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Monitoring gamma type‑I censored 
data using an exponentially 
weighted moving average control 
chart based on deep learning 
networks
Pei‑Hsi Lee * & Shih‑Lung Liao 

In recent years, deep learning methods have been widely used in combination with control charts 
to improve the monitoring efficiency of complete data. However, due to time and cost constraints, 
data obtained from reliability life tests are often type‑I right censored. Traditional control charts 
become inefficient for monitoring this type of data. Thus, researchers have proposed various control 
charts with conditional expected values (CEV) or conditional median (CM) to improve efficiency for 
right‑censored data under normal and non‑normal conditions. This study combines the exponentially 
weighted moving average (EWMA) CEV and CM chart with deep learning methods to increase 
efficiency for gamma type‑I right‑censored data. A statistical simulation and a real‑world case are 
presented to assess the proposed method, which outperforms the traditional EWMA charts with CEV 
and CM in various skewness coefficient values and censoring rates for gamma type‑I right‑censored 
data.

Keywords Deep learning methods, Conditional expected value, Conditional median, Right-censored data, 
Exponentially weighted moving average chart

In recent years, artificial-intelligence technology has been widely used in production processes to reduce labor 
and quickly respond to process variations. In particular, machine learning and deep learning methods have 
been introduced into process control and excelled in quickly detecting and correctly identifying abnormal 
process conditions. For example, Lee and  Kim1, Wang et al.2, Chen and  Yu3, Kim and  Ha4, Yeganeh et al.5, and 
Sabahno and  Amiri6 proposed control charts based on machine or deep learning to improve detection ability. 
Zhang et al.7, Yu and  Liu8, Maged et al.9, and Yu et al.10,11 achieved excellent performance in failure detection in 
high-dimensional or complex processes using deep learning methods. Moreover, Zan et al.12, Lu et al.13, Yu and 
 Zhang14, Lee et al.15, and Xue et al.16 used machine and deep learning methods to recognize abnormal control 
chart patterns.

To test the lifetime of electronic products, practitioners may set a test termination time at which to halt the test 
in order to reduce time and cost. As some tested units may not have failed by the termination time, practitioners 
can only obtain incomplete lifetime records, which are known as type-I right-censored data. This is a challenge 
for practitioners because the detection efficiency for process variation of traditional Shewhart-type and EWMA-
type control charts decrease for incomplete data. Thus, some researchers have proposed novel control charts to 
monitor right-censored  data10,11,17,18. Steiner and  Mackay19 estimated the mean lifetime of incomplete data with 
a CEV and combined it with an X  chart of a lower control limit (LCL) to detect decreases of the lifetime for 
highly right-censored data with assumptions of normality. Then, Steiner and  Mackay20 used Shewhart-type CEV 
control charts for censored data with non-normality conditions. They next Steiner and  Mackay21 combined the 
EWMA and CEV to increase the detection ability for highly right-censored data.  Lee22 determined the design 
parameters of the CEV X  control chart with a minimum cost perspective.

Zhang and  Chen23 assumed a Weibull distribution for the data and detected decreases and increases in the 
average lifetime for censored data using two single-sided EWMA CEV control charts. Tsai and  Lin24, Raza et al.25, 
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and Biozone and  Wang26 also developed EWMA-type CEV control charts and achieved good monitoring perfor-
mance in non-normal censored data for their proposed charts. Raza et al.27 and Raza and  Siddiqi28 established a 
double EWMA (DEWMA) control chart to detect shifts of the scale parameter for gamma censored data. Raza 
and  Siddiqi28, Raza et al.29, and Ali et al.30 proposed similar contributions to the DEWMA CEV control chart. 
Ali et al.31 and Ahmed et al.32,33 developed novel control charts to monitor Weibull and generalized exponential 
(GE) censored data by replacing CEV with CM and conditional standard deviation (CSD). In addition, Lee et al.34 
and Zhao and  Wu35 implemented the EWMA CEV chart for multiple censored data and window-censored data, 
respectively. However, to the authors’ knowledge, there have been no relevant studies monitoring right-censored 
data using deep learning methods.

Convolutional neural networks (CNN) and long short-term memory (LSTM) networks are common methods 
of deep learning that have been successfully combined with control chart technology to monitor processes and 
recognize abnormal patterns in control  charts7,14,36. Thus, these techniques may be used to improve the efficiency 
of a control chart for censored data. From the literature, most previous works developed CEV and CM charts 
for normal, GE or Weibull censored data. Gamma data is also often observed in reliability life tests and is one 
of the commonly used lifetime distributions because changing its shape parameter can create distributions with 
different degrees of skewness. Therefore, this study combines a CNN and LSTM, respectively, with the EWMA 
CEV and CM charts to monitor gamma type-I right-censored data.

The remainder of this study is organized as follows. In “Methodology” section presents the methodology. In 
“Proposed control charts” section describes the proposed control chart and in “Performance comparison” section 
investigates its performance using a statistical simulation.  In “Real-world case study” section details implementa-
tion of the proposed method for a case study. Finally, in “Conclusions” section provides some conclusions and 
directions for future development.

Methodology
EWMA charts for gamma type‑I censored data
Let U = {u1, u2, . . . , um} be a gamma random variable and a0 and b0 be the shape and scale parameters of 
an in-control process, respectively. The censoring rate for the gamma lifetimes can be represented as 
Pc = 1− FGa(u = cT |a0, b0) , where FGa(·|a0, b0) is the cumulative distribution function (CDF) of the gamma 
distribution with parameters a0 and b0 , where cT is the censoring time. The CEV of the gamma distribution is:

and the CM of the gamma distribution is

where F−1
Ga (·|a0, b0) is an inverse of CDF of the gamma distribution with a0 and b0 . The derivations of Eqs. (1) 

and (2) are shown in Supplementary. Practitioners take n samples and measure their lifetime values using the 
reliability life testing method. The sample mean of size n can be obtained by X =

∑n
i=1 xi/n . Let ui be the lifetime 

of the i-th testing sample. Then, the xi of the i-th testing sample in the X  ’s formula is:

where Cd = Cev for CEV X  statistic or CM for CM X  statistic. The in-control mean M0 and variance V0 can be 
expressed as follows:

Let � be the smoothing parameter of the EWMA chart. Zhang and  Chen23 showed that the EWMA statistic 
at period j for monitoring the mean decrease is:

For an EWMA chart with CEV or CM used to monitor a process mean, an LCL is set to signal the mean 
reduction because practitioners always focus on the detection of average lifetime reduction. The appearance of an 
assignable cause leads to a decrease in the process mean, indicating an out-of-control condition. Let M1 = δ ×M0 
be the mean of an out-of-control state where the process variance is unchanged and δ be a mean shift size that 
can be obtained by δ = M1/M0 . The gamma shape parameter a1 and scale parameter b1 in an out-of-control state 
can be obtained by solving the following system of simultaneous equations:

The solutions for a1 and b1 are, respectively, as follows:

(1)Cev = E(U |u ≥ cT ) =
a0b0[1− FGa(u = cT |a0 + 1, b0)]

1− FGa(u = cT |a0, b0)
,

(2)CM = F−1
Ga (0.5− 0.5FGa(u = cT |a0, b0)|a0, b0),

(3)xi =

{
ui for ui ≤ cT
Cd for ui > cT

,

M0 = a0b0 and

V0 = a0b
2
0.

(4)Ej = min
{
M0, �Xj + (1− �)Ej−1

}
.

{
M1 = a1b1
V0 = a1b

2
1

,

(5)
a1 = M2

1/V0 and

b1 = V0/M1.
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The primary metric employed for evaluating the effectiveness of control charts is the average run length 
(ARL)3,15,23,30,34. In an in-control process, a larger ARL signifies a reduced false-alarm rate, while in an out-of-
control state, a smaller ARL indicates quicker detection of mean reduction.

CNN
The main advantage of CNNs is that they can effectively capture local features in the data and perform feature 
extraction for classification or regression prediction, while maintaining the spatial hierarchy of features. Some 
of the main features and working principles of CNN are laid out below.

The convolutional layer is a fundamental element of CNNs. It operates by applying convolutional kernels 
(also referred to as filters) over the input data or image through a sliding process, resulting in the generation of 
feature maps. This operation supports the identification of local features. The output of a convolutional layer l  
can be expressed by:

where fRL(·) is a rectified linear unit (ReLU) activation function, l  is the l-th layer of the CNN, ωCL
l−1 is the filter 

kernel at layer l − 1 , and bCLl  is the bias vector at layer l .
The pooling layer plays a crucial role in CNNs by decreasing the dimensionality of feature maps while retain-

ing vital information. The most common pooling operation is max pooling, which selects the highest value 
within specific regions, thus reducing the feature map’s dimensions. The pooling output at layer l  is given by:

After the convolutional and pooling layers, CNNs frequently incorporate fully connected layers to carry out 
ultimate classification or regression tasks. These layers are responsible for transforming the extracted features 
into the network’s final output. CNNs commonly comprise a series of convolutional and pooling layers stacked 
in an interleaved fashion. This layered architecture empowers the network to acquire knowledge about image 
characteristics spanning diverse levels of  abstraction7,8.

LSTM
An LSTM is a deep learning neural network architecture that is an improvement of over traditional recurrent 
neural networks (RNN). It was specially designed to process sequence data, such as speech recognition, natural 
language processing, time-series analysis, and other applications. LSTM supports sequence data processing by 
introducing the three key gating mechanisms described below.

The forget gate determines whether to forget the previous memory information. It uses a sigmoid function 
to output a value between 0 and 1, controlling whether past memories are retained. The forget gate f fg can be 
expressed as:

where fsf (·) is a sigmoid function, bfg is the bias vector of the forget gate, ωfg is the weight vector of the forget 
gate, ζt−1 is the output vector of the previous step, and ϑt is the input vector of the current step.

The input gate determines how new memory information is added to the LSTM unit. It uses a sigmoid func-
tion to determine which information needs updating and uses the tanh function to create a memory cell vector. 
Let f ig be the formula of the input gate and ǫt be the memory cell vector of the current step, as follows:

where big is the bias vector of the input gate, ωig is the weight vector of the input gate, tanh(·) is the tanh func-
tion, and bǫ and ωǫ are the bias and weight vectors of the memory cell vector for the current step, respectively.

The output gate determines which memory information will be outputted to the next time step. Similar to the 
forget gate and input gate, the output gate uses a sigmoid function to control the output. The output gate f og is:

where bog is the bias vector of the output gate and ωog is the weight vector of the output gate. The output vector 
of the current step ζt is:

The dimensions of ζt as the number of hidden units affects the LSTM network’s computing efficiency and 
effectiveness. LSTM uses these gates to control the flow of information and update memory, thus helping to 
address the gradient vanishing problem in RNNs and allowing them to better handle long  sequences9,36.

Proposed control charts
This section proposes a procedure to set and implement the control chart based on deep learning networks with 
EWMA CEV or CM statistic, as shown in Fig. 1. This procedure includes two parts: setting up the control chart 
and implementing the control chart.

ζCLl = fRL
(
bCLl + ζCLl−1 × ωCL

l−1

)
,

Mpj = max
(
ζCLl

)
.

f fg = fsf

(
bfg + ωfg

[ζt−1,ϑt]

)
,

f ig = fsf
(
big + ωig

[ζt−1,ϑt]
)

and

ǫt = f fg × ǫt−1 + f ig × tanh
(
bǫ + ωǫ

[ζt−1,ϑt]
)
,

f og = fsf
(
bog + ωog

[ζt−1,ϑt]
)
,

ζt = f og × tanh(ǫt).
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The purpose of setting up the control chart is to find the optimal threshold value according to a specific 
in-control ARL value to maintain the monitoring effect of the control chart. Before setting up a control chart, 
practitioners can determine an in-control ARL value and choose an initial threshold value based on their own 
experience. In the literature, the in-control ARL value used for control chart performance comparison is typi-
cally 200 or 370.4.

According to the quality characteristic parameters and control parameters such as a0 , b0 , � , Pc , and n , the 
in-control gamma type-I censored data can be generated using the Monte Carlo method and then the in-control 
EWMA statistics Ej for the gamma type-I censored data can be calculated using Eq. (4). It is noted that Ej is the 
EWMA CEV statistic for Cd = Cev or the EWMA CM statistic for Cd = CM . First, 10,000 Ej are generated. 
Next, let {Et−1,Et} be the training data set and be inputted into the CNN or LSTM network for training. As the 
training data set, the input layer of the CNN or LSTM network must use one-dimensional sequence data. The 
input and output vectors have dimensions 1× (m− 1).

Practitioners are more concerned about decreases in the average lifetime, so the threshold value η as a LCL 
of traditional control charts is set to detect such decreases. After the network is trained, the estimation Êt can be 
outputted and the residual value can be computed by Et − Êt . If the j-th residual value is less than the threshold 
value η , then the number of points outside the threshold value (OC) = OC + 1. The above procedure is repeated 
10,000 times to obtain total number of points outside the threshold value and the in-control ARL value is 
10,000/OC (Note that the false alarm rate is OC/10,000).

If the simulated in-control ARL value is not equal to the specific in-control ARL value, then the threshold 
value η is adjusted and the above simulation procedure is repeated until the simulated ARL value equals the 
specific ARL value. In this way, the optimal threshold value η∗ can be obtained and implemented to monitor 
the process.

Figure 1.  Flowchart for the proposed control chart.
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In the implementation of the control chart for process monitoring, practitioners import a trained CNN or 
LSTM network, set up the optimal threshold value η∗ , and then apply the following steps:

(1) Collect lifetime data for period t − 1 and calculate the statistic Et−1.
(2) Input Et−1 into this trained network to predict the statistic Êt of period t.
(3) After the lifetime data for period t is obtained, compute the actual value Et.
(4) Let the error value for period t be Et − Êt.

If the error value is less than the optimal threshold value η∗ , then the process indicates an out-of-control 
condition; otherwise, the process is in control.

Figure 2 shows the simulation process for an out-of-control ARL value. Practitioners can give a shift size value 
δ to calculate the parameters a1 and b1 of the out-of-control state shown in Fig. 2 using Eq. (5).

Some studies typically considered two different types of performance: zero-state (ZS) and steady-state (SS)37,38. 
ZS performance assumes that a shift occurs at the beginning of the process to measure the out-of-control ARL 
value. SS performance shows the out-of-control ARL for control charts to identify a process shift for control 
statistics to reach a static distribution.

For the simulated data generation of ZS and SS conditions, assume that the process has been continuously 
run for π sampling periods and maintained in the in-control state, π represents the length of the process to reach 
SS condition. The process occurs the mean shift between π th and π + 1st sampling, and then SS ARL represents 
the expected value of the number of samples obtained from the occurrence of this mean shift to when the chart 
indicates an out-of-control signal. In the data generation process, the in-control data of π periods is first gener-
ated. After the in-control data, 10,000 out-of-control data are generated. The EWMA statistics are calculated for 
the data of π + 10,000 using Eq. (4), and the last 10,000 EWMA statistics are taken to simulate the out-of-control 

Figure 2.  Flowchart for simulation of an ARL value using the proposed control chart.
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ARL values of SS condition according to Fig. 2. For ZS condition, the simulated data can be generated with a 
setting of π = 0.

MATLAB R2023a provides a deep learning toolbox that can easily implement the processes of Figs. 1 and 
2. This study codes the simulation processes using MATLAB R2023a to investigate the performance of the 
proposed control charts.

Performance comparison
Hereafter, ‘CNN chart’ and ‘LSTM chart’ represent the control charts based on the CNN and LSTM networks, 
respectively. This section compares the ARL performance of the CNN, LSTM, and EWMA charts with CEV or 
CM for gamma type-I censored data. The parameters of the gamma distribution are set as a0 = 1, 2, and 4 and 
b0 = 1 for comparison, while the skewness values (Sk) of the parameter case are as shown in Table 1. Smaller a0 
values indicate greater skewness of the gamma distribution.

When using the CNN network, some network parameters, such as the stacked numbers of convolutional and 
pooling layers, kernel size, and number of kernels, must be determined first to achieve good training and testing 
results. For the LSTM chart, the stacked numbers of LSTM layers and the number of hidden units must also be 
decided. Based on the literature, this study uses the trial-and-error method to set these network parameters as 
per Table 2 3,39.

In the performance comparison, the sample size is fixed at n = 5 , which is standard practice for sampling and 
plotting control charts. The smoothing parameter � of the EWMA statistic is set at 0.1 and 0.223,27,29. Pc is 0.2, 
0.5, and 0.8 for lower, moderate, and higher censoring rates, respectively. The shift sizes are δ = 0.8 and 0.7 for 
small shifts; δ = 0.6 and 0.5 for moderate shifts; and δ = 0.2 for large shifts. This study set the in-control ARL 
value at 200 to measure the out-of-control ARL values under ZS and SS conditions.

Considering that different trained CNN or LSTM networks will have different ARL values, this study trained 
100 networks for each condition of process parameters ( a0 , b0 , Pc and � ) and then selected a trained network 
with the smallest ARL value for comparison from the 100 trained networks.

Table 3 shows the LCL and the optimal threshold value η∗ for the six comparison charts under ZS condition 
( π = 0). The out-of-control ARL values for the six control charts were simulated according to the above conditions 
and the ARL values are compared in Table 4. The bold cells indicate the control chart with the best detection 
efficiency for a specific shift size.

As the skewness coefficient value decreases, the detection efficiency of the six control charts decreases. As 
Pc increases, the detection efficiency of the EWMA chart decreases, and the detection efficiency of the CNN 
and LSTM charts changes irregularly. The CNN chart exhibits the best detection ability for most shift sizes. The 
LSTM chart is significantly worse than the other charts for all shift sizes. Comparing the performance of CEV 
and CM, CNN with CEV is better than CNN with CM when the skew coefficient value is small. As the skew 
coefficient value becomes larger, the effect of CNN with CM is better than CNN with CEV. EWMA and LSTM 
charts are not affected by the skewness coefficient. EWMA and LSTM charts with CEV has better performance 
than EWMA and LSTM charts with CM.

For processes that often occur the mean shift in the initial stage, if the skewness coefficient of lifetime distri-
bution is large, the EWMA CM statistic should be used to train the CNN network and implement monitoring. 
On the contrary, the EWMA CEV statistic should be considered to train the CNN network and implement 
monitoring.

Table 1.  Skewness values of the gamma distribution.

a0 b0 M0 V0 SK

1 1 1 1 2

2 1 2 2 1.4142

4 1 4 4 1

Table 2.  Structure and parameters of deep learning networks for the proposed control charts.

Layers

CNN LSTM

Input layer

Convolutional layer Pooling layer

Input layer
Number of hidden 
unitsKernel size Number of kernels Kernel size

#1 One-dimensional 
sequence data 5 200 1 One-dimensional 

sequence data 100

#2 – 3 70 1 – 70

#3 – 3 50 1 – 50

#4 – 3 40 1 – 40

#5 – 3 40 1 – 30

#6–24 – 3 40 1 – –

#25–36 – 3 30 1 – –
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Table 3.  Design parameter values of six control charts for comparison under ZS condition.

(a0 , b0) Pc

λ = 0.1 λ = 0.2

EWMA CNN LSTM EWMA CNN LSTM

LCL η∗ η∗ LCL η∗ η∗

CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM

(1, 1)

0.2 0.793 0.370 − 0.071 − 0.047 − 0.170 − 0.107 0.685 0.358 − 0.090 − 0.037 − 0.238 − 0.145

0.5 0.828 0.269 − 0.062 − 0.011 − 0.134 − 0.032 0.732 0.251 − 0.057 − 0.013 − 0.222 − 0.052

0.8 0.885 0.394 − 0.054 − 0.022 − 0.104 − 0.045 0.815 0.368 − 0.045 − 0.022 − 0.165 − 0.072

(2, 1)

0.2 1.695 1.101 − 0.083 − 0.060 − 0.284 − 0.193 1.535 1.005 − 0.090 − 0.068 − 0.391 − 0.279

0.5 1.729 0.891 − 0.163 − 0.035 − 0.250 − 0.071 1.585 0.849 − 0.124 − 0.031 − 0.325 − 0.123

0.8 1.805 1.124 − 0.074 − 0.053 − 0.182 − 0.101 1.691 1.067 − 0.098 − 0.055 − 0.261 − 0.151

(4, 1)

0.2 3.550 2.409 − 0.181 − 0.149 − 0.409 − 0.321 3.315 2.515 − 0.186 − 0.118 − 0.569 − 0.447

0.5 3.600 2.381 − 0.276 − 0.095 − 0.344 − 0.149 3.374 2.298 − 0.194 − 0.061 − 0.506 − 0.225

0.8 3.697 2.757 − 0.149 − 0.206 − 0.297 − 0.186 3.507 2.655 − 0.189 − 0.167 − 0.414 − 0.151

Table 4.  ZS ARL values of six control charts. Smallest ARL values are in [bold].

Pc δ

(a0 , b0) = (1, 1) (a0 , b0) = (2, 1) (a0 , b0) = (4, 1)

EWMA CNN LSTM EWMA CNN LSTM EWMA CNN LSTM

CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM

� = 0.1

 0.2

0.8 16.18 32.43 4.64 1.62 39.13 40.44 11.67 27.30 1.94 3.99 25.00 31.29 8.19 21.76 2.13 7.00 12.70 20.45

0.7 9.61 22.69 1.99 1.52 26.32 21.61 6.89 18.38 1.65 1.39 15.42 19.09 5.11 14.26 1.42 2.12 8.67 13.16

0.6 6.82 17.55 1.30 1.38 21.51 17.53 5.08 13.75 1.18 1.30 13.41 14.87 3.75 10.56 1.15 1.27 8.39 9.66

0.5 5.24 14.31 1.22 1.21 18.58 14.25 3.91 10.98 1.11 1.18 12.56 12.32 2.98 8.31 1.13 1.05 7.49 7.98

0.2 3.22 9.76 1.00 1.02 13.04 9.43 2.41 7.04 1.00 1.00 9.14 8.46 2.05 5.10 1.00 1.00 6.50 5.80

 0.5

0.8 13.36 27.70 2.15 3.26 29.83 19.06 10.49 29.77 1.81 1.27 20.05 21.53 7.50 23.84 2.08 3.66 11.56 21.81

0.7 7.66 23.17 1.55 1.72 21.92 15.97 6.26 21.91 1.30 1.10 13.52 17.86 4.55 16.85 1.30 1.78 10.15 14.22

0.6 5.39 20.00 1.37 1.51 19.38 14.16 4.45 17.25 1.19 1.01 12.43 13.70 3.37 13.04 1.14 1.32 8.78 10.04

0.5 4.16 17.46 1.24 1.19 16.30 12.68 3.45 14.21 1.13 1.00 9.56 13.22 2.69 10.49 1.03 1.06 8.88 9.46

0.2 2.50 12.99 1.01 1.00 13.02 9.45 2.16 9.32 1.00 1.00 8.81 9.53 2.01 6.44 1.00 1.00 6.43 6.22

 0.8

0.8 10.77 28.75 6.73 5.02 31.94 22.12 8.90 23.07 3.71 2.32 19.29 23.17 6.95 18.18 4.72 5.19 10.61 19.95

0.7 5.89 21.81 2.71 2.42 22.89 17.77 5.32 16.82 1.70 1.69 13.55 16.86 4.11 12.73 2.19 2.43 9.43 14.73

0.6 4.10 17.56 1.57 1.29 18.49 15.60 3.68 12.96 1.24 1.37 11.61 13.73 2.87 9.62 1.19 1.66 8.10 10.75

0.5 3.10 14.71 1.29 1.02 16.28 12.57 2.78 10.57 1.08 1.24 10.31 11.45 2.25 7.72 1.07 1.32 8.23 9.81

0.2 2.02 10.29 1.00 1.00 11.75 9.18 1.66 6.86 1.00 1.00 7.79 7.32 1.34 4.81 1.00 1.00 5.71 5.12

� = 0.2

 0.2

0.8 16.85 25.88 9.36 3.55 45.41 49.78 10.88 20.59 1.92 3.51 21.09 25.08 7.28 16.00 1.69 2.14 13.77 19.04

0.7 8.83 15.27 4.91 2.57 30.87 23.03 6.52 12.12 1.50 1.83 16.00 15.98 4.24 9.19 1.31 1.49 8.61 11.73

0.6 6.04 10.92 2.97 1.95 22.21 17.56 4.28 8.42 1.26 1.38 12.89 11.58 3.19 6.45 1.13 1.20 8.28 9.15

0.5 4.38 8.61 2.41 1.75 20.44 11.19 3.24 6.57 1.13 1.15 11.77 10.90 2.51 4.98 1.04 1.05 7.55 7.33

0.2 2.46 5.58 1.24 1.24 12.32 6.98 2.09 4.12 1.01 1.01 9.11 6.96 1.49 3.08 1.00 1.00 5.51 3.58

 0.5

0.8 14.04 22.52 7.95 3.07 44.87 19.44 10.18 18.25 3.12 2.34 25.09 26.28 7.19 14.24 2.41 1.81 12.97 13.35

0.7 7.22 16.01 3.80 1.69 31.69 12.49 5.49 12.31 1.94 1.84 17.20 19.13 4.13 9.60 1.36 1.43 8.98 8.47

0.6 4.94 12.42 2.45 1.19 24.57 11.60 3.78 9.39 1.57 1.32 14.62 14.10 2.89 7.14 1.12 1.15 6.68 7.88

0.5 3.57 10.45 1.63 1.07 21.10 8.43 2.88 7.62 1.37 1.19 12.46 11.53 2.28 5.69 1.05 1.07 6.84 5.38

0.2 2.15 7.27 1.08 1.00 11.75 5.82 2.04 5.00 1.01 1.01 10.18 5.86 1.35 3.48 1.00 1.00 5.99 4.74

 0.8

0.8 10.61 18.33 3.04 2.74 30.25 26.39 8.86 14.57 2.55 3.28 21.92 20.53 6.67 11.37 1.85 1.95 12.29 18.02

0.7 5.60 12.53 2.06 1.67 22.08 16.47 4.49 9.57 1.74 1.74 14.80 14.01 3.72 7.39 1.11 1.34 8.61 12.52

0.6 3.62 9.70 1.95 1.33 18.26 12.95 3.06 7.34 1.49 1.22 12.37 10.95 2.54 5.55 1.02 1.18 7.46 10.55

0.5 2.65 8.10 1.50 1.09 14.42 9.31 2.35 5.93 1.32 1.05 11.02 10.20 1.94 4.41 1.00 1.10 7.38 7.32

0.2 1.43 5.45 1.03 1.00 10.36 5.41 1.46 3.87 1.00 1.00 9.18 5.74 1.10 2.84 1.00 1.00 6.15 4.63
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This study considers π = 100 and 1000 to measure the ARL value of SS condition. Table 5 shows the LCL 
and η∗ of six control charts for π = 1000. Table 7 exhibits the SS ARL values for π = 100 and 1000, respectively.

As Table 6, CNN chart outperforms EWMA and LSTM for most shift sizes in the π = 1000. With only some 
cases of δ = 0.8, the EWMA chart is better than the CNN chart. LSTM chart in most cases of δ ≤ 0.5 has better 
detection efficiency than EWMA chart, but it’s still not as efficient as CNN chart. The detection efficiency of 
LSTM charts in other shift sizes is worse than that of EWMA and CNN charts. The detection efficiency of the 
EWMA, CNN and LSTM charts decreases as Pc increases or the skewness coefficient of lifetime distribution 
becomes large for most shift sizes. EWMA, CNN and LSTM charts with CEV have better detection efficiency 
than EWMA, CNN and LSTM charts with CM in these cases of Pc = 0.2 for all a0 values and gamma parameters 
( a0 = 4, b0 = 1) for all Pc values.

Comparing the ARL values of Tables 4 and 6 for ZS ( π = 0) and π = 1000, the EWMA charts with CEV and 
CM perform worse detection efficiency under ZS condition than under SS condition. In the LSTM charts with 
CEV and CM, the detection efficiency increases as π increases for most shift sizes, but the efficiency of some 
small shift sizes performs irregular changes. The CNN charts with CEV and CM have more excellent perfor-
mance under ZS condition than under SS condition for most shift sizes. As π increases, the detection ability of 
the CNN charts with CEV and CM in most shift sizes slightly reduced but, in most cases of δ = 0.8, the detection 
efficiency is significantly reduced.

When the mean shifts occur after the process has been running for a long time, CNN chart will be the best 
choice for gamma type-I censored data unless there is a need to detect tiny shift sizes. The CNN chart with CEV 
is suitable for the gamma censored data of lower rates or smaller skewness values, and the CNN chart with CM 
is recommended for monitoring the moderately, and highly censoring gamma data of larger skewness values.

Real‑world case study
A reliability life test for a liquid–crystal display module (LCM) was conducted at a temperature of 70 °C with 
80% relative humidity. Based on historical data analysis, the lifetime distribution of an LCM is known to follow 
a gamma distribution with shape parameter a0 = 5.72 and scale parameter b0 = 0.48 . To save testing time and 
cost, practitioners use the censoring rate Pc = 0.8 to conduct the test and the censoring time cT is found to be 
1.76 h. The skewness coefficient value of this lifetime distribution is 0.35, which approximates a symmetrical 
distribution, therefore EWMA CEV statistics is selected for monitoring the LCM’s lifetime. The CEV of this 
lifetime distribution can be calculated as 3.09. According to quality inspection regulations, five units of each 
batch of LCMs must be randomly sampled to test lifetime values. Because the EWMA chart based on the CNN 
network has better performance than the EWMA charts and the EWMA chart on the LSTM network, practi-
tioners developed a CNN-based EWMA chart with CEV using � = 0.1 and in-control ARL = 200. As shown in 
Fig. 1, practitioners trained a CNN network using the EWMA CEV statistics in Eq. (4) and obtained the optimal 
threshold value η∗ = −0.186 for the in-control ARL value of 200.

In line with the above, practitioners tested five units from each batch under conditions of 70 °C and 80% 
humidity, and halted testing when the test time reached 1.76 h. The EWMA statistics (Eq. (4)) were inputted 
into the well-trained CNN network to predict the statistic of the next period. Table 7 showed the lifetime data 
of testing units for 30 batches. In the 101st batch, only one tested unit failed at 1.23 h and other four tested units 
did not fail. The lifetime of four unfailed units is recorded as CEV. The actual value Ej in Table 7 can be obtained 
by using Eq. (4). As shown in Table 7, the EWMA CEV statistic of the 101st batch was 2.75, so the practitioners 
inputted 2.75 into the well-trained CNN network, which outputted the predicted value of 2.82 for the 102nd 
batch. After the 102nd batch was produced and the life tests of the five units reached the termination time of 
1.76 h, the actual value Ej of this batch was determined to be 2.75 by using Eq. (4) and the error value of this 
batch was − 0.07.

In Table 7, other error values were obtained with the same method. Figure 3a plots these error values for the 
CNN-based control chart. It can be seen that the error values of batches 119–130 were below the η∗ value, and so 
this chart indicates the variation at the 119th batch. Figure 3b also shows the EWMA CEV chart with LCL = 2.56 

Table 5.  Design parameter values of six control charts for comparison under SS condition.

(a0 , b0) Pc

λ = 0.1 λ = 0.2

EWMA CNN LSTM EWMA CNN LSTM

LCL η∗ η∗ LCL η∗ η∗

CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM

(1, 1)

0.2 0.784 0.406 − 0.111 − 0.034 − 0.807 − 0.399 0.685 0.356 − 0.064 − 0.047 − 0.795 − 0.398

0.5 0.827 0.268 − 0.057 − 0.018 − 0.799 − 0.154 0.732 0.250 − 0.062 − 0.015 − 0.789 − 0.151

0.8 0.876 0.392 − 0.056 − 0.025 − 0.649 − 0.213 0.816 0.367 − 0.052 − 0.012 − 0.662 − 0.223

(2, 1)

0.2 1.689 1.096 − 0.118 − 0.053 − 1.229 − 0.756 1.531 1.001 − 0.169 − 0.053 − 1.266 − 0.745

0.5 1.733 0.888 − 0.122 − 0.031 − 1.234 − 0.343 1.579 0.847 − 0.137 − 0.042 − 1.238 − 0.377

0.8 1.802 1.120 − 0.103 − 0.052 − 1.099 − 0.508 1.690 1.065 − 0.076 − 0.047 − 1.098 − 0.498

(4, 1)

0.2 3.546 2.662 − 0.111 − 0.160 − 1.236 − 1.236 3.314 2.511 − 0.285 − 0.139 − 1.265 − 1.265

0.5 3.595 2.373 − 0.127 − 0.060 − 1.910 − 0.732 3.372 2.295 − 0.192 − 0.085 − 0.731 − 1.872

0.8 3.690 2.750 − 0.135 − 0.041 − 1.640 − 0.213 3.507 2.649 − 0.154 − 0.095 − 1.655 − 0.915
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and its in-control ARL value is approximately 200. The EWMA CEV chart signals the variation at the 121st batch, 
detecting the same variation more slowly than the CNN-based EWMA chart with CEV.

Conclusions
The combination of deep learning methods and control charts has greatly improved the efficiency of process 
monitoring. However, poor efficiency in the monitoring of high type-I censored data using control charts is a 
challenge for practitioners. This study proposed a control chart based on deep learning methods with EWMA 
CEV and CM statistics to detect the mean lifetime reduction for gamma type-I censored data. The ZS and SS 
ARL values of the proposed charts were also measured. Comparing the ZS and SS ARL values of the EWMA 
chart and the two EWMA charts based on deep learning methods with CEV and CM, CNN-based EWMA chart 
outperforms other control charts under ZS condition. For SS condition, the EWMA charts based on CNN with 
CEV and CM outperformed the other charts for various skewness coefficient values and censoring rates for most 
shift sizes. The EWMA charts with CEV and CM was slightly better than the CNN-based EWMA charts with 
CEV and CM for a few tiny shift sizes. The EWMA charts based on LSTM with CEV and CM consistently had 
the worst performance under ZS and SS conditions. In addition, a real-world case study showed that the CNN-
based EWMA chart detected mean lifetime reduction more efficiently than the traditional EWMA CEV chart.

For the gamma censored data of lower rates or smaller skewness coefficient values, the CNN-based EWMA 
chart with CEV is the best choice, and the CNN-based EWMA chart with CM is recommended monitoring the 
moderately, and highly censoring data of heavily skewed gamma distribution. Future work could extend current 
approaches to combine CUSUM CEV and CM statistics with deep learning methods to monitor the censored 
data with normal or non-normal distributions. In addition, there are opportunities to combine multiple deep 
learning methods to build control charts.

Table 6.  SS ARL values of six control charts with π = 1000. Smallest ARL values are in [bold].

Pc δ

(a0 , b0) = (1, 1) (a0 , b0) = (2, 1) (a0 , b0) = (4, 1)

EWMA CNN LSTM EWMA CNN LSTM EWMA CNN LSTM

CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM CEV CM

� = 0.1

 0.2

0.8 15.52 17.85 21.59 21.86 32.63 95.62 9.97 11.83 12.40 1717 15.15 28.89 6.69 9.65 7.38 15.54 11.29 17.41

0.7 8.78 9.73 7.38 8.80 12.53 41.08 6.54 6.36 4.38 5.05 6.55 11.20 4.13 5.60 3.19 4.65 4.61 6.24

0.6 4.99 6.78 3.71 4.88 6.51 16.26 3.76 5.16 2.51 2.28 3.83 5.78 3.05 3.73 1.66 1.96 2.45 2.99

0.5 3.64 4.16 2.36 2.75 3.72 7.92 3.30 3.42 1.50 1.50 2.29 2.44 2.33 2.79 1.16 1.30 1.59 1.55

0.2 2.38 2.55 1.19 1.17 1.29 2.44 1.71 1.30 1.00 1.01 1.31 1.14 1.68 1.65 1.00 1.00 1.02 1.06

 0.5

0.8 10.96 12.37 15.82 13.60 29.42 20.26 8.62 8.32 12.52 12.22 18.40 11.43 6.30 6.16 8.73 5.82 12.99 10.61

0.7 5.48 5.19 5.32 4.31 13.53 6.95 4.73 5.16 4.01 3.01 8.71 5.07 3.72 3.59 2.58 2.02 5.56 3.79

0.6 3.49 3.55 3.04 1.86 7.03 3.60 3.77 3.37 2.09 1.63 4.74 2.45 2.79 2.53 1.22 1.13 2.59 2.04

0.5 3.73 3.61 2.05 1.26 3.70 2.08 3.39 2.10 1.37 1.17 2.65 1.68 2.20 1.91 1.00 1.05 1.74 1.39

0.2 1.68 2.21 1.26 1.00 1.27 1.04 1.95 1.92 1.03 1.00 1.11 1.01 1.48 1.12 1.00 1.02 1.05 1.00

 0.8

0.8 9.78 9.23 10.03 8.88 20.20 18.41 7.46 6.63 8.88 6.61 18.83 15.49 5.99 5.81 9.04 5.48 13.13 10.45

0.7 4.78 5.99 4.46 3.61 9.51 8.11 5.14 3.68 3.23 2.42 8.46 6.18 3.50 3.32 1.99 2.00 4.81 4.07

0.6 4.48 3.96 1.98 1.51 4.39 3.39 2.35 2.04 2.36 1.42 4.44 2.82 2.39 2.39 1.03 1.10 2.65 1.96

0.5 2.11 2.70 1.38 1.14 2.45 1.90 1.37 1.34 1.93 1.13 2.59 1.81 1.86 1.85 1.00 1.05 1.88 1.41

0.2 2.58 1.28 1.00 1.00 1.06 1.01 1.22 2.32 1.01 1.00 1.12 1.01 1.18 1.14 1.00 1.01 1.01 1.00

� = 0.2

 0.2

0.8 15.50 17.21 18.01 23.91 26.72 130.62 10.33 13.69 14.49 20.33 17.60 26.88 6.69 9.73 6.84 17.60 10.29 19.03

0.7 8.08 8.57 7.30 8.87 11.48 45.06 5.44 6.99 4.64 6.89 7.22 10.25 3.72 5.01 2.69 3.39 4.51 7.02

0.6 5.27 5.50 3.01 4.39 6.30 16.46 3.61 4.29 2.51 2.98 3.82 4.54 2.64 3.16 1.26 1.59 2.29 2.97

0.5 3.90 3.92 2.25 2.06 3.88 9.34 2.77 3.02 1.60 2.01 2.68 2.49 2.10 2.38 1.13 1.15 1.79 1.97

0.2 2.07 2.26 1.13 1.00 1.23 2.52 1.72 1.72 1.00 1.14 1.23 1.08 1.26 1.34 1.00 1.00 1.04 1.01

 0.5

0.8 12.28 10.34 14.71 13.20 23.71 19.39 9.19 8.45 9.57 9.38 18.80 15.26 6.18 6.00 5.54 7.31 13.03 10.84

0.7 6.54 5.26 4.75 4.03 12.07 7.68 4.90 4.11 3.33 3.08 8.95 6.33 3.48 3.24 2.33 2.42 5.17 4.04

0.6 4.09 3.36 2.58 2.01 5.87 3.58 3.30 2.64 1.88 1.47 4.67 3.07 2.43 2.13 1.43 1.49 2.58 2.07

0.5 3.14 2.48 1.42 1.27 3.78 1.97 2.48 1.95 1.26 1.17 2.71 1.77 1.93 1.65 1.13 1.19 1.62 1.26

0.2 1.84 1.39 1.00 1.00 1.30 1.02 1.59 1.15 1.02 1.00 1.07 1.00 1.18 1.05 1.00 1.00 1.02 1.01

 0.8

0.8 9.49 8.21 8.83 7.80 22.51 21.44 7.69 7.14 5.95 8.24 20.79 14.44 5.95 5.52 5.16 5.49 13.09 8.68

0.7 4.85 4.49 3.69 3.15 9.23 9.22 4.25 3.78 3.31 2.56 8.92 5.16 3.24 3.14 2.21 2.21 4.70 3.57

0.6 3.09 2.92 2.43 1.68 4.71 4.10 2.76 2.58 1.89 1.41 4.49 2.79 2.20 2.08 1.37 1.28 2.53 1.87

0.5 2.27 2.23 1.58 1.31 2.71 2.35 2.02 1.96 1.37 1.17 2.56 1.62 1.69 1.63 1.04 1.05 1.61 1.49

0.2 1.25 1.31 1.00 1.01 1.05 1.00 1.22 1.13 1.02 1.00 1.11 1.01 1.06 1.04 1.00 1.03 1.03 1.00



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6458  | https://doi.org/10.1038/s41598-024-56884-8

www.nature.com/scientificreports/

Table 7.  Predicted and error values of the CNN network for the LCM lifetime test.

No. of batch Row data (lifetime of failed units) Actual value Ej Predicted value Êj Error value Ej − Êj

101 1.23 2.75

102 1.30 2.75 2.82 − 0.07

103 1.34, 1.63 2.72 2.75 − 0.03

104 0.97, 1.61, 1.65 2.65 2.59 0.06

105 No failed unit 2.70 2.64 0.06

106 1.37 2.70 2.10 0.60

107 1.66 2.71 2.70 0.01

108 1.17 2.71 2.72 − 0.01

109 1.33 2.71 2.72 − 0.01

110 0.85, 0.92, 1.54 2.63 2.45 0.18

111 1.58 2.65 2.67 − 0.02

112 1.30, 1.40, 1.41 2.59 2.11 0.48

113 1.60, 1.73 2.58 1.88 0.70

114 No failed unit 2.63 2.62 0.01

115 1.47, 1.62 2.62 2.47 0.15

116 1.58 2.63 2.68 − 0.05

117 0.65, 1.56 2.60 2.62 − 0.02

118 No failed unit 2.65 2.73 − 0.08

119 0.28, 1.29 2.60 2.76 − 0.16

120 1.63, 1.67 2.59 2.82 − 0.23

121 0.28, 0.77, 0.95, 1.21, 1.39 2.42 2.62 − 0.20

122 0.54, 1.05, 1.20, 1.55 2.33 2.99 − 0.66

123 0.86, 1.50 2.33 2.67 − 0.34

124 1.06, 1.23, 1.51 2.30 2.65 − 0.35

125 0.51, 0.84, 1.19, 1.19, 1.70 2.18 3.09 − 0.91

126 0.37, 0.72, 1.17 2.13 2.66 − 0.53

127 0.42, 0.79, 0.80, 0.99, 1.00 1.99 2.19 − 0.20

128 0.51, 1.07, 1.31, 1.64 1.95 2.25 − 0.30

129 0.94, 1.18, 1.54 1.95 2.73 − 0.78

130 1.04, 1.17, 1.45 1.95 2.07 − 0.12

Figure 3.  Control charts for monitoring the LCM’s censored data.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due there are still 
some industrial projects in progress but are available from the corresponding author on reasonable request.
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