respectively. Furthermore, it aids in the analysis and continu-
ous updating of control policies with the assistance of real-time data. Traditional methods commonly used for 
controlling systems in real-world power grids often struggle with non-linear dynamics. The NTM-PI controller 
possesses the capability to adjust and learn the non-linearities associated with the control method. Addition-
ally, this method demonstrates quick adaptability within the control system, where the system is continuously 
updated with real-time data

Conclusion
In this research article, an improved grid interconnection of DFIG has been presented by using the conditional 
Neural Tuning Method as an escort to the classical PI controller for improving the controllability of the controller.

During the analysis, it is observed that most of the PI controllers face problems in parameter settling under 
dynamic load-changing patterns. Here the dynamic load changing refers to the loading effect of the grid on 
the DFIG. In order to avoid such a scenario in this paper a novel practice has been adapted by making the KP 
and KI as dynamic quantities. During the controllability analysis of the proposed NTM-PI controller and the 

Table 8.   Performance comparison analysis of different algorithm during ±10% of voltage fluctuation at PCC.

Parameter PI—controller ANFIS-PI ANN-PI NTM-PI

R
2 0.641 0.776 0.863 0.911

RMSE 0.098 0.081 0.083 0.067

MAE 1.178 1.124 1.993 0.816

Accuracy ( %) 81.177 85.091 91.279 93.268

Sensitivity ( %) 83.234 84.003 86.418 89.546

PPV ( %) 91.017 93.271 92.079 93.587

NPV ( %) 92.109 91.312 93.425 92.173

Table 9.   Performance comparison analysis of different algorithm during ±5% of frequency regulation at PCC.

Parameter PI-controller ANFIS-PI ANN-PI NTM-PI

R2 0.800 0.813 0.891 0.930

RMSE 0.132 0.147 0.097 0.073

MAE 1.461 1.169 2.018 0.833

Accuracy(%) 79.564 81.163 92.197 94.206

Sensitivity(%) 87.41 87.021 87.287 90.447

PPV(%) 91.93 94.938 94.013 94.996

NPV(%) 93.96 92.687 94.832 93.101
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bench-marking controller, it is observed that NTM-PI controller has less maximum overshoot and less settling 
time of 8.23% and 0.93sec respectively. It has also been noticed that with the ANFIS and ANN controllers, it is 
very difficult to achieve the statistical performance of the above-stated controller with all other benchmarking 
models.

At Tables 6 and 7, the performance analysis of the proposed NTM-PI controller has been presented with 
different voltage and current THD. It is found that the mini-batch loss at 100 EPOCH value is marginal and 
controllable by effectively updating the 90% of the system weight function in the hidden layers. All these analyses 
have been carried out in a controlled environment and strictly restricted to unconstrained optimization. The 
implementation of DPT enhances the learning capabilities of the neural network which further leads to develop-
ment of accurate learning capabilities in the PI controller. The present study has clearly demonstrated the stability 
of the model and power quality using grid interconnection.

As an extension to the present research adaptive learning techniques can be adapted with an Intelligent Elec-
tronic Device (IED) to make the system more robust which can bring down the disturbance up to half a cycle at 
the point of observation. Cyber-physical-based layer for gateway application may be enabled for bidirectional 
communication between the operator and the controller. Further, the research can also be taken up by consider-
ing some other system parameters such as wind speed variations, power system imbalances and different grid 
code compliances such as IEEE, IEC and IS-Code. By interconnecting these elements into the training phase of 
neural network would enable the further development of adaptive PI controller which will further enhance the 
stability of the system.

Data availability
The data used to support the findings of this study are included in the article.
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