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Efficient quantum algorithms 
for set operations
Rehab Elgendy 1*, Ahmed Younes 2,3,4, H. M. Abu‑Donia 1,4 & R. M. Farouk 1,4

Analyzing the relations between Boolean functions has many applications in many fields, such 
as database systems, cryptography, and collision problems. This paper proposes four quantum 
algorithms that use amplitude amplification techniques to perform set operations, including 
Intersection, Difference, and Union, on two Boolean functions in O(

√

N ) time complexity. The 
proposed algorithms employ two quantum amplitude amplification techniques divided into two 
stages. The first stage uses the Younes et al. algorithm for quantum searching via entanglement and 
partial diffusion to prepare incomplete superpositions of the truth set of the first Boolean function. 
In the second stage, a modified version of Arima’s algorithm, along with an oracle that represent the 
second Boolean function, is employed to handle the set operations. The proposed algorithms have a 
higher probability of success in more general and comprehensive applications when compared with 
relevant techniques in literature.

Keywords Set operations, Quantum search algorithm, Union, Intersection, Difference, Amplitude 
amplification, Incomplete superposition

Quantum  computers1–3 are probabilistic devices that can speed up computations compared to classical 
 computers4,5. Many quantum algorithms have been  presented6–12. For instance, Shor’s  algorithm10 is a polynomial-
time algorithm to obtain the prime factors of an integer n.  Grover6 presented a quantum search algorithm to look 
for an item among an unstructured list of N  items with a quadratic speedup compared to classical algorithms. 
Grover’s algorithm has motivated researchers to analyze and; or generalize his  algorithm13–18. Grover’s search 
algorithm is optimal in the case of a single match in the search space; increasing iterations of Grover’s algorithm 
makes the problem more  complicated19. Grover’s algorithm is effective when the distribution of the dataset in the 
initial amplitude is  uniform20–22. Another quantum search algorithm is Ventura’s  algorithm22, which generalizes 
the Grover algorithm and is effective when the distribution of the dataset in the initial amplitude is not  uniform20. 
Arima’s search  algorithm21 also generalizes the Grover algorithm and improves Ventura’s algorithm’s performance.

Set operations are crucial in data analysis and organization when handling sets. There are four operations: 
intersection, difference, union, and complement. The intersection operation identifies shared elements among 
sets, while the difference operation extracts elements from one set compared to another. The union operation 
combines elements from sets without repetition. The complement represents all elements not included in a 
specific set from the universal set. Set operations find use in fields such as data analysis for merging datasets, 
pinpointing commonalities, and removing redundant information. In computer science, they are vital for algo-
rithms related to searching, sorting, and optimizing data structures. Additionally, in databases and information 
retrieval systems, set operations support querying and manipulation of  datasets23. Moreover, set operations are 
utilized in intelligence tasks such as training networks and optimizing machine learning  models24,25. They are 
also used in algorithms related to graph theory and  networking26. By applying principles from quantum com-
puting, set operations can be carried out with increased efficiency and computational power compared to other 
methods. Quantum algorithms, like those outlined in this paper, offer benefits over conventional set operations. 
These quantum algorithms make use of amplitude amplification techniques that allow for the completion of set 
operations such as intersection, Difference and Union in O(

√
N ) . This marks an enhancement in efficiency when 

compared to related  algorithms27–29. Moreover, the incorporation of quantum search algorithms such as Younes 
et al.’s algorithm and a modified version of Arima’s algorithm makes it possible to leverage quantum entangle-
ment and partial diffusion, resulting in higher success rates and broader applications. These advancements in 
quantum algorithms for set operations provides an advancement compared to traditional methods, paving the 
way for new opportunities in database systems, cryptography, and collision problem  domains24,25,30,31.
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In 2000, Heiligman presented an algorithm that requires O(N
3
4 logN ) to find matches between two 

 databases32. In 2003, Younes et al. presented a quantum  algorithm18 to find multiple solutions to the oracle Uf  in 
O
(√

N /C
)

 , where C is the number of common entries. In 2005, P. Mateus presented a quantum  algorithm33 for 
closest pattern matching of size m in O

(√
S

)

 where S is the size of the string. In 2012, A. Tulsi presented a 
quantum  algorithm34 to find a single common element between two sets in O

(√
N

)

 . In 2013, Pang et al. pre-
sented a quantum  algorithm27 for set operations. Pang et al. found common intersected elements between two 
sets A and B using a similar algorithm proposed in this  paper15 in O(|A| × |B| × |I|) for set operation I = A ∩ B . 
In 2017, K. El-Wazan presented an  algorithm28 that solves the problem: Given L databases of unstructured 
entries, find the common entries C between those databases in O

(

L
√
M

)

 , where M is the number of records 
for each database. K. El-Wazan’s algorithm proved that when the given L databases are of the same size, it will 
require O

(

L
√
M/C

)

 oracle calls. Moreover, the performance of K. El-Wazan’s algorithm is more reliable in the 
case of multiple matches. In 2020, A. Kiss and K. Varga presented an  algorithm35 to combine two oracles and 
determine how similar they are using the Deutsch–Jozsa algorithm. In this case, being similar means that the 
sets of marked states have just few ones outside their intersection. In 2020, S. Jóczik and A. Kiss presented an 
 algorithm29 to find the set operations between two sets in O

(√
N

)

 using Grover’s algorithm.
The aim of the paper is to propose quantum algorithms to find the Intersection, Difference and Union between 

any two Boolean functions. The proposed algorithms consist of two stages: the first stage uses an oracle that rep-
resents the first Boolean function to prepare an incomplete superposition of a search space of the truth set of the 
first Boolean function using the Younes et al. algorithm for quantum searching via  entanglement36. The second 
stage uses an oracle that represents the second Boolean function to search for a solution that represents the result 
of the set operator in the prepared incomplete superposition using an updated version of Arima’s algorithm for 
incomplete superposition  searching21. This paper presents four new quantum algorithms designed to carry out 
set operations on functions. Specifically, the paper outlines the following algorithms: 

1. Two quantum algorithms are introduced that effectively identify both True and False intersections between 
two Boolean functions.

2. Another quantum algorithm is detailed for computing the difference between two Boolean functions.
3. Additionally, a quantum algorithm is described for determining the union between two Boolean functions.

The paper’s organization is as follows: Section 2 includes the required background and the quantum search algo-
rithms applied in the proposed algorithms. Section 3 proposes the quantum algorithms to find the intersection, 
the difference and the union between two Boolean functions and applies an example to each proposed algorithm. 
Section 4 analysis of the searching phase. Section 5 discusses the proposed algorithm. Section 6 concludes the 
paper and mentions future work.

Background
Set operations on Boolean functions
A Boolean function f is a function whose variables (arguments) take the values 0 (False) or 1 (True), i.e., f can 
be represented as follows f : Yn → Y  , such that Y = {0, 1} . The domain Yn of f is the set of 2n binary vectors.

Let f F ⊆ Yn be the set of binary vectors where the Boolean function f evaluated to False and f T ⊆ Yn be the 
set of binary vectors where the Boolean function f evaluated to True, where f T ∪ f F = Yn.

Let f1 and f2 be two Boolean functions; we define the set operations over Boolean functions as follows: 

1. Intersection: f1 ∩ f2 to be the set of binary vectors that evaluates both f1 and f2 to True at the same time, i. e. 
f1 ∩ f2 = f T1 ∩ f T2 .

2. Union: f1 ∪ f2 to be the set of binary vectors that evaluates either f1 or f2 to True, i.e. f1 ∪ f2 = f T1 ∪ f T2 .
3. Difference: f1 − f2 to be the set of binary vectors that evaluates f1 to True and evaluates f2 to False, i. e. 

f1 − f2 = f T1 − f T2  such that f1 − f2 �= f2 − f1.

Example  L et  n = 4  then Yn = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} ,  where  the  integers 
in Yn represent the integer representation of the binary vectors. Given two Boolean functions f1 
and f2 such that f T1 = {0, 1, 3, 5, 7, 11, 15} and f T2 = {0, 2, 3, 6, 7, 8, 15} then f1 ∩ f2 = {0, 3, 7, 15} , 
f1 ∪ f2 = {0, 1, 2, 3, 5, 6, 7, 8, 11, 15} , f1 − f2 = {1, 5, 11} and f2 − f1 = {2, 6, 8}.

Quantum computing
The quantum bit or  qubit37 is the elementary unit of the data in quantum computing. The qubit can be in a combi-
nation of |0� and |1� in a linear superposition as shown in Eq. 1, where α , β are complex numbers representing the 
probabilistic amplitudes of |0� and |1� respectively, and the condition in Eq. 2 must be satisfied by the  amplitudes38,

and

(1)|ψ� = α |0� + β |1�,
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where |α|2 = α.α∗,α∗ is the complex conjugate transpose of α . When a measurement is carried out, the super-
position is collapsed to one of the states in a probabilistic way, i. e., the superposition is collapsed to |0� with 
probability |α|2 and |1� with probability |β|2.

Entanglement is one of the quantum features in which the quantum state has to be described for the whole 
 system39, and each object of the quantum system cannot be described independently. Another property of quan-
tum computing is parallelism, where it takes a quantum computer a single step to operate on n inputs with a 
single gate. In contrast, the classical computer takes 2n steps for the same input size. Parallelism performs multiple 
operations at a time and does not require additional hardware or wait for other processes to complete. Quantum 
gates are unitary  operators19, supposing that a gate has n inputs, and then it can be represented as 2n × 2n unitary 

matrix assuming that state |0� =
[

1
0

]

 and state|1� =
[

0
1

]

.

    Some of the quantum  gates40 which will be used in the paper are:
The X gate is similar to the NOT gate in classical computers, where it maps |0� to |1� and |1� to |0� as shown in 

the following equation:

 The Hadamard gate has the following effect when applied on |0� and |1�:

 The Z gate that does not vary the state|0� but it converts |1� to −|1� as shown in the following

Quantum circuits are a cascade of basic quantum gates to carry out a specific operation.

Quantum searching algorithms
This section reviews the four quantum algorithms that will be used in the proposed algorithm: Grover’s algorithm 
for searching an unstructured database uses Grover’s diffusion operator G (inversion about the mean)36. Younes 
et al. algorithm for searching an unstructured list using a quantum operator Dp that performs the inversion 
about the mean only on a subspace of the system (Partial Diffusion Operator)36. Ventura’s algorithm searches in 
an incomplete superposition when the initial amplitude distribution of the dataset is non-uniform, and Arima’s 
algorithm improved Ventura’s algorithm to increase the probability of  results21.

Grover’s algorithm
Grover presented a quantum algorithm to search an unstructured database of N  items in O

(√
N

)

 . Grover’s 
algorithm prepares a quantum register with n+ 1 qubits in a uniform superposition of qubits where the first n 
qubits are initialized to the state |0� and an extra workspace qubit initialized to the state |1�36,

Then, the following steps must be iterated approximately 
⌊

π
√
N
4

⌋

 times, where ⌊⌋ is the floor operation.
Grover’s algorithm applies Hadamard gates on the n+ 1 qubits as follows:

After that, it applies the oracle operator OG that provides the amplitudes of the matches phase shift of eiπ36 and 
evaluates a Boolean function fG : {0, 1}n → {0, 1} as shown in Eq. 11.

(2)|α|2 + |β|2 = 1,

(3)X. |0� =
[

0 1
1 0

]

.

[

1
0

]

=
[

0
1

]

= |1�,

(4)X. |1� =
[

0 1
1 0

]

.

[

0
1

]

=
[

1
0

]

= |0�.

(5)H . |0� = 1√
2

[

1 1
1 − 1

]

.

[

1
0

]

= 1√
2

[

1
1

]

= 1√
2
( |0� + |1�),

(6)H . |1� = 1√
2

[

1 1
1 − 1

]

.

[

0
1

]

= 1√
2

[

1
−1

]

= 1√
2
( |0� − |1�).

(7)Z. |0� =
[

1 0
0 − 1

]

.

[

1
0

]

=
[

1
0

]

= |0�,

(8)Z. |1� =
[

1 0
0 − 1

]

.

[

0
1

]

=
[

0
−1

]

= −|1�.

(9)|ψG0� = |0�⊗n ⊗ |1�,

(10)|ψG1� =
1√
N

N−1
∑

r=0

|r� ⊗
[ |0� − |1�√

2

]

.
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The algorithm then applies the diffusion operator G on the first n qubits to make inversion about the mean, and 
G is shown in Eq. 12 :

where In is the identity matrix of size N ×N  . Measurement is then applied on the first n qubits to retrieve one 
of the searched items. Assume that 

∑ ′ is the sum over the desired C matches, while 
∑ ′′ represents the sum over 

the N − C undesired matches. The system after qG ≥ 1 iterations can be written as follows,

where the amplitudes ag and bg after qG ≥ 1 iterations are defined by the following recurrence  relations15.

Solving these recurrence relations, the closed forms can be written as  follows15:

where sin2(θ) = C/N , 0 ≤ θ ≤ π/2, qG = π
4

√

N
C

Younes et al. algorithm
Younes et al. algorithm can search an unstructured database of N  items with a higher probability of success 
via the partial diffusion operator (DP) in O

(√
N /C

)

 where C is the number of matches satisfying 1 ≤ C ≤ N  . 
This algorithm prepares a complete superposition and amplifies the solutions’ amplitudes via entanglement of 
the search space with the extra qubit, which is useful in that it can be done by applying the measurement on the 
extra  qubit18,36.

This algorithm applies the oracle operator OY  on n+ 1 qubits where OY  evaluates the Boolean function 
fY : {0, 1}n → {0, 1} as shown in the following equation:

Then, the algorithm applies the DP the operator, which can take the form as described in the following  equation36:

where |0� ’s size is 2N = 2n+1 , and the identity matrix Ik is of size 2k × 2k.
Suppose a general system |ψY2� of n+ 1 qubits as follows:

where αr = δk : k even and βr = δk : k odd.
Hence, applying DP on the general system has the following effect:

where �α� = 1√
N

∑N−1
r=0 αr/N  is the mean of the amplitudes of the subspace entangled with the |0� of the extra 

qubit. The OY and DP operators are iterated qy times where qy is as follows:

Assume that 
∑ ′ is the sum over the desired C matches, while 

∑ ′′ represents the sum over the N − C undesired 
matches. The system after qy > 1 iterations can be described as follows:

(11)OG |x� =
{

|x�, fG(x) = 0
−|x�, fG(x) = 1

(12)G = H⊗n
(

2 |0�⊗n�0|⊗n − In
)

H⊗n,

(13)|ψG� = bg

N−1
∑

r=0

′′ |r� + ag

N−1
∑

r=0

′ |r�,

(14)

a0 =b0 =
1√
N

,

ag =
N − 2C

N
ag−1 +

2(N − C)

N
bg−1,

bg =
N − 2C

N
bg−1 +

2(N − C)

N
ag−1.

(15)ag =
1√
C
sin

((

2qG + 1
)

θ
)

, bg =
1√

N − C
cos

((

2qG + 1
)

θ
)

,

(16)OY |x, 0� =
{

|x, 0�, fY (x) = 0
|x, 1�, fY (x) = 1

(17)DP =
(

H⊗n ⊗ I1
)(

2 |0�⊗n+1�0|⊗n+1 − In+1

)(

H⊗n ⊗ I1
)

,

(18)|ψY2� =
N−1
∑

r=0

αr |r� ⊗ |0� +
N−1
∑

r=0

βr |r� ⊗ |1�,

(19)DP |ψY2� =
N−1
∑

r=0

(2�α� − αr)( |r� ⊗ |0�)−
N−1
∑

r=0

βr |r� ⊗ |1�,

(20)qy =
⌊

π

2
√
2

√

N

C

⌋

, 1 ≤ C ≤ N .
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Finally, the first n qubits are measured to obtain one of the searched items.

Ventura’s algorithm
It is known that Grover’s algorithm is effective in the case where the initial amplitude distribution of the dataset 
is uniform but is not always effective in the non-uniform case. Therefore, the Ventura algorithm was proposed 
to solve the search in an incomplete superposition when the initial amplitude distribution of the dataset is 
non-uniform.

Suppose |ψ� is an incomplete superposition, and Let If T1  and If T2  be phase oracles that mark two sets of n-qubit 
states f T1  and f T2  with |f T1 |, |f T2 | << N  where If T1  marks the searching states and If T2  marks any state in stored 
data m. Ventura’s algorithm can be summarized as  follows22.

Given: Phase oracles If T1  and If T2

1. Denote Rf T1
= GIf T1

 and Rf T2
= GIf T2

 .
2. Suppose |ψ� = 1

m

∑m
r=1 |r�.

3. |ψ ′〉 = Rf T2
|ψ�.

4. |ψ ′′〉 = Rf T1
|ψ ′〉.

5. Repeat t =
⌊

π/4
√
N − 2

⌋

 times.
6. |ψ ′′′〉 = Rf T2

|ψ ′′〉.
7. Observe the system.

Arima’s algorithm
Arima search algorithm was proposed to solve the search in an incomplete superposition when the initial ampli-
tude distribution of the dataset in non-uniform cases means that N  does not equal the number of stored data 
and improves the venture search performance algorithm. Arima’s algorithm can be summarized as  follows21,

Given: Phase oracles If T1  and If T2

1. Denote Rf T1
= GIf T1

 and Rf T2
= GIf T2

 .
2. Suppose |ψ� = 1

m

∑m
r=1 |r�.

3. Repeat P =
⌊

(π
√
2N )/8

⌋

 times.
4. |ψ ′〉 = Rf T2

|ψ�.
5. |ψ ′′〉 = Rf T1

|ψ ′〉.
6. Observe the system.

The proposed algorithms
In this section, we will propose algorithms supposing that f1 and f2 are two Boolean functions with n Boolean 
inputs and f T1  and f T2  are the set of binary vectors where the Boolean function f1 and f2 evaluated to True 
respectively. The proposed algorithms consist of two stages: the first stage prepares an incomplete superposition 
of a search space with specific properties using the Younes et al.  algorithm36 for searching a state that satisfies 
the oracle that represents the If T1  . The second stage prepares an incomplete superposition of a search space with 
specific properties using an updated version of Arima’s  algorithm21,41 for searching a state in the oracle If T2  that 
satisfies with a state in the oracle If T1 .

The proposed quantum algorithm for true intersection operation
Given two Boolean functions f1 and f2 , it is required to find the set of binary vectors that evaluates both f1 and 
f2 to True simultaneously, i. e., to find the intersection between them, the steps of the proposed algorithm will be 
illustrated using this example: If n = 4 , the possible number of items to the Boolean function equals N  , where 
N = 16 . Assume that the number of stored elements in f1 and f2 equals m, where m = 8 . Suppose that f1 evalu-
ates to true for each pattern in the set { |0�, |1�, |3�, |5�, |7�, |9�, |11�, |15�}, and f2 evaluates to true for each pattern 
in the set { |0�, |2�, |4�, |6�, |8�, |10�, |12�, |15�}.

1. Apply Younes et al.  algorithm36 as follows:

(a) The preparation of the register consists of n+ 1 qubits, and all of them are in the state |0� . The auxiliary 
qubit is used to evaluate the Boolean function f1.

When applying Eq. (22) to the illustrative example, the form will be as follows:

(21)|ψY2� = aq

N−1
∑

r=0

′′( |r� ⊗ |0�)+ bq

N−1
∑

r=0

′( |r� ⊗ |0�)+ cq

N−1
∑

r=0

′( |r� ⊗ |1�).

(22)| ψ0 � = |0 �⊗n ⊗ |0 �.
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(b) The initialization of the register in which the Hadamard gate H is applied on the first n qubits in 
parallel as in Eq. (24).

When applying Eq. (24) to the illustrative example, the form will be as follows:

(c) This algorithm iterates the following steps for 
⌊

π

2
√
2

√

N
C

⌋

 . 

  (i) Apply the oracle operator If T1  on n+ 1 qubits where If T1  evaluates the first boolean function f1 as 
follows:

such that

When applying Eq. (26) to the illustrative example, the form will be as follows:

  (ii) After that, the algorithm applies the partial diffusion Dp on the n+ 1 qubits. Assume that C be 
the number of elements common to f T1  and f T2  such that 1 ≤ C ≤ N  . Let 

∑

r
′ represents the inter-

sected items and 
∑

r
′′ represents undesired items in the truth set so |ψ2 � can be rewritten as follows:

After applying Dp to |ψ2 � the system can be described as follows:

The mean of the amplitudes to the illustrative example is

(23)|ψ0 � = |0�⊗4 ⊗ |0� = |00000�.

(24)

|ψ1 � = (H⊗n ⊗ I) |ψ0 �.

= 1√
2n

2n−1
∑

r=0

|r � ⊗ |0 �

= 1√
2n

∑

r∈[0,1]n
|r, 0 �.

(25)

|ψ1� =
(

H⊗4 ⊗ I
)

|ψ0 � =
(

H⊗4 ⊗ I
)

|00000�

= 1

4
( |00000� + |00010� + |00100� + |00110� + |01000�

+ |01010� + |01100� + |01110� + |10000� + |10010�
+ |10100� + |10110� + |11000� + |11010� + |11100�
+ |11110�).

(26)

|ψ2 � = If T1
|ψ1 �.

= 1√
2n

2n−1
∑

r=0

|r � ⊗
∣

∣f1(r)
〉

,

= 1√
2n

∑

r∈[0,1]n

∣

∣r, f1(r)
〉

,

(27)If T1
|r, 0� =

{

|r, 0�, f1(r) = 0.
|r, 1�, f1(r) = 1.

(28)

|ψ2� = If T1
|ψ1� = If T1

(

H⊗4 ⊗ I
)

|00000�

= 1

4
( |00001� + |00011� + |00100� + |00111� + |01000�

+ |01011� + |01100� + |01111� + |10000� + |10011�
+ |10100� + |10111� + |11000� + |11010� + |11100�
+ |11111�).

(29)|ψ2 � =
1√
2n

2
n−1
∑

r=0

′′ ( |r � ⊗ |0 �)+ 1√
2n

2
n−1
∑

r=0

′ ( |r � ⊗ |1 �).

(30)

|ψ3 � = Dp |ψ2 �

= aq

2n−1
∑

r=0

′′( |r � ⊗ |0 �)+ bq

2n−1
∑

r=0

′ ( |r � ⊗ |0 �)

+ cq

2n−1
∑

r=0

′ ( |r � ⊗ |1 �).
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then the inversions about the mean of the  amplitudes36 are as follows:

Hence, applying the partial diffusion Dp can take this form:

(d) Apply the measurement on the auxiliary qubit, and if the outcome equals to one, we apply Z followed 
by H on the auxiliary qubit; otherwise, restart the previous steps. The probability to get |1 � on the 
auxiliary qubit is C|cq|2 and the superposition can be represented as follows:

Applying the measurement on the auxiliary qubit to the illustrative example is as follows:

Applying Z on the auxiliary qubit to the illustrative example is as follows:

Applying H on the auxiliary qubit to the illustrative example is as follows:

2. Apply the Arima  algorithm21 as follows:
  Given: Phase oracles If T1  and If T2  and iterate the following for P =

⌊

(π
√
2N )/8

⌋

 times to find one match 

and P =
⌊

(π
√
N )/8

⌋

 times to find more than one match.

(a) |ψ5� = Rf T2
|ψ4�

  When applying If T2  to the illustrative example, the form will be as follows:

(31)�α� = N −m

N
√
N

= 1

8
,

(32)aq = 2 ∗ �α� − 1√
N

= 0, bq=2 ∗ �α� = 1

4
, cq=− 1√

N
= −1

4
.

(33)

|ψ3� = Dp |ψ2� = Dp If T1

(

H⊗4 ⊗ I
)

|00000�

= 1

4
( |0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� + |1111�)⊗ |0�

− 1

4
( |0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� + |1111�)⊗ |1�.

(34)|ψ4 � =
1√
2n

∑

f1(r)=1

( |r � ⊗ |1 �).

(35)|ψ4i� =
−
√
2

4
( |0000� + |0001� + |0011� + |0101�

+ |0111� + |1001� + |1011� + |1111�)⊗ |1�.

(36)

|ψ4ii� = (I⊗4 ⊗ Z) |ψ4i�

=
√
2

4
( |0000� + |0001� + |0011� + |0101�

+ |0111� + |1001� + |1011� + |1111�)⊗ |1�.

(37)

|ψ4iii� =(I⊗4 ⊗H) |ψ4ii� = (I⊗4 ⊗H)⊗ (I⊗4 ⊗ Z) |ψ4i�

=1

4
( |0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� + |1111�)⊗ |0�

− 1

4
( |0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� + |1111�)⊗ |1�.

(38)

|ψ5i� = If T2
|ψ4iii�

= 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |0�

− 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |1�.
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The mean of the amplitudes to the illustrative example is

then, the inversions about the mean of the amplitudes are as  follows21:

such that β represents the amplitude of any state in the stored data, but it is not the desired element, 
αrepresents the amplitude of the state of the desired element, and γ represents the amplitude of any 
state not in the stored data and not be the desired element.

  Hence, applying the Grover operator G can take this form:

(b) |ψ6� = Rf T1
|ψ5�.

  When applying If T1  to the illustrative example, the form will be as follows:

�α� = 2∗ −3

8
+6∗ 1

8
+8∗ 1

8

16
= 1

16
for the amplitudes of states to the illustrative example which product to the 

state |0� . Then, the inversions of the mean for the amplitudes of this states are as follows:

and �α� = 2∗ 3
8+6∗ −1

8 +8∗ −1
8

16 = −1
16  for the amplitudes of states to the illustrative example which product 

to the state |1� , then, the inversions of the mean for amplitudes of this states are as follows:

(39)�α� =
6 ∗ 1

4 − 2 ∗ 1
4 + 8 ∗ 0

16
= 1

16
,

(40)−β + 2 ∗ �α� = −1

4
+ 2 ∗ 1

16
= −1

8
,

(41)−α + 2 ∗ �α� = 1

4
+ 2 ∗ 1

16
= 3

8
,

(42)−γ + 2 ∗ �α� = 0+ 2 ∗ 1

16
= 1

8
,

(43)

|ψ5ii� = G |ψ5i�

= −1

8
(−3 |0000� + |0001� − |0010� + |0011� − |0100�

+ |0101� − |0110� + |0111� − |1000� + |1001� − |1010�
+ |1011� − |1100� − |1101� − |1110� − 3 |1111�)⊗ |0�

+ 1

8
(−3 |0000� + |0001� − |0010� + |0011� − |0100�

+ |0101� − |0110� + |0111� − |1000� + |1001� − |1010�
+ |1011� − |1100� − |1101� − |1110� − 3 |1111�)⊗ |1�.

(44)

|ψ6i� = If T1
|ψ5ii�

= 1

8
(−3 |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001� + |1010�
+ |1011� + |1100� + |1101� + |1110� − 3 |1111�)⊗ |0�

+ −1

8
(−3 |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001� + |1010�
+ |1011� + |1100� + |1101� + |1110� − 3 |1111�)⊗ |1�.

(45)−α + 2 ∗ �α� = 3

8
+ 2 ∗ 1

16
= 1

2
,

(46)−β + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(47)−γ + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(48)−α + 2 ∗ �α� = −3

8
+ 2 ∗ −1

16
= −1

2
,

(49)−β + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0,
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Hence, applying the Grover operator G can take this form:

(c) Observe the system.

   .
3. 3. Suppose that the system |ψ7 � = αi( |r � ⊗ |1 �)+ βi( |r � ⊗ |0 �) and to find the probability of a match out 

of the R possible match between N  items as follows

To the illustrative example, the intersection that makes f1 and f2 evaluate to True can be obtained with the 
probability 2 ∗

(−1
2

)2 = 0.50 for |0� or |15�.

Arima algorithm can solve the illustrative example by searching in f1 , supposing that the searching data are |0� 
and |15� and P = 1 . In order to save space, instead of writing out the entire superposition of states, a transposed 
vector of coefficients will be used, where the 16 basis states index the vector.

The initial state described by |ψ0� = 1
2
√
2
(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1).

|ψ1� = If T1
|ψ0� = 1

2
√
2
(−1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0,−1).

|ψ2� = G|ψ1� = 1
4
√
2
(3,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1, 1, 1, 3).

|ψ3� = If T2
|ψ2� = 1

4
√
2
(−3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−3).

|ψ4� = G|ψ3� = 1√
2
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Then the probability =
(

1√
2

)2
= 0.50 for either state |0� or |15� as the same result as the proposed algorithm. 

A pseudocode of true intersection operation is shown in Algorithm 1; the circuit of the proposed algorithm is 
shown in Fig. 1.

(50)−γ + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0

(51)
|ψ6ii� =G |ψ6i�

=1

2
( |0000� + |1111�)⊗ |0� − 1

2
( |0000� + |1111�)⊗ |1�.

(52)q = R ∗ |αi|2.

|0 〉 H

|0 〉 H

...
...

|0 〉 H

|0 〉

IfT
1

DP

Z H

IfT
2

G IfT
1

G

n qubits

auxiliary

O(
√
N )

Arima’s algorithmO
(√

N
C

)

Superposition

of fT1 ∩ fT2

Figure 1.  Quantum circuit for the proposed true intersection algorithm.
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Data: Given two Boolean functions f1 and f2 with n ≥ 0 inputs, N items
and C is the number of matches.

Result: Find the intersection I between f1 and f2 which makes them
evaluate to true, i. e., find I = f1 ∩ f1

1. Prepare | ψ0 〉 = |0 〉⊗n ⊗ |0 〉.
2. Apply H on the first n qubits.
3. qy ← 1, r ← 1, N ← 2n;

4. while qy ≤
⌊

π
2
√
2

√
N
C

⌋
do

Apply Dp IfT
1

on | ψ1 〉 = 1√
2n

∑
r∈[0,1]n |r, 0 〉 .

Increment qy.
end
5. Measure the extra qubit.
6. if The outcome = |1〉 then

Apply Z on the extra qubit.
Apply H on the extra qubit.
while r ≤ P = π

8

√
2N or r ≤ P = π

8

√
N for more than one match do

Apply RfT
1

RfT
2

on |ψ4 〉 = 1√
2n

∑
f1(r)=1 ( |r 〉 ⊗ |1 〉).

Increment r.
end

else
Go to step 2.

end

Algorithm 1.  An Algorithm of True Intersection Operation. 

The proposed quantum algorithm for false intersection operation
Given two Boolean functions f1 and f2 it is required to find the set of binary vectors that evaluates both f1 ⊕ 1 42 
and f2 ⊕ 1 to True at the same time, i. e., to find the false intersection between them, the steps of the proposed 
algorithm will be illustrated using the illustrative example:

1. Apply Younes et al.  algorithm36 as follows:

(a) The preparation of the register consists of n+ 1 qubits, and all of them are in the state |0� . The auxiliary 
qubit is used to evaluate the Boolean function f1 . The state of the system is as in Eqs. (22) and (23).

(b) The initialization of the register in which the Hadamard gate H is applied on the first n qubits in 
parallel as in Eqs. (24) and (25).

(c) This algorithm iterates the following steps for 
⌊

π

2
√
2

√

N
C

⌋

  (i) Apply the oracle operator If T1  on n+ 1 qubits where If T1  evaluates the first boolean function f1 as 
in Eqs. (26), (27) , and (28).

  (ii) Apply X on the auxiliary  qubit42as follows in Eq. (53).

When applying Eq. (53) to the illustrative example, the form will be as follows:

  (iii) After that, the algorithm applies the partial diffusion Dp on the n+ 1 qubits as follows:

(53)

|ψ3 � = (In ⊗ X)⊗ |ψ2 �.

= 1√
2n

2n−1
∑

r=0

(In ⊗ X)⊗
∣

∣r, f1(r)
〉

.

(54)

|ψ3� =
(

I⊗4 ⊗ X
)

|ψ2�

= 1

4
( |00000� + |00010� + |00101� + |00110� + |01001�

+ |01010� + |01101� + |01110� + |10001� + |10010�
+ |10101� + |10110� + |11001� + |11011� + |11101�
+ |11110�).
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The mean of amplitudes to the illustrative example is

then the inversions about the mean of the amplitudes are

Hence, applying the partial diffusion Dp can take this form

(d) Apply the measurement on the auxiliary qubit, and if the outcome equals to one, we apply Z followed 
by H on the auxiliary qubit; otherwise, restart the previous steps. The probability to get |1 � on the 
auxiliary qubit is C|cq|2 and the superposition can be represented as follows:

Applying the measurement on the auxiliary qubit to the illustrative example is as follows:

Applying Z on the auxiliary qubit to the illustrative example is as follows:

Applying H on the auxiliary qubit to the illustrative example is as follows:

      
2. Apply the Arima algorithm as follows
  Given: Phase oracles If T1  and If T2  and iterate for P =

⌊

(π
√
2N )/8

⌋

 times to find one match and 

P =
⌊

(π
√
N )/8

⌋

 times to find more than one match the following 

(a) |ψ6 � = If T2
|ψ5 �.

  When applying If T2  to the illustrative example, the form will be as follows:

(55)

|ψ4 � = Dp |ψ3 �

= aq

2n−1
∑

r=0

′( |r � ⊗ |0 �)+ bq

2n−1
∑

r=0

′′ ( |r � ⊗ |0 �)

+ cq

2n−1
∑

r=0

′′ ( |r � ⊗ |1 �).

(56)�α� = N −m

N
√
N

= 1

8
,

(57)aq = 2 ∗ �α� − 1√
N

= 0, bq=2 ∗ �α� = 1

4
, cq=− 1√

N
= −1

4
.

(58)

|ψ4� = Dp |ψ3� =
1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |0�

− 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |1�.

(59)|ψ5 � =
1√
2n

∑

f1(r)=0

( |r � ⊗ |1 �).

(60)|ψ5i� =
−
√
2

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |1�.

(61)

|ψ5ii� =
(

I⊗4 ⊗ Z
)

|ψ5i�

=
√
2

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |1�.

(62)

|ψ5iii� =
(

I⊗4 ⊗H
)

|ψ5ii�

= 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |0�

− 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� + |1101� + |1110�)⊗ |1�.
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(b) |ψ7 � = (In ⊗ X) |ψ6 �.
  Applying X on the auxiliary qubit to the illustrative example is as follows:

(c) |ψ8 � = G |ψ7 �.
  The mean of the amplitudes to the illustrative example is

then, the inversions about the mean of the amplitudes for states are as follows:

Hence, applying the Grover operator G can take this form:

(d) |ψ9� = Rf T1
|ψ8�.

  When applying If T1  to the illustrative example, the form will be as follows:

(63)

|ψ6� = If T2
|ψ5iii�

= −1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� − |1101� − |1110�)⊗ |0�

+ 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� − |1101� − |1110�)⊗ |1�.

(64)

|ψ7� =
(

I⊗4 ⊗ X
)

|ψ6�

= 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� − |1101� − |1110�)⊗ |0�

− 1

4
( |0010� + |0100� + |0110� + |1000� + |1010�

+ |1100� − |1101� − |1110�)⊗ |1�.

(65)�α� =
6 ∗ 1

4 − 2 ∗ 1
4 + 8 ∗ 0

16
= 1

16
,

(66)−β + 2 ∗ �α� = −1

4
+ 2 ∗ 1

16
= −1

8
,

(67)−α + 2 ∗ �α� = 1

4
+ 2 ∗ 1

16
= 3

8
,

(68)−γ + 2 ∗ �α� = 0+ 2 ∗ 1

16
= 1

8
.

(69)

|ψ8� = G |ψ7�

= −1

8
(−|0000� − |0001� + |0010� − |0011� + |0100�

− |0101� + |0110� − |0111� + |1000� − |1001�
+ |1010� − |1011� + |1100� − 3 |1101� − 3 |1110�
− |1111�)⊗ |0�

+ 1

8
(−|0000� − |0001� + |0010� − |0011� + |0100�

− |0101� + |0110� − |0111� + |1000� − |1001�
+ |1010� − |1011� + |1100� − 3 |1101� − 3 |1110�
− |1111�)⊗ |1�.
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�α� = 2∗ 3

8
+6∗ −1

8
+8∗ −1

8

16
= −1

16
 for the amplitudes of states to the illustrative example which product to 

the state |0� . Then, the inversions of the mean for the amplitudes of these states are as follows:

and �α� = 2∗ −3

8
+6∗ 1

8
+8∗ 1

8

16
= 1

16
 for the amplitudes of states to the illustrative example which product 

to the state|1� . Then, the inversions of the mean for amplitudes of these states are as follows:

Hence, applying the Grover operator G can take this form

(e)  Observe the system.

3. Find the probability of a match out of the R possible match between N  items as in Eq. (52).

To the illustrative example, the intersection that makes f1 and f2 evaluate to False can be obtained with the 
probability 2 ∗

(

1
2

)2 = 0.50 for |13� or |14�.
Arima algorithm with an adjustment by applying X after applying H can solve the illustrative example by 

searching for the false assignment of f1 . Suppose that searching data |13� and |14� where P = 1 . The initial state 
described by |ψ0� = 1

2
√
2
(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1).

|ψ1� =
(

I⊗4 ⊗ X
)

|ψ0� = 1
2
√
2
(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0).

|ψ2� = If T1
|ψ1� = 1

2
√
2
(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,−1,−1, 0).

|ψ3� = G|ψ2� = 1
4
√
2
(1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 3, 3, 1).

|ψ4� = If T2
|ψ3� = 1

4
√
2
(−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 3, 3,−1).

|ψ5� = G|ψ4� = 1√
2
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0).

Then the probability =
(

−1√
2

)2

= 0.50 for any either |13� or|14� as the same result of the proposed 
algorithm.

A pseudocode of false intersection operation is shown in Algorithm 2; the circuit of the proposed algorithm 
is shown in Fig. 2.

(70)

|ψ9i� = If T1
|ψ8�

= −1

8
( |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� − 3 |1101� − 3 |1110�
+ |1111�)⊗ |0�

+ 1

8
( |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� − 3 |1101� − 3 |1110�
+ |1111�)⊗ |1�

(71)−α + 2 ∗ �α� = −3

8
+ 2 ∗ −1

16
= −1

2
,

(72)−β + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0,

(73)−γ + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0,

(74)−α + 2 ∗ �α� = 3

8
+ 2 ∗ 1

16
= 1

2
,

(75)−β + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(76)−γ + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(77)
|ψ9ii� = G |ψ9i�

= −1

2
( |1101� + |1110�)⊗ |0� + 1

2
( |1101� + |1110�)⊗ |1�.
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Data: Given two Boolean functions f1 and f2 with n ≥ 0 inputs, N items
and C is the number of matches.

Result: Find the intersection I between (f1 ⊕ 1) and (f2 ⊕ 1) which makes
them evaluate to true, i. e., find I = (f1 ⊕ 1) ∩ (f1 ⊕ 1)

1. Prepare | ψ0 〉 = |0 〉⊗n ⊗ |0 〉.
2. Apply H on the first n qubits.
3. qy ← 1, r ← 1, N ← 2n;

4. while qy ≤
⌊

π
2
√
2

√
N
C

⌋
do

Apply Dp I(f1⊕1)T on | ψ1 〉 = 1√
2n

∑
r∈[0,1]n |r, 0 〉 .

Increment qy.
end
5. Measure the extra qubit.
6. if The outcome = |1〉 then

Apply Z on the extra qubit.
Apply H on the extra qubit.
while r ≤ P =

⌊
π
8

√
2N

⌋
for one match, or r ≤ P =

⌊
π
8

√
N
⌋
for more

than one match do
Apply R(f1⊕1)T R(f2⊕1)T on |ψ5 〉 = 1√

2n
∑

f1(r)=0 ( |r 〉 ⊗ |1 〉).
Increment r.

end
else

Go to step 2.
end

Algorithm 2.  An Algorithm of False Intersection Operation.

The proposed quantum algorithm for difference operation
Given two Boolean functions f1 and f2 , it is required to find the set of binary vectors that evaluates f1 to True 
and evaluates f2 to False, i. e., to find the difference between f1 and f2 , and the steps of the proposed algorithm 
will be illustrated using the illustrative example: 

1. Apply Younes et al. algorithm as follows: 

(a) The preparation of the register consists of n+ 1 qubits, and all of them are in the state |0� . The auxiliary 
qubit is used to evaluate the Boolean function f1 . The state of the system is as in Eq. (22) and Eq. (23).

(b) The initialization of the register in which the Hadamard gate H is applied on the first n qubits in 
parallel as in Eqs. (24) and (25).

(c) This algorithm iterates the following steps for 
⌊

π

2
√
2

√

N
C

⌋

 Apply the oracle operator If T1  on n+ 1 qubits 

where If T1  evaluates the first boolean function f1 as in equations (26), (27), and (28). After that, the 
algorithm applies the partial diffusion Dp on the n+ 1 qubits as follows in Eqs. (29) and (33):

|0 〉 H

|0 〉 H

...
...

|0 〉 H

|0 〉

IfT
1

X

DP

Z H

IfT
2

X

G IfT
1

G

n qubits

auxiliary

O(
√
N )

Arima’s algorithmO
(√

N
C

)

Superposition

of fF1 ∩ fF2

Figure 2.  Quantum circuit for the proposed false intersection algorithm.
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(d) Apply the measurement on the auxiliary qubit, and if the outcome equals to one, we apply Z followed 
by H on the auxiliary qubit; otherwise, restart the previous steps. The probability of getting |1 � on the 
auxiliary qubit is C|cq|2 , and the superposition can be represented as in Eqs. (34-37).

2. Apply the Arima algorithm for P =
⌊

(π
√
2N )/8

⌋

 times to find difference as follows: 

(a) |ψ5 � = If T2
|ψ4 �.

  When applying If T2  to the illustrative example, the form will be as follows: 

(b) |ψ6 � = (In ⊗ X) |ψ5 �.
  Applying X on the auxiliary qubit to the illustrative example is as follows 

(c) |ψ7 � = G |ψ6 �.
  The mean of the amplitudes to the illustrative example is 

 then, the inversions about the mean of the amplitudes of states are as follows: 

 Hence, applying the Grover operator G can take this form: 

(d) |ψ8� = Rf T1
|ψ7�.

  When applying If T1  to the illustrative example, the form will be as follows: 

(78)

|ψ5� = If T2
|ψ4iii�

= 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |0�

− 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |1�.

(79)

|ψ6� =
(

I⊗4 ⊗ X
)

|ψ5�

= −1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |0�

+ 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |1�.

(80)�α� =
6 ∗ −1

4 + 2 ∗ 1
4 + 8 ∗ 0

16
= −1

16
,

(81)−β + 2 ∗ �α� = −1

4
+ 2 ∗ −1

16
= −3

8
,

(82)−α + 2 ∗ �α� = 1

4
+ 2 ∗ −1

16
= 1

8
,

(83)−γ + 2 ∗ �α� = 0+ 2 ∗ −1

16
= −1

8
,

(84)

|ψ7� = G |ψ6�

= 1

8
(−3 |0000� + |0001� − |0010� + |0011� − |0100�

+ |0101� − |0110� + |0111� − |1000� + |1001�
− |1010� + |1011� − |1100� − |1101� − |1110�
− 3 |1111�)⊗ |0�

− 1

8
(−3 |0000� + |0001� − |0010� + |0011� − |0100�

+ |0101� − |0110� + |0111� − |1000� + |1001�
− |1010� + |1011� − |1100� − |1101� − |1110�
− 3 |1111�)⊗ |1�.
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�α� = 2∗ 3

8
+6∗ −1

8
+8∗ −1

8

16
= −1

16
 for the amplitudes of states to the illustrative example which product 

to the state |0� . Then, the inversions about the mean of the amplitudes for these states are as follows: 

 and �α� = 2∗ −3

8
+6∗ 1

8
+8∗ 1

8

16
= 1

16
 for the amplitudes of states to the illustrative example which product 

to the state |1� . Then, the inversions about the mean of the amplitudes for these states are as follows: 

 Hence, applying the Grover operator G can take this form: 

(e) Observe the system.
  The following result is obtained after applying If T2  , G, If T1  , G to the illustrative example. 

3. Find the probability of a difference out of the R possible difference between N  items as in Eq. (52).
  To the illustrative example, the difference that makes f1 evaluates to true and f2 evaluates to false can be 

obtained with the probability = 0.125 for |1�, |3�, |5�, |7�, |9�, |11�.

Arima algorithm with an adjustment can solve the illustrative example by searching for the truth assignment of 
f1 . Suppose that searching data |1�, |3�, |5�, |7�, |9� , and |11� where P = 2.

The initial state described by |ψ0� = 1
2
√
2
(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1).

|ψ1� = If T1
|ψ0� = 1

2
√
2
(1,−1, 0,−1, 0,−1, 0,−1, 0,−1, 0,−1, 0, 0, 0, 1).

|ψ2� = G|ψ1� = 1
4
√
2
(−3, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1,−1,−1,−3).

|ψ3� = If T2
|ψ2� = 1

4
√
2
(3,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 3).

|ψ4� = G|ψ3� = 1√
2
(−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1).

|ψ5� = If T1
|ψ4� = 1√

2
(−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1).

(85)

|ψ8i� = If T1
|ψ7�

= −1

8
(−3 |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� + |1101� + |1110�
− 3 |1111�)⊗ |0�

+ 1

8
(−3 |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� + |1101� + |1110�
− 3 |1111�)⊗ |1�.

(86)−β + 2 ∗ �α� = −3

8
+ 2 ∗ −1

16
= −1

2
,

(87)−α + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0,

(88)−γ + 2 ∗ �α� = 1

8
+ 2 ∗ −1

16
= 0,

(89)−β + 2 ∗ �α� = 3

8
+ 2 ∗ 1

16
= 1

2
,

(90)−α + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(91)−γ + 2 ∗ �α� = −1

8
+ 2 ∗ 1

16
= 0,

(92)|ψ8ii� = G |ψ8i� =
−1

2
( |0000� + |1111�)⊗ |0� + 1

2
( |0000� + |1111�)⊗ |1�.

(93)

|ψ8iii� =
−1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |0�

+ 1

4
(−|0000� + |0001� + |0011� + |0101� + |0111�

+ |1001� + |1011� − |1111�)⊗ |1�.
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|ψ6� = G|ψ5� = 1
4
√
2
(3,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 3).

|ψ7� = If T2
|ψ6� = 1

4
√
2
(−3, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1,−1,−1,−3).

|ψ8� = G|ψ7� = 1
2
√
2
(1,−1, 0,−1, 0,−1, 0,−1, 0,−1, 0,−1, 0, 0, 0, 1).

Then the probability ( −1
2
√
2
)2 = 0.125 for any one of the following patterns: |1� , |3� , |5� , |7� , |9� and |11�.

A pseudocode of difference operation is shown in Algorithm 3; the circuit of the proposed algorithm is 
shown in Fig. 3.

Data: Given two Boolean functions f1 and f2 with n ≥ 0 inputs, N items
and C is the number of differences.

Result: Find the difference between f1 and f2 which makes f1 evaluates to
true and f2 evaluates to false, i. e., find f1 − f1

1. Prepare | ψ0 〉 = |0 〉⊗n ⊗ |0 〉.
2. Apply H on the first n qubits.
3. qy ← 1, r ← 1, N ← 2n;

4. while qy ≤
⌊

π
2
√
2

√
N
C

⌋
do

Apply Dp IfT
1

on | ψ1 〉 = 1√
2n

∑
r∈[0,1]n |r, 0 〉 .

Increment qy.
end
5. Measure the extra qubit.
6. if The outcome = |1〉 then

Apply Z on the extra qubit.
Apply H on the extra qubit.
while r ≤ P =

⌊
π
8

√
2N

⌋
do

Apply RfT
1

R(f2⊕1)T on |ψ4 〉 = 1√
2n

∑
f1(r)=1 ( |r 〉 ⊗ |1 〉).

Increment r.
end

else
Go to step 2.

end

Algorithm 3.  An Algorithm of Difference Operation.

The proposed quantum algorithm for union operation
Given two Boolean functions f1 and f2 , it is required to find the set of binary vectors that evaluates either f1 or 
f2 to True, i.e., to find the union between them. We need to find a partition of f1 ∪ f2 , thus decomposing it into a 
complement of the intersection of distinct complement sets, i. e. , f1 ∪ f2 =

((

f1 ⊕ 1
)

∩
(

f2 ⊕ 1
))

⊕ 1 = f ⊕ 1 
such that f is a Boolean function which represents all the truth value of the states of the system, and 
f =

((

f1 ⊕ 1
)

∩
(

f2 ⊕ 1
))

 . The steps of the proposed algorithm will be illustrated using the previous example: 

1. Apply the algorithm in Sect. 3.2 to find the result of f =
(

f1 ⊕ 1
)

∩
(

f2 ⊕ 1
)

 to the illustrative example.

(94)|ψ� = −1

2
( |1101� + |1110�)⊗ |0� + 1

2
( |1101� + |1110�)⊗ |1�.

|0 〉 H

|0 〉 H

...
...

|0 〉 H

|0 〉

IfT
1

DP

Z H

IfT
2

X

G IfT
1

G

n qubits

auxiliary

O(
√
N )

Arima’s algorithmO
(√

N
C

)

Superposition

of fT1 − fT2

Figure 3.  Quantum circuit for the proposed difference algorithm.
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As a result, f evaluates to true for each pattern in the set { |13�, |14�}.
2. Apply Younes et al. algorithm to find the result of f ⊕ 1 as follows:

(a) The preparation of the register consists of n+ 1 qubits, and all of them are in the state |0� . The auxiliary 
qubit is used to evaluate the Boolean function f1 . The state of the system is as in Eqs. (22) and (23). 

(b) (b). The initialization of the register in which the Hadamard gate H is applied on the first n qubits in 
parallel as in Eqs. (24) and (25).

(c) This algorithm iterates the following steps for 
⌊

π

2
√
2

√

N
C

⌋

. 

  (i) Apply the oracle operator If  on n+ 1 qubits where If  evaluates the Boolean function f as follows:

such that

When applying Eq. (95) to the illustrative example, the form will be as follows

  (ii) Apply X on the auxiliary qubit (Younes* and Miller, 2004) as follows:

When applying Eq. (97) to the illustrative example, the form will be as follows

  (iii) After that, the algorithm applies the partial diffusion Dp on the n+ 1 qubits as follows:

The mean of amplitudes to the illustrative example is

(95)

|ψ2 � = If |ψ1 �.

= 1√
2n

2n−1
∑

r=0

|r � ⊗
∣

∣f (r)
〉

.

= 1√
2n

∑

r∈[0,1]n

∣

∣r, f (r)
〉

.

(96)If |r, 0� =
{

|r, 0�, f (r) = 0
|r, 1�, f (r) = 1

|ψ2� = If |ψ1� = If
(

H⊗4 ⊗ I
)

|00000�

= 1

4
( |00000� + |00010� + |00100� + |00110� + |01000�

+ |01010� + |01100� + |01110� + |10000� + |10010�
+ |10100� + |10110� + |11000� + |11011� + |11101�
+ |11110�).

(97)

|ψ3 � = (In ⊗ X)⊗ |ψ2 �.

= 1√
2n

2n−1
∑

r=0

(In ⊗ X)⊗
∣

∣r, f (r)
〉

.

(98)

|ψ3� =
(

I⊗4 ⊗ X
)

|ψ2�

= 1

4
( |00001� + |00011� + |00101� + |00111� + |01001�

+ |01011� + |01101� + |01111� + |10001� + |10011�
+ |10101� + |10111� + |11001� + |11010� + |11100�
+ |11111�).

(99)

|ψ4 � = Dp |ψ3 �

= aq

2n−1
∑

r=0

′( |r � ⊗ |0 �)+ bq

2n−1
∑

r=0

′′ ( |r � ⊗ |0 �)

+ cq

2n−1
∑

r=0

′′ ( |r � ⊗ |1 �).



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7015  | https://doi.org/10.1038/s41598-024-56860-2

www.nature.com/scientificreports/

then the inversions about the mean of the amplitudes are

. Hence, applying the partial diffusion Dp can take this form

(d) (d). Apply the measurement on the auxiliary qubit. The probability to get |1 � on the auxiliary qubit 
is C|cq|2 and the superposition can be represented as follows:

Applying the measurement on the auxiliary qubit to the illustrative example is as follows:

  To the illustrative example, the union that makes f1 and f2 evaluate to True can be obtained with 
the probability ( −1√

14
)
2 = 0.071 for |0� , |1� , |2� , |3� , |4� , |5� , |6� , |7� , |8� , |9� , |10� , |11� , |12� , or |15�.

A pseudocode of union operation is shown in Algorithm 4; The circuit of the proposed algorithm is shown 
in Figs. 2 and 4.

(100)�α� = N −m

N
√
N

= 1

32
,

(101)aq = 2 ∗ �α� − 1√
N

= −3

16
, bq=2 ∗ �α� = 1

16
, cq=− 1√

N
= −1

4

(102)

|ψ4� = Dp |ψ3�

= 1

16
( |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� − 3 |1101� − 3 |1110�
+ |1111�)⊗ |0�

− 1

4
( |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� + |1111�)⊗ |1�.

(103)|ψ5 � =
1√
2n

∑

f (r)=0

( |r � ⊗ |1 �).

(104)
|ψ5� =

−1√
14

( |0000� + |0001� + |0010� + |0011� + |0100�

+ |0101� + |0110� + |0111� + |1000� + |1001�
+ |1010� + |1011� + |1100� + |1111�)⊗ |1�

|0 〉 H

|0 〉 H

...
...

|0 〉 H

|0 〉

If

X

DP

n qubits

auxiliary

O
(√

N
C

)

Figure 4.  Quantum circuit to find the result of f ⊕ 1.
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Data: Given two Boolean functions f1 and f2 with n ≥ 0 inputs, N items
and C is the number of unions.

Result: Find the union between f1 and f2 which makes them evaluate to
true, i.e., find f1 ∪ f1 = ((f1 ⊕ 1) ∩ ((f2 ⊕ 1)))⊕ 1

After applying algorithm 2, we can get the true values from the output state
and consider it represents the true values of f , which will
be used in the Younes et al. algorithm to find the complement of intersection
in algorithm 2 as in the following steps.
1. Prepare | ψ0 〉 = |0 〉⊗n ⊗ |0 〉.
2. Apply H on the first n qubits.
3. qy ← 1, N ← 2n.

4. while
⌊
qy ≤ π

2
√
2

√
N
C

⌋
do

Apply Dp I(f⊕1)T on | ψ1 〉 = 1√
2n

∑
r∈[0,1]n |r, 0 〉 .

Increment qy.
end
5. Measure the extra qubit.

Algorithm 4.  An Algorithm of Union Operation.

Analysis of the proposed algorithms
Dynamics of the proposed algorithms
Assume that R represents the number of possible solutions, αi(T) represents the amplitudes of desired (search-
ing) of the stored data at a time step T such that 1 ≤ i ≤ R , βj(T) represents the amplitudes of non-solutions of 
the stored data such that R + 1 ≤ j ≤ m , γk(T) represents the amplitudes of other data (which were not in the 
prepared superposition) such that m ≤ k ≤ N  , α(T) represents the average of the amplitudes of desired (search-
ing) of the stored data, β(T) represents the average of the amplitudes of non-solutions of the stored data, γ (T) 
represents the average of the amplitudes of other data (which were not in the prepared superposition). Then, we 
can define the form of the searching phase ´|ψ� as follows:

and the average of the amplitudes are

Let W(T) be the weighted averages over states

After that, using Biron  results43, the following relation holds:

(105)

´|ψ� =
N−1
�

r=0





1

R

R
�

i=1

αi(T)( |r� ⊗ |1�)+ 1

m− R

m
�

j=R+1

βj(T)( |r� ⊗ |0�)

+ 1

N −m

N
�

k=m+1

γk(T)( |r� ⊗ |1�)





=
N−1
�

r=0

�

α(T)( |r� ⊗ |1�)+ β(T)( |r� ⊗ |0�)+ γ (T)( |r� ⊗ |1�)
�

,

(106)α(T) = 1

R

R
∑

i=1

αi(T).

(107)β(T) = 1

m− R

m
∑

j=R+1

βj(T).

(108)γ (T) = 1

N −m

N
∑

k=m+1

γk(T).

(109)
W(T) =

−
∑R

i=1 αi(T)+
∑m

j=R+1 βj(T)+
∑N

k=m+1 γk(T)

N

= (N −m)γ (T)+ (m− R)β(T)− (R)γ (T)

N
.
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By solving Eqs. (110), (111) and (112), we obtained the following equation:

Suppose that the system |ψ9 � = αi( |r � ⊗ |1 �)+ βi( |r � ⊗ |0 �) and to find the probability of a match out of the 
R possible match between N  items as follows

After the first iteration (P = 1) , then the probabilities of the system according to the proposed quantum 
algorithms will be as follows: 

1. The probability P(1)r  to find a match out of the R possible match is calculated as follows 

 s u c h  t h a t  
�α1� = m−2R

N
√
N
, β1 = −1√

N
+ 2 ∗ �α1�, α1 = 1√

N
+ 2 ∗ �α1�, γ1 = 2 ∗ �α1�, �α2� =

−1∗(β1(m−R)+α1R+γ1(N−m))
N

, α2 = −α1 + 2 ∗ �α2�, β2 = −β1 + 2 ∗ �α2�, γ2 = γ1 + 2 ∗ �α2�.
2. The probability P(1)s  to find undesired results out of the stored states is given by: 

3. The probability P(1)e  to find undesired results out of the unstored states is given by: 

Notice that

moreover, the probabilities of the system after the second iteration (P = 2) will be as follows: 

1. The probability P(2)r  to find a match out of the R possible match is calculated as follows 

 such that 
�α3� = β2(m−R)−α2R

N
, α3 = α2 + 2 ∗ �α3�, β3 = −β2 + 2 ∗ �α3�, γ3 = γ2 + 2 ∗ �α3�, �α4� =

−1∗(β3(m−R)+α3R−γ3(N−m))
N

, α4 = α3 + 2 ∗ �α4�, β4 = β3 + 2 ∗ �α4�, γ4 = −γ3 + 2 ∗ �α4�.
2. The probability P(2)s  to find undesired results out of the stored states is given by: 

3. The probability P(2)e  to find undesired results out of the unstored states is given by: 

In general, the probabilities of the system after (P ≥ 2) iterations will be as follows: 

1. The probability P(P)r  to find a match out of the R possible match is calculated as follows 

 such that 
�αP+1� = βP(m−R)−αPR

N
, αP+1 = αP + 2 ∗ �αP+1�, βP+1 = −βP + 2 ∗ �αP+1�, γP+1 = γP + 2∗

�αP+2�, βP+2 = βP+1 + 2 ∗ �αP+2�, γP+2 = −γP+1 + 2 ∗ �αP+2�.
2. The probability P(P)s  to find undesired results out of the stored states is given by: 

(110)α(T + 1) =2 w
(

T́
)

+ α

(

T́
)

(111)β(T + 1) =2 w
(

T́
)

+ β

(

T́
)

(112)γ (T + 1) =2 w
(

T́
)

− γ

(

T́
)

(113)





α(T + 1)
β(T + 1)
γ (T + 1)



 =







N 2−8N+8(m−R)
N 2

8(N−m)(m−R)
N 2

4(N−m)(N−2m−2R+1)
N 2

−8(N−(m−R))
N 2

8(N−m)(m−R)−N 2

N2
4(N−m)(N−2m−2R+1)

N 2

−4(N−2(m−R))
N 2

4(N−2m)(m−R)
N 2

−8m(N−m−R+1)+N 2

N 2






∗





α(T)
β(T)
γ (T)





(114)Pr
(1) = 2 ∗ (α2)2,

(115)P(1)s = 2 ∗ (β2)2.

(116)P(1)e = 2 ∗ (γ2)2.

(117)RP(1)r + (m− R)P(1)s + (N −m)P(1)e = 1,

(118)P(2)r = 2 ∗ (α4)2,

(119)P(2)s = 2 ∗ (β4)2.

(120)P(2)e = 2 ∗ (γ4)2.

(121)P(P)r = 2 ∗ (αP+2)
2,
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3. The probability P(P)e  to find undesired results out of the unstored states is given by: 

The number of iterations must be an integer,

Quantifying the quantum resources needed to implement the proposed algorithms is crucial for evaluating their 
feasibility and practicality. The first stage of the proposed algorithms, which utilizes the Younes et al. algorithm, 
operates on n+ 1 qubits. In the second stage, a modified version of the Arima algorithm is employed, operating 
on n qubits. Overall, the total number of qubits is O(n).

Comparative analysis
Comparing the proposed algorithms with relevant algorithms in literature, the proposed intersection algorithm 
runs in O

(√
N

)

 , whereas Pang et al.27 runs in O
(√|A| × |B| × |I|

)

 for set operation I = A ∩ B such that | | 
denotes the size of the set; moreover, Pang et al. algorithm finds only the true intersection, whereas the proposed 
algorithms can be used for true and false intersection.

Comparing the proposed algorithms with K. El-Wazan28, the proposed quantum algorithms find the true 
intersection, false intersection, difference, and union between any two Boolean functions in O

(√
N

)

 , whereas 
K. El-Wazan algorithm finds only common matches between databases in O

(√
M/C

)

 , such that M is the number 
of records for each database and C are the common entries between those databases.

Comparing the proposed algorithm for intersection with Jóczik et al.29, both algorithms run in O
(√

N

)

 . The 
proposed algorithm can find arbitrary intersection while S. Jóczik et al. algorithm can find the intersection of 
two sets A and B when the size of the intersection is in the power set of A; moreover, Jóczik et al. cannot find the 
false intersection between these two sets.

Discussion
Set operations such as intersection, difference, and union have many applications such as database query opti-
mization, signal  processing27, cryptography, collision  problem30, quantum image  processing44, and quantum 
machine  learning45.

This study proposed efficient quantum algorithms for performing set operations on Boolean functions. Spe-
cifically, the algorithms leverage quantum principles such as amplitude amplification to achieve quadratic speed-
ups over classical techniques. A key advantage is the O

(√
N

)

 runtime scaling, outperforming classical 
approaches. This improved scaling suggests a potential practical impact for domains that motivate this work, 
such as database optimization, cryptography, and machine learning.

Performing set operations on Boolean functions is of special importance, given their significant applications in 
domains such as databases, cryptography, and machine learning. In database systems, intersections are utilized to 
merge tables, while finding differences between functions is important in query optimization to help in eliminating 
unwanted records. Boolean operations can be used to secure computation between two-parties , enabling private 
function evaluation. Moreover, in machine learning, the identification of relationships between feature sets repre-
senting classes or categories is essential for classification  algorithms24,25. The development of specialized quantum 
algorithms for these set operations holds immense potential for achieving exponential speedups by harnessing the 
benefits of quantum parallelism. This has the potential to greatly enhance the scalability of applications dealing 
with large datasets, particularly those processing amount of data. Hash functions are used in different applications, 
for examples cryptographic protocols, so a collision for a function is of particular interest in  cryptology30. These 
protocols depend on finding collisions in such functions. The problem is to find so-called claws in pairs of func-
tions; the proposed quantum algorithms in this paper can be used to solve the problem of finding collisions using 
the intersection algorithm and solve claws in pairs of functions using the difference algorithm. The hash function 
is used in the cryptographic protocols to test the Boolean function’s probability that requires set operations.

Conclusion
In this paper, four quantum algorithms for set operations on two Boolean functions f1 , f2 with n inputs are pre-
sented. The proposed Algorithm 1 finds the set of binary vectors that evaluates both f1 and f2 to True, i.e. it finds 
the true intersection between them. Algorithm 2 finds the set of binary vectors that evaluates both f1 ⊕ 1 and 
f2 ⊕ 1 to True, i.e. it finds the False intersection between them. Algorithm 3 finds the set of binary vectors that 
evaluates f1 to True and evaluates f2 to False, i.e. it finds the difference between f1 and f2 . Furthermore, Algo-
rithm 4 finds the set of binary vectors that evaluates either f1 or f2 to True, i.e. it finds the union between them.

The proposed algorithms use amplitude amplification techniques and handle the non-uniform amplitudes’ 
distribution case for the system with multi-solutions. All algorithms are based on two algorithms; Younes et al. 
algorithm is used in the preparation step and an amended version of Arima’s algorithm is used in the searching 
step. Younes et al. algorithm prepares an incomplete superposition of the truth set of the first Boolean function 

(122)P(P)s = 2 ∗ (βP+2)
2.

(123)P(P)e = 2 ∗ (γP+2)
2.

(124)P ∼=
π

2
√
2

√

N

C
+ π

8

√
2N = O

(√
N

)

or P ∼=
π

2
√
2

√

N

C
+ π

8

√
N = O

(√
N
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f1 using an amplitude amplification technique that employs entanglement and partial diffusion, while Arima’s 
algorithm is used with an oracle that represents the second Boolean function f2 to search for a solution that 
represents the result of the set operator using phase shift inversion about the mean.

The proposed quantum algorithms can be used to apply set operations on two arbitrary Boolean functions 
in O

(√
N

)

 to find the solutions with high probability. The algorithms also demonstrated flexibility to compute 
arbitrary set relations compared to previous approaches. Resource estimates indicated polynomial number of 
qubits, suggesting potential near-term feasibility. Overall, the work developed practical quantum techniques 
advancing the capability to solve important set transformation problems. Future research includes optimizing 
resource costs, experiment implementation the algorithms, and customizing the approach to be used in different 
domains such as database queries, cryptography and machine learning. Furthermore, in the future, the proposed 
algorithms can be extended to perform set operations on more than two Boolean functions.
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