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Subsurface temperature estimates 
from a Regional Ocean Modelling 
System (ROMS) reanalysis provide 
accurate coral heat stress indices 
across the Main Hawaiian Islands
Jessica N. Perelman 1,2*, Kisei R. Tanaka 2, Joy N. Smith 1,2, Hannah C. Barkley 2 & 
Brian S. Powell 3

As ocean temperatures continue to rise, coral bleaching events around the globe are becoming 
stronger and more frequent. High-resolution temperature data is therefore critical for monitoring reef 
conditions to identify indicators of heat stress. Satellite and in situ measurements have historically 
been relied upon to study the thermal tolerances of coral reefs, but these data are quite limited in their 
spatial and temporal coverage. Ocean circulation models could provide an alternative or complement 
to these limited data, but a thorough evaluation against in situ measurements has yet to be conducted 
in any Pacific Islands region. Here we compared subsurface temperature measurements around the 
nearshore Main Hawaiian Islands (MHI) from 2010 to 2017 with temperature predictions from an 
operational Regional Ocean Modeling System (ROMS) to evaluate the potential utility of this model 
as a tool for coral reef management. We found that overall, the ROMS reanalysis presents accurate 
subsurface temperature predictions across the nearshore MHI region and captures a significant 
amount of observed temperature variability. The model recreates several temperature metrics 
used to identify coral heat stress, including predicting the 2014 and 2015 bleaching events around 
Hawaiʻi during the summer and fall months of those years. The MHI ROMS simulation proves to be a 
useful tool for coral reef management in the absence of, or to supplement, subsurface and satellite 
measurements across Hawaiʻi and likely for other Pacific Island regions.

Keywords Coral reef, Main Hawaiian Islands, Regional Ocean Modelling System (ROMS), Skill assessment, 
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The thermal environment around Hawaiʻi plays a critical role in coral reef ecosystems as elevated seawater 
temperatures are a primary driver of coral stressors such as  bleaching1. This phenomenon leaves corals vulner-
able to disease and mortality, and mass bleaching events around the globe are increasing in frequency due to 
warming ocean  temperatures2,3. Thus, understanding the temperature variability experienced by corals at depth 
is important for understanding and predicting their responses to changing ocean conditions. Historically, sci-
entists and resource managers have relied on in situ temperature measurements and satellite-derived sea surface 
temperatures (SST) to study the thermal tolerances of coral reefs around Hawaiʻi4,5. However, the spatiotemporal 
resolution of these measurements are quite limited; satellite data measures only a thin layer (“skin”) of surface 
waters and is limited to nightly temperatures, and in situ measurements are limited by the locations, depths, 
and times that they record data.

Ocean circulation models could provide an alternative or complementary approach to track surface and 
subsurface temperatures across nearshore habitats at much higher spatial and temporal resolutions. One such 
model is the Regional Ocean Modelling System  (ROMS6), a free-surface, terrain-following data assimilative ocean 
circulation model. ROMS is widely used by the scientific community to investigate both marine and freshwater 
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circulation patterns 7–9 and is supported by global contributors. For the Main Hawaiian Islands (MHI) region, 
ROMS has been implemented and maintained operationally by the Pacific Islands Ocean Observing System 
(PacIOOS) and provides temperature, salinity, and currents in four dimensions. The boundary conditions for 
ROMS are taken from the Hybrid Coordinate Ocean Model (HYCOM) at 1/12 degree and are specified daily. 
Every day, the model uses four-dimensional variational data assimilation (4D-Var) to incorporate the previous 
3 days of available observations and produces a 7 day  forecast10. A local, hi-resolution, Weather Regional Fore-
cast (WRF) provides the atmospheric forcing at approximately 6 km resolution, but the data assimilation alters 
the initial conditions, lateral forcing, and surface forcing in the model. A 10-year reanalysis of the MHI using 
ROMS was produced for the MHI by assimilating observations from surface measurements (satellite and high 
frequency radar) and depth profiles (Argo, Seagliders, and shipboard  CTD11. We refer to these reanalysis data 
as MHIA. In order to understand how well the MHIA reflects nearshore subsurface temperatures, a thorough 
evaluation against in situ measurements must be conducted across the MHI region.

Here we present a comprehensive skill assessment of MHIA subsurface temperatures for the MHI region 
to evaluate the reliability and biases of this reanalysis and its potential use as a tool for coral reef management. 
For comparison, we used in situ temperature data collected by subsurface temperature recorders (STR) that 
monitor thermal conditions at nearshore reef locations around the MHI. While ROMS has been previously 
assessed in other regions and  ecosystems12, this is the first comprehensive evaluation of MHIA temperature data 
in the Pacific Islands region. We aim to assess the feasibility of using MHIA as a tool for nearshore subsurface 
temperature monitoring for coral reef management. Importantly, we evaluate how accurately MHIA estimates 
temperature variability across several metrics used to identify heat stress in corals, including extreme heat or 
cold events. Given that this ocean model is intended to reflect offshore circulation patterns at a broader scale 
than point-source measurements, we expect to see significant bias in the modeled temperatures with respect to 
observations. This study provides evidence-based guidelines that can be used to promote the utility of numerical 
ocean circulation models for enhanced reef studies and management actions.

Methods
In situ subsurface temperature data collection
Subsurface temperature recorders (STR; Sea-Bird SBE56 temperature sensors; typical stability 0.0002 °C  month−1 
or 0.002 °C  year−1; initial accuracy ± 0.002 °C) were deployed at 25 locations across the MHI from Oct 2010 to 
May 2017 to monitor the thermal environment around coral reefs (Fig. 1; Supplementary Table S1). STRs initially 
deployed in 2010 were recovered every 3 years and newly serviced STRs with fresh batteries were re-deployed in 
the same exact location to obtain a continuous time series. Unfortunately, battery failure for several instruments 
during the 2013 deployment led to gaps in the time series data. The STRs were deployed and recovered as part of 
NOAA’s National Coral Reef Monitoring Program (NCRMP) at fixed-sites at depths approximately 5 m, 15 m, and 
25 m. This in situ data covers roughly the upper third of coral reef depth ranges around the MHI, as mesophotic 
reefs can extend to > 100 m. The MHIA data are saved as snapshots every three hours, while the STRs recorded 
temperature data every 5 min. In order to compare, the STR values were averaged over the intervals + /- 10 min 
around each 3-hourly MHIA record (5 measurements). Some STR data recovered in 2013 were only recorded 
every 30 min, so these were averaged in intervals ± 1 h around each 3-hourly MHIA record (5 measurements) to 
match the MHIA temporal resolution. Here, we assume that STR temperature measurements reflect true water 
temperatures against which to evaluate MHIA skill.

MHIA output served from PacIOOS was interpolated from the native ROMS grid onto fixed depth levels and 
provides modeled temperature across 36 depth strata from the surface to 5500 m at 3-h intervals from 2007 to 

Figure 1.  Map of STR locations around the Main Hawaiian Islands (MHI) with depth ranges and number of 
sites (n) indicated for each island. Letters correspond to panels in Fig. 3. Inset: photo of an STR deployed on reef 
(credit: Joy Smith). MHIA temperature data extraction and pairing.
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2017 at approximately 4-km spatial resolution in the study domain. While the original model has a 450-s time 
step, only 3-hourly snapshots (i.e., not averages) of the output are saved for storage purposes. Our validation 
study focuses on subsurface temperature outputs within the depth range of STR loggers (MHIA strata at 5, 10, 
20, and 30 m). MHIA temperature data were extracted from the PacIOOS ERDDAP server (https:// pae- paha. 
pacio os. hawaii. edu/ erddap/; accessed on 17 Mar 2023) and matched with STR times and locations (averaged 
across 3-h intervals) using the ‘rerddap’ package in R (version 1.0.013). External data assimilated into the MHIA 
temperature simulations did not include in situ observations from STRs.

Quantitative evaluations of MHIA model performance
For an overall comparison between temperature measurements, we used a Deming regression (‘SimplyAgree’ 
package in  R14 to estimate the linear relationship between MHIA and STR temperatures as follows:

A Deming regression is similar to a simple linear regression but is useful in cases where both variables contain 
measurement  error15,16, such is the case with both STR and MHIA temperatures. This regression minimizes the 
sum of distances in both variables to find the line of best fit while accounting for the error ratio ( � ) between the 
two datasets, which was estimated from the coefficients of variation (CV) as follows:

where MHIA and STR represent the mean MHIA and STR values. To further assess the model’s skill in represent-
ing observed subsurface temperatures, we employed a series of quantitative metrics for pairwise  comparisons17–19:

Correlation coefficient (r):

Bias (mean error):

Mean absolute error:

Root mean squared error (RMSE):

In the equations above, n represents the total number of STR-MHIA pairs, STRi and MHIAi represent the i th 
STR observation or MHIA value, and  STR and MHIA represent the mean STR observation or MHIA value. The 
correlation coefficient (r) measures the strength of correlation, or the degree to which changes in observed values 
predict changes to the modeled values. The mean error, absolute error, and root mean squared error (RMSE) all 
measure the magnitude of the differences between estimated and observed values. Mean error is a measure of 
the model bias, indicating the directionality of discrepancies between estimations and observations. The abso-
lute error and RMSE measure the total magnitude of the error, rather than the direction of these discrepancies.

In addition to calculating these broad scale metrics of overall model performance, we used Taylor diagrams 
to succinctly visualize the extent of pattern correspondence between modeled and observed temperatures on 
2D  plots20. Taylor diagrams relay several statistics, including the correlation, RMSE, and the ratio of normalized 
standard deviations of the modeled and observed data, allowing for a quick summary of these metrics across 
various spatial and temporal scales.

While Taylor diagrams provide an evaluation of model comparison across individual spatial or temporal 
scales, they do not address the additive effects of these potential biases on the model’s ability to accurately estimate 
observed data. Thus, we used a generalized additive modeling (GAM) framework to assess the potential spatial, 
temporal, and environmental biases of MHIA skill. GAMs combine properties of generalized linear models 
with additive models and allow for the incorporation of nonlinear relationships between predictor and response 
 variables21. Using the ‘mgcv’ package in  R22, we modeled MHIA bias (i.e., the difference between predicted and 
observed temperatures) as a function of the following predictors: depth (m), distance to shore (m), year, day of 
year, and location coordinates. The general formula for this nonparametric regression is:

where α is the intercept term, fi is the i th smoothing function, and xi is the i th predictor variable. The response 
variable, µ(x) , is related to the predictors via a link function, g() . Using MHIA bias as the response variable, we 

MHIA = α(STR)+ β

� =
(CVMHIA ∗MHIA)

2

(CVSTR ∗ STR)
2
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https://pae-paha.pacioos.hawaii.edu/erddap/
https://pae-paha.pacioos.hawaii.edu/erddap/
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fit a GAM with a Gaussian family (identity link) to evaluate how much the predictors listed above account for 
variance in the model error. Depth and distance to shore were fit using a cubic spline smooth function, day of 
year was fit using a cyclic cubic spline smooth function, year was fit as a categorical variable, and latitude and 
longitude were included as a tensor product, allowing these components to be weighted evenly. The few months 
of data prior to 2011 were excluded from the Taylor Diagrams and GAM analysis as this was the initial set up of 
the MHIA reanalysis and is considered spin up time.

Assessment of MHIA performance for coral reef management
Ocean temperature is closely linked to coral health; therefore, it is important that ocean models such as MHIA 
are able to capture the temperature variability reflected in in situ data in order to identify potential heat stress 
events on reef ecosystems. We therefore evaluated how accurately MHIA represents this variability across several 
temperature metrics used to identify heat  stress5. In particular, we assessed how well MHIA reflects monthly 
temperature anomalies, and thus its ability to capture extreme heat or cold events, observed from STR data. To 
do so, we calculated the monthly climatological temperatures from observed and modeled datasets between 2010 
and 2017. We then subtracted these monthly climatological temperatures from mean monthly temperatures 
within the respective datasets and compared the anomalies reflected in observed and modeled temperatures. In 
addition to monthly anomalies, we further evaluated how well MHIA reflects daily anomalies from the seasonal 
trend. To do so, we used Generalized Additive Models (GAMs) with daily temperatures fit as a function of 
day-of-year (cyclic cubic spline) to identify the seasonal trend from the MHIA and STR datasets  (r2 = 0.73 and 
0.70, respectively). We then used the residuals from each of these models as daily detrended temperatures, or 
temperatures with the seasonal trend removed.

High seawater temperatures alone do not account for all bleaching events. At marginal heat stress tempera-
tures, studies have shown that high temperature variance on short timescales (i.e., biweekly) can also be an 
indicator and predictor of coral  bleaching23. To describe this variance, the coefficient of variation (CV) is used to 
estimate temperature variance independent of the mean. Accordingly, we calculated 14-day temperature means 
and their associated CV throughout the MHIA and STR datasets and compared them using linear regressions 
to evaluate how well MHIA captures these heat stress metrics.

Another method with which to measure variability is to apply a power spectral density (PSD) analysis to 
the time series temperature data that identifies the fundamental periodicities present within a time series (e.g. 
diurnal cycles, tides). We used PSD analysis to compare the periodicities present within the observed and mod-
eled temperature data. For each dataset, we transformed frequency using the non-parametric Daniell-Kernal 
method to calculate smooth spectral density via centered moving  averages5,24. We then generated periodograms 
for each dataset using a fast Fourier  transform25, and converted the frequency axis of the periodograms to cycles 
per unit time by dividing the PSD frequency by the length of the sampling interval (3 h). Finally, we multiplied 
the spectral density by two so that the area under the periodograms curve matched the time series variance.

Results
MHIA skill assessment
We matched 229,225 subsurface temperature measurements with the MHIA reanalysis across the coastal MHI 
region. Raw temperature time series showed strong similarities between measured and modeled temperatures 
(Fig. 2a). The Deming regression revealed a significant positive relationship between overall STR and MHIA 
temperatures (p < 0.001; Fig. 2b), with MHIA slightly overestimating high temperatures and slightly underesti-
mating low temperatures.

The pairwise quantitative skill metrics further showed a very small difference between observed and modeled 
temperatures (Table 1), all suggesting that the MHIA model performed very well overall. At each STR site, the 
bias ranged from -0.16 to 0.38 °C (Fig. 3a) and the RMSE ranged from 0.33 to 0.55 °C (Fig. 3b).

Figure 2.  Raw subsurface temperature comparisons. (a) Daily subsurface temperature time series from MHIA 
(teal) and STR (black) datasets averaged across all sites. (b) Deming regression of 3-hourly MHIA (modeled) 
and STR (observed) subsurface temperatures across the MHI for the full time series (2010–2017). The red line 
indicates the fitted linear trend and the black dashed line represents the 1:1 line. Blue contours indicate density 
of points (light = high density).
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Table 1.  Summary of quantitative statistics for evaluating overall MHIA model skill in relation to subsurface 
temperature measurements.

Quantitative skill metrics

Correlation (r) 0.94

Bias 0.17 °C

Mean absolute error 0.35 °C

Root mean squared error (RMSE) 0.45 °C

Figure 3.  Maps of (a) mean MHIA bias and (b) root mean squared error (RMSE) for each STR location across 
the MHI. Units are °C. Lettered panels correspond to boxes in Fig. 1.
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Taylor diagrams provided several metrics to evaluate the skill of MHIA (Fig. 4). These diagrams show the 
correlation (outer black arc) and RMSE (inner gold arcs) between observed and modeled temperatures, and 
indicate how well the modeled temperature variability matches that of the observed temperature variability 
(standard deviation; dashed arc). The “observed” points on the x-axis represent the normalized observation, 
and modeled data lying nearest to this point agree well with observations. The diagrams revealed that MHIA 
performed very well across spatial scales (depth, distance from shore, island), with high correlation (r > 0.85), low 
RMSE (RMSE < 0.6 °C), and similar variability in modeled and observed data (Fig. 4a–c). Lānaʻi and Maui had 
slightly lower correlation and higher RMSE than the other islands, likely due to having the fewest STR sites, while 
Molokaiʻi and Niʻihau had the most similar variability between modeled and observed data. MHIA performance 
was similarly high across temporal scales (season, year; Fig. 4d, e). Across seasons, Oct-Dec performed slightly 
better than all other seasons (r = 0.94, RMSE = 0.4). Across years, 2011 and 2017 had slightly lower correlation and 
RMSE than other years, while variability in modeled compared to observed data differed most in 2012. MHIA 
performed well during Hawaiʻi’s recent coral bleaching years (2014 and 2015).

The GAM results additionally uncovered minor spatial and temporal biases in MHIA error, though the partial 
effect of any given predictor did not influence the error more than ± 0.45 °C. The GAM explained 25% of the 
total deviance in MHIA bias and all predictors were found to be significant (p < 0.001). When accounting for 

Figure 4.  Normalized Taylor diagrams for (a) depth, (b) distance offshore, (c) island, (d) season, and (e) year. 
The “observed” point on the x-axis represents the normalized observation, and modeled data lying nearest to 
this point agree well with observations. This point indicates high correlation (outer arc), low RMSE (gold arcs), 
and equal variability (dashed arc) between modeled and observed data.
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the additive effects of all predictors, MHIA appeared to perform well across depths (Fig. 5a) but slightly under-
estimated temperatures at greater distances from shore (Fig. 5b). Seasonally, MHIA slightly underestimated 
temperatures during the late winter and early spring and slightly overestimated during the early fall (Fig. 5c). 
Across years, MHIA had the greatest positive biases in 2014 and 2015, respectively (Fig. 5d).

Evaluation of heat stress metrics
A comparison of monthly temperature anomalies between the observed and modeled temperatures showed very 
similar temporal trends (Fig. 6a). MHIA slightly underestimated positive temperature anomalies and estimated 
lower than observed negative anomalies prior to 2013. During the fall of 2015, MHIA slightly overestimated a 
strongly positive temperature anomaly. Using the estimates  from11, we calculate average MHIA uncertainty for 
the upper 30 m of all the coastal temperatures to be 0.28 °C. Therefore, the differences between modeled and 
observed monthly anomalies throughout the time series are within the bounds of estimated error. Comparisons 
of daily detrended temperatures between the MHIA and STR temperatures likewise showed similar temporal 
trends (Fig. 6b). Several anomalously cold days that were observed in 2013, 2014, and 2015 were not reflected in 
the MHIA temperatures, and several observed days in 2013, 2015, and 2017 were estimated to be more anoma-
lously cold by the model than was observed by STR data. However, the vast majority of daily anomalies were well 
represented by the model and the differences between MHIA and STR temperatures were largely less than 0.5 °C.

Our evaluation of 14-day temperature metrics indicated that MHIA estimated mean subsurface temperatures 
across this time window nearly identical with those observed from in situ measurements at all depths  (r2 = 0.97; 
Fig. 7a). However, MHIA largely underestimated biweekly CV values  (r2 = 0.55; Fig. 7b), indicating that it did 
not estimate variance at biweekly timescales as well. The trend in biweekly CV across the nearshore MHI region 
increased annually throughout the time series in both STR and MHIA estimates, though MHIA estimates of this 
metric were usually slightly lower than STR estimates (Fig. 7c).

The PSD analysis showed that MHIA estimated the same cycles of variability throughout the temperature 
time series as the observed data (Fig. 8). Peaks in the periodogram, representing high temperature variation, 
were observed in both datasets at 9, 11.5, 12.5, 15.1, 15.7, 18, and 24 h. While the original MHIA model resolves 
periods as low as 15 min, with 3-hourly output, we can only present periods as low as 6-hourly. As shown in Fig. 8, 
the MHIA captures the same periods of elevated energy as identified by the STR; however, the MHIA has lower 
energy in the 8–18 h bands (except at the semidiurnal tides that are similar in energy). As there are a number 
of dynamics that can influence temperatures at these frequencies, one major reason for this energy difference 
is wind variability. The MHIA is run with 3-hourly winds, which would suppress coastal wind variability that 
would alter winds at these higher frequencies.

Discussion
Accurately monitoring temperatures at depth is critical for understanding heat stress on coral reefs and predicting 
bleaching events. The temperatures and variability experienced by corals can be very different from sea surface 
values measured from orbit, and deeper corals may be adapted to lower temperatures or reduced variability com-
pared to those near the  surface26. In addition to the MHIA ocean circulation model, there are also remote-sensing 
observations, particularly from satellite SST. NOAA Coral Reef Watch (CRW) provides 5 km blended satellite 

Figure 5.  Results from the generalized additive model (GAM) showing partial effects of spatial, temporal, and 
environmental variables on MHIA bias: (a) depth, (b) distance offshore, (c) day of year, and (d) year. Solid lines 
represent the smoothed model fits and grey shaded regions show the 95% confidence intervals. In (d), 2011 was 
used as a baseline to which all other years are compared.
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SST products for coral reef research that have been crucial to the development of coral heat stress metrics. We 
compared CRW SST measurements to the in situ temperature data from STRs and found that the comparisons 
were similarly robust to the model estimates (r = 0.96; bias = 0.08 °C; RMSE = 0.32 °C). However, SST does not 
provide additional subsurface information from the data loggers; whereas, the model provides the temporal and 
spatial structure of the ocean that is responsible for the temperatures observed. Satellite SST products alone may 
not reflect the most relevant temperature metrics for corals. Thus, it is essential to supplement SST with reliable 
and high-resolution subsurface temperature data in order to manage these increasingly vulnerable ecosystems.

MHIA accurately estimates subsurface temperatures
The MHI region is influenced by dynamic oceanography. The westward North Equatorial Current flows around 
the island chain after encountering the island of Hawaiʻi, while mesoscale eddies and currents form in the lee 
of the islands as consistent northeast trade winds interact with island  topography27,28. MHIA was designed to 
capture these offshore dynamics with a 4 km horizontal resolution. Each grid cell may represent a volume of 160 
million liters as compared to a point observation from instruments such as STR that sample around 1 L. Despite 
the model representing a much larger volume than the STR, this study finds that the model performs very well at 
shallow nearshore sites (well within the analysis error of the model) and estimates of the subsurface temperatures 
to ~ 30 m depth compare well around the MHI. This is partially because Hawaiʻi and other Pacific Islands are 
uniquely exposed to open ocean conditions and more directly influenced by offshore dynamics.

MHIA temperatures were highly correlated with STR data and had minimal overall bias (< 0.2 °C) across all 
sites. By comparison, a skill assessment of a ROMS configuration in the Barents Sea found subsurface temperature 
biases on the order of 0.5°C12, and an assessment of the Finite Volume Community Ocean Model (FVCOM) in 
the Northwest Atlantic Shelf found an overall temperature bias of 0.04°C18. However, these studies evaluated 
temperatures down to several hundred meters. Accordingly, a future expansion of the analyses presented here 
should aim to validate deeper depths across Hawaiʻi as well as other U.S. Pacific Islands where PacIOOS ROMS 
operates (e.g., Guam, American Samoa).

One limitation of assessing MHIA temperature estimations against subsurface measurements is that we rely 
on the assumption that the STR measurements represent true in situ temperatures. Some temperature loggers 
have instrumental drift due to biofouling, as they are left untouched for three years at a time. Nevertheless, the 
temperature accuracy of the STRs is ± 0.002 °C, which is substantially better than that of the MHIA model or 
SST, and the instruments were calibrated before and after deployment to assess potential drift (< 0.002 °C  year−1). 
The STRs provide the most robust time series of subsurface temperature measurements within MHI coral reef 
habitats and allowed us to conduct a thorough skill assessment of modeled temperature outputs.

Figure 6.  Subsurface temperature anomalies. (a) Monthly temperature anomalies calculated for the MHIA 
(solid) and STR (dashed) time series. Anomalies were calculated using 2010–2017 climatologies for each dataset. 
b) Daily temperature anomalies from the seasonal trend (i.e., detrended temperatures) calculated for the MHIA 
(teal) and STR (black) time series. The bottom panel shows the daily differences (observed–modelled) between 
detrended temperatures.
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Modeled temperatures capture most, but not all, variability in observed data
MHIA temperature estimates appeared to be robust across spatial (i.e., depth, distance from shore, island) and 
temporal (i.e., season, year) scales. The Taylor diagrams suggest that modeled temperatures were slightly more 
representative of observations during the fall (Oct-Dec; Fig. 4d), while the GAM results suggest that MHIA were 
closest to observations during the late spring (Fig. 5d). Late summer and early fall temperatures (Aug-Oct) were 
slightly overestimated by MHIA according to the GAM. Temperature accuracy during these months is most 

Figure 7.  Linear regressions for MHIA (modeled) and STR (observed) biweekly temperature (a) means and (b) 
coefficients of variance (CV) across all STR depths for the full MHI time series (2010–2017). The dashed line 
represents the 1:1 line and the red line indicates the fitted linear trend. (c) Time series of biweekly CV during 
peak bleaching times (Jul–Oct) calculated from MHIA estimates and STR measurements.

Figure 8.  Power Spectral Density (PSD) results from the STR (black) and MHIA (teal) temperature time series 
presented in a periodogram. Peaks in PSD indicate cycles of temperature variability at the time cycles labeled on 
the x-axis.
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critical as coral stress and bleaching potential is greatest during the summer-fall, and while seasonal differences 
in MHIA estimation accuracy were minimal, they are important to consider.

The GAM results indicate that 2014 and 2015 had the highest positive MHIA bias with respect to the 2011 
baseline. 2015 also had the highest positive subsurface temperature anomaly in our time series (Fig. 6a), which 
indicates that MHIA slightly overestimated this strong temperature anomaly. Warm SST anomalies have occurred 
around Hawaiʻi since 2013, but in 2015 Hawaiʻi experienced record-breaking summer temperatures and the 
highest positive SST anomalies observed in  decades29. Thus, it appears that MHIA may slightly overestimate the 
extent of extreme warm events. However, one would expect errors in the MHIA temperature estimates on the 
order of > 0.28 °C given that each STR point is matched with a MHIA output roughly 160 million times greater 
in volume. Therefore, the differences between modeled and observed temperature anomalies were always within 
the uncertainty bounds of the estimations and the two time series cannot be viewed as significantly different. At 
the daily scale, MHIA did not reflect the coldest temperature anomalies in the time series (Fig. 6b). This suggests 
that the model may be limited in capturing short-lived cold events that can likewise have negative impacts to 
reef  health30,31. Nevertheless, the majority of daily anomalies were well represented by the model and differences 
between the detrended temperature datasets were generally within the uncertainty bounds of the estimations.

Overall, 3-hourly MHIA temperatures were well matched with in situ temperatures throughout the time 
series (Fig. 2b). At timescales relevant to coral bleaching (i.e., biweekly), MHIA subsurface temperatures likewise 
represented in situ temperatures very well (Fig. 7a). However, modeled temperature variability was underesti-
mated at this time scale (Fig. 7b,c), suggesting that biweekly CV may not be as reliable as other heat stress metrics 
represented by MHIA. Accordingly, biweekly CV stood out as particularly high in the STR dataset (beyond the 
generally increasing trend) during the summer and early fall of 2015 when Hawaiʻi experienced record high 
seawater temperatures, but did not stand out beyond the increasing trend in the MHIA estimates. Thus, MHIA 
underestimates biweekly CV as produced by the observations, so by this metric the model will be more con-
servative than the observations in estimating potential bleaching conditions. Still, this variance was significantly 
positively correlated between modeled and observed data and is likely useful.

We also found that MHIA reflected cycles of temperature variability throughout the time series accurately, 
though for a band of frequencies at a lower energy as observed in STR data (Fig. 8). Subsurface temperatures 
are affected by solar heating (and nighttime cooling), mixing, eddies, and upwelling at varying spatiotemporal 
scales. Hawaiʻi’s mixed-semidiurnal tides have a strong influence on nearshore subsurface temperature, which 
generally have changes in ebb and flow every ~ 6 h. Internal waves, which are generated around Hawaiʻi from 
interactions between tidal currents, stratification, and underwater  topography32, also have a strong effect on 
temperatures around the MHI. The dominant internal tide around the MHI is  M2 (12.42 h), which is revealed 
by both STR and MHIA. The diurnal tides do not produce significant internal tides around the islands as shown 
by very little energy at the 24-h period.

MHIA as a tool for coral reef management
Obtaining high resolution temperature data at the depths and locations of vulnerable corals is essential for the 
management and conservation of reef ecosystems. But, monitoring the thermal environment of every reef at every 
time point would require significant time and resources to maintain and is largely infeasible. We have evaluated 
the ability of MHIA to recreate these subsurface temperatures across Hawaiʻi nearshore habitats and whether 
it can be used to complement or replace in situ data as needed. For assessing mean temperature conditions at 
various timescales, the model appears to be very accurate and provides robust estimates of the general thermal 
regime across the nearshore MHI. MHIA has very minimal errors with respect to temperature loggers (generally 
much less than 1 °C), accurately reflects monthly temperature anomalies, and largely captures the same cycles of 
variability observed from subsurface measurements. This suggests that MHIA may be useful for tracking potential 
coral bleaching conditions using several of the commonly employed heat stress metrics. It is important to note 
that very shallow reefs can experience significant coral bleaching due to high temperature variability in surface 
waters, and our study is limited to evaluating the utility of MHIA for reef systems greater than ~ 5 m.

There are some heat stress metrics that are not reproduced as robustly by the model, including biweekly CV 
as an indicator of variability. However, there is a significant positive correlation  (r2 = 0.4) between estimated 
and observed CV, suggesting that there may still be some utility in calculating this metric from MHIA. The 
impact of temperature variance on coral bleaching prevalence can further be evaluated from PSD analyses. 
While MHIA captures the same cycles of temperature variability as those detected in measurements, the model 
does not represent the same amount of energy outside of the dominant peaks. This suggests that fine-scale (i.e., 
sub-daily, daily) temperature variance calculated from the model’s 3-hourly outputs may not always reflect true 
conditions when trying to correlate these cycles with bleaching events. Consequently, heat stress metrics that 
focus on temperature variability across shorter time scales may not be as consistently represented by modeled 
temperatures. High-frequency cooling events such as internal bores also play an important role in ameliorating 
thermal stress to corals, as has been found in MHI shallow coral reefs and  elsewhere33,34. While these events are 
captured by the STRs, they are not reflected in the 3-hourly estimates produced by MHIA.

Hawaiʻi experienced major coral bleaching in 2014 and  201535,36 as one of many regions influenced by a 
global bleaching event from 2014 to  201737. Importantly, both STR and MHIA temperature data identified the 
same months that had anomalously high temperatures in 2014 and 2015 (Fig. 6a). These matched the bleaching 
and SST anomalies around Hawaiʻi that peaked during the summer and fall months of those  years2,29. Thus, 
for stress metrics like heat accumulation over longer time scales (i.e., weeks, months), MHIA may be useful 
for monitoring potential bleaching conditions in nearshore MHI waters. These data could directly be used for 
management, such as by pairing subsurface MHIA temperatures and thermal stress metrics with long-term 
monitoring data to identify areas where corals are particularly vulnerable or resilient to warming. The data 
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may also help identify thermal refugia where restoration efforts can be prioritized. While satellite-derived SST 
provides a robust estimate of the subsurface temperatures recorded by STR around Hawaiʻi, MHIA provides 

Figure 9.  Modeled heat signals during the 2015 bleaching event. (a) Maps showing the difference between 
MHIA temperature anomalies at 10 m, 20 m, and 30 m relative to surface temperature anomalies for September 
2015. Anomalies for September 2015 were calculated from within the timeframe evaluated in this study (2010–
2017). (b) Density plot showing the differences in temperature anomalies across depths for September 2015.
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environmental data (temperature, salinity, velocity) at all reef depths. MHIA has the ability to identify potential 
differences between surface and subsurface temperatures, which is particularly useful for coral reef management 
and in regions where reef habitats are not well mixed with surface temperatures. By providing a more detailed 
understanding of the coral reef relevant thermal environment, MHIA can aid in predicting and mitigating the 
impacts of climate change, such as coral bleaching events. During the 2015 bleaching event across the MHI, 
heat signals that differed across depths can be visualized from the model but are not discernable from surface 
satellite measurements (Fig. 9).

Overall, MHIA demonstrates high accuracy across the nearshore MHI region and captures a significant 
amount of observed subsurface temperature variability. This is partially due to the exposed open ocean condi-
tions and more direct influence of offshore dynamics experienced by Pacific Island regions. As such, MHIA 
temperature estimates prove to be a useful tool for coral reef management in the absence of, or to supplement, 
subsurface measurements across Hawaiʻi and likely for other Pacific Island regions.

Data availability
The STR data used in this study is publicly available via https:// www. ncei. noaa. gov/ erddap/ table dap/ CRCP_ 
Subsu rface_ Temp_ Hawaii. html and the ROMS temperature reanalysis data is publicly available via https:// pae- 
paha. pacio os. hawaii. edu/ erddap/ gridd ap/ roms_ hiig_ reana lysis. html. R code is available via https:// github. com/ 
jnper elm/ MHI_ ROMSv al.

Received: 18 May 2023; Accepted: 12 March 2024

References
 1. Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, S129–S138 (1997).
 2. Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monu-

ment (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).
 3. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
 4. Colin, P. L. & Johnston, T. S. Measuring temperature in coral reef environments: Experience, lessons, and results from Palau. J. 

Mar. Sci. Eng. 8, 680 (2020).
 5. Smith, J., Halperin, A. & Barkley, H. A ‘Perfect Storm’ of Cumulative and Acute Heat Stress, and a Warming Trend, Lead to Bleaching 

Events in Tutuila, American Samoa (2022).
 6. Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-

following-coordinate oceanic model. Ocean Model. 9, 347–404 (2005).
 7. Nagy, H., Di Lorenzo, E. & El-Gindy, A. The impact of climate change on circulation patterns in the Eastern Mediterranean Sea 

upper layer using Med-ROMS model. Prog. Oceanogr. 175, 226–244 (2019).
 8. Neveu, E. et al. An historical analysis of the California Current circulation using ROMS 4D-Var: System configuration and diag-

nostics. Ocean Model. 99, 133–151 (2016).
 9. Nyamweya, C. et al. Simulation of Lake Victoria circulation patterns using the regional ocean modeling system (ROMS). PLoS 

One 11, e0151272 (2016).
 10. Matthews, D., Powell, B. S. & Janeković, I. Analysis of four-dimensional variational state estimation of the Hawaiian waters. J. 

Geophys. Res. Oceans 117, 3013 (2012).
 11. Partridge, D., Friedrich, T. & Powell, B. S. Reanalysis of the PacIOOS Hawaiian Island Ocean Forecast System, an implementation 

of the Regional Ocean Modeling System v3.6. Geosci. Model Dev. 12, 195–213 (2019).
 12. Haidvogel, D. B. et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean 

Modeling System. J. Comput. Phys. 227, 3595–3624 (2008).
 13. Chamberlain, S., Tupper, B. & Mendelssohn, R. Rerddap: General Purpose Client for ‘ERDDAP’ Servers. R Package Version 100 

(2022).
 14. Caldwell, A. R. SimplyAgree: An R package and jamovi module for simplifying agreement and reliability analyses. J. Open Source 

Softw. 7, 4148 (2022).
 15. Deming, W. E. Statistical Adjustment of Data (1943).
 16. Linnet, K. Estimation of the linear relationship between the measurements of two methods with proportional errors. Stat. Med. 

9, 1463–1473 (1990).
 17. Fitzpatrick, J. J. Assessing skill of estuarine and coastal eutrophication models for water quality managers. J. Mar. Syst. 76, 195–211 

(2009).
 18. Li, B., Tanaka, K. R., Chen, Y., Brady, D. C. & Thomas, A. C. Assessing the quality of bottom water temperatures from the Finite-

Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region. J. Mar. Syst. 173, 21–30 (2017).
 19. Stow, C. A. et al. Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 76, 4–15 (2009).
 20. Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 

(2001).
 21. Hastie, T. & Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 82, 371–386 (1987).
 22. Wood, S. Package ‘mgcv’. R Package Version 18–40 (2022).
 23. Sammarco, P. W., Winter, A. & Stewart, J. C. Coefficient of variation of sea surface temperature (SST) as an indicator of coral 

bleaching. Mar. Biol. 149, 1337–1344 (2006).
 24. Shumway, R. H., Stoffer, D. S. & Stoffer, D. S. Time Series Analysis and Its Applications. Vol. 3 (Springer, 2000).
 25. Bloomfield, P. Fourier Analysis of Time Series: An Introduction (Wiley, 2013).
 26. Venegas, R. M. et al. The rarity of depth refugia from coral bleaching heat stress in the Western and Central Pacific Islands. Sci. 

Rep. 9, 19710 (2019).
 27. Calil, P. H. R., Richards, K. J., Jia, Y. & Bidigare, R. R. Eddy activity in the lee of the Hawaiian Islands. Deep Sea Res. Part II Top. 

Stud. Oceanogr. 55, 1179–1194 (2008).
 28. Lumpkin, C. F. Eddies and Currents of the Hawaiian Islands (University of Hawai’i at Manoa, 1998).
 29. Takahashi, N. et al. Formation mechanism of warm SST anomalies in 2010s around Hawaii. J. Geophys. Res. Oceans 126, 

e2021JC017763 (2021).
 30. Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).
 31. Kemp, D. W. et al. Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob. 

Change Biol. 17, 3468–3477 (2011).

https://www.ncei.noaa.gov/erddap/tabledap/CRCP_Subsurface_Temp_Hawaii.html
https://www.ncei.noaa.gov/erddap/tabledap/CRCP_Subsurface_Temp_Hawaii.html
https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_hiig_reanalysis.html
https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_hiig_reanalysis.html
https://github.com/jnperelm/MHI_ROMSval
https://github.com/jnperelm/MHI_ROMSval


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6620  | https://doi.org/10.1038/s41598-024-56865-x

www.nature.com/scientificreports/

 32. Smith, K. A. et al. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. Cont. Shelf 
Res. 230, 104558 (2021).

 33. Storlazzi, C. D., Field, M. E., Cheriton, O. M., Presto, M. K. & Logan, J. B. Rapid fluctuations in flow and water-column properties 
in Asan Bay, Guam: Implications for selective resilience of coral reefs in warming seas. Coral Reefs 32, 949–961 (2013).

 34. Storlazzi, C. D. & Jaffe, B. E. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing 
coral reef: West Maui, Hawaii. Estuar. Coast. Shelf Sci. 77, 549–564 (2008).

 35. Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front. 
Mar. Sci. 4, 122 (2017).

 36. Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Donà, A. R. Patterns of bleaching and mortality following widespread warming events 
in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).

 37. Eakin, C. et al. Global coral bleaching 2014–2017: Status and an appeal for observations. Reef Encount. 31, 20–26 (2016).

Acknowledgements
The authors would like to thank the crew and scientists involved in deployment and retrieval of the subsurface 
temperature loggers (STRs). We would like to thank Ryan Rykaczewski for providing feedback on early drafts 
of the manuscript, as well as Justin Suca for his input on the generalized additive model structure. STRs were 
deployed as part of the National Coral Reef Monitoring Program (NCRMP), funded under NOAA’s Coral Reef 
Conservation Program Project No. 743. The Pacific Islands Regional Office (PIRO) Habitat Conservation Divi-
sion funded the data analysis.

Author contributions
JNP conducted analyses and wrote the paper. KRT proposed research and secured funding, and JNP and KRT 
developed project ideas and goals. HCB and JNS led data collection and maintenance of STRs, and JNS assisted 
with the power spectral density analysis. BSP provided input, feedback, and context about MHIA utility and 
data. KRT, HCB, JNS, and BSP all contributed to manuscript revisions.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 56865-x.

Correspondence and requests for materials should be addressed to J.N.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2024

https://doi.org/10.1038/s41598-024-56865-x
https://doi.org/10.1038/s41598-024-56865-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Subsurface temperature estimates from a Regional Ocean Modelling System (ROMS) reanalysis provide accurate coral heat stress indices across the Main Hawaiian Islands
	Methods
	In situ subsurface temperature data collection
	Quantitative evaluations of MHIA model performance
	Assessment of MHIA performance for coral reef management

	Results
	MHIA skill assessment
	Evaluation of heat stress metrics

	Discussion
	MHIA accurately estimates subsurface temperatures
	Modeled temperatures capture most, but not all, variability in observed data
	MHIA as a tool for coral reef management

	References
	Acknowledgements


