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Mathematical formulation 
and computation of the dynamics 
of blood flow, heat and mass 
transfer during MRI scanning
Annord Mwapinga 

Computational modeling of arterial blood flow, heat and mass transfer during MRI scanning is studied. 
The flow is assumed to be unsteady, in-compressible, and asymmetric. Mathematical formulation 
considers the presence of stenosis, joule heating viscous dissipation and chemical reaction. The 
explicit finite difference scheme is used to numerically solve the model equations. The MATLAB 
software was used to plot the graphical results. The study reveals that, during MRI scanning, both 
radial and axial velocities diminish with increase in the strength of magnetic fields. Besides, the study 
found that, Eckert number and Hartman number enhance the blood’s temperature and the same, 
diminishes with increase in Prandtl and Reynolds numbers. Concentration profile is observed to 
decline with increase in chemical reaction parameter, Schmidt number and Reynolds number. Soret 
number on the other hand, is observed to positively influence the concentration.
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List of symbols
u  Blood’s radial velocity
w  Blood’s axial velocity
r  Radial distance
z  Axial distance
r0  Radius of the normal artery
H  Radius of the diseased artery
e  Protuberance
z0  Half of the axial distance from the middle of stenosis
ρ  Density of the fluid
t  Dimensional time
µ  Dynamic viscosity
A0  Steady state part of pressure gradient
A1  Amplitude of oscillatory
n  Heart pulse frequency
σ  Electrical conductivity
B0  Magnetic strength
C  Mass concentration
C0  Constant concentration
D  Diffusion coefficient
β  reaction rate (first order)
cp  Specific heat capacity
k  Thermal conductivity
KT  Thermal diffusion ratio
η  Dimensionless radial distance
τ  Dimensionless time
ξ  Radial coordinate transformation variable

OPEN

Mwenge Catholic University: Department of Natural Sciences and Information Technology, P.O. Box 1226, Moshi, 
Tanzania. email: annord.mwapinga@mwecau.ac.tz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56844-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6364  | https://doi.org/10.1038/s41598-024-56844-2

www.nature.com/scientificreports/

One of the radiology techniques in hospitals is the use of magnetic resonance imaging (MRI). MRI is currently, 
the clinically favorite method for imaging soft tissue as it can produce a purer, more detailed view of internal 
organs than computed tomography (CT). MRI uses no radiation and delivers superb images of the body with no 
recognized harmful health effects. Blood contains iron in red blood cells. The presence of iron in blood has drawn 
much attention to mathematicians to determine the dynamics of blood flow when the body is subjected to the 
magnetic fields. In that regard, blood possesses electrically conducting and magnetization behavior because of 
the ions which are present in the plasma. Blood is a transporting agent in the human body. gases such as oxygen 
and hydrogen are transported via blood in human body. If blood abnormally flow, it affects the transportation of 
several materials in the body, this includes heat and oxygen. According  to1, blood is a nutrient- and oxygen-rich 
bodily fluid that facilitates the body’s natural disposal of metabolic byproducts. The blood in the artery travels 
to all parts of the body, making it a crucial part of sustaining life.

Besides, human arterial wall may consists of fat deposits (plaques or stenosis) that reduce the radius of the 
artery and hence disturbing the normal flow of blood. Several scholars have modeled blood flow in along an 
ill-artery. This includes the study  by2–5  and6.

The similarity and finite difference solution on biomagnetic flow and heat transfer of Blood −Fe3O4 through 
a thin needle was studied  by7. The study assumed blood to be base fluid which exhibits electrical conductivity 
and polarization properties. A similar study was done  by8 where the fluid transport behavior of the flow of gold 
(Au)-copper (Cu)/biomagnetic blood hybrid nanofluid in an inclined irregular stenosis artery as a consequence of 
varying viscosity and Lorentz force was addressed. Besides,9 carried out a fractional modeling of non-Newtonian 
Casson fluid squeezed between two parallel plates. The study was performed under the influence of magneto-
hydrodynamic and Darcian effects.

On the other hand, a mathematical model of non-Newtonian blood flow, heat and mass transfer through a 
stenosed artery wa studied  by10. The Herschel-Bulkley model was chosen to suit the non-Newtonian charac-
teristics. Body acceleration, magnetic fields and chemical reaction were taken into consideration. Some other 
aspects of heat transfer was similarly studied  by11. However the study involved natural convection in nanofluid 
flow with chemotaxis process over a vertically inclined heated surface. Furthermore, similar study was carried 
out as shown  by12–16  and17.

Several scholars have studied MHD blood flow in arteries, this  include18–21,  and22. Besides,23 investigated the 
effect of magnetic fields when a human body is subjected to body accelerations and chemical reactions. This 
was a special case of the magnetic therapy. The finite difference method was used to solve the resulting partial 
differential equations.

The main purpose of the current study is to investigate the dynamics of blood flow, heat and mass transfer 
during MRI scanning. The constriction of the artery, Joule heating, and chemical reactions are considered. The 
findings of the current investigation are very useful in clinical rheology departments, more important, the find-
ings can be used to control fluid flow. The governing model equations involved are the momentum, energy and 
the concentration. To these flow equations, some assumptions as stipulated in formulation part are applied to 
come up with some desired model equations. The model equations are solved numerically using finite difference 
schemes. The MATLAB software is used to produce graphical results.

Mathematical formulation
The current study considers that, the flow is unsteady, laminar, in-compressible, asymmetric, fully developed, 
and horizontal. MRI scanning machines produces magnetic fields that are perpendicular to the axis of symmetry, 
Joule or ohmic heating is in place, the artery is cylindrical, there is no an external heat source. Furthermore, the 
electrical conductivity, thermal conductivity and blood’s viscosity are constant. It is also considered that r = 0 
is the axis of the asymmetric flow and ur , uθ , uz are the velocities in ( r, θ , z ) directions. Under these assumptions 
therefore, the velocity is independent of angle θ that is 

∂

∂θ
= 0 . Blood is considered to be a chemically reacting 

fluid. In Figure 1, a Schematic diagram diagram of a stenosed artery is shown.
The study assumes further that along radial direction, the pressure gradient is negligible because the lumen 

radius of the artery is small. However, the pressure gradient along axial direction is given by

Figure 1.  The schematic diagram of the constricted artery.
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where A0 is a steady state part of pressure gradient and A1 is the amplitude of oscillatory. n = 2π f  with f being 
the heart pulse frequency and t is the time. The constricting part of the artery is defined as

Where r0 is the radius of the normal artery, H(z) is the radius of the reduced artery and δ is the height of stenosis. 
 Following24, the controlling blood flow model equals becomes;

where the function φ is the viscous dissipation given by

Scaling the variables
This sub-section the non-dimensional variables are introduced. The characteristic fluid velocity Wc and distance 
rc are used. The Wc is assumed to be the average blood’s velocity flowing along the artery. Similar approach was 
used  by25,26  and27.

Using the non-dimensional variables above and dropping the asterisks, we get the following blood flow model 
equations

(2.1)−
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H(z) =







r0 − e

�

1+ cos

�

πz

2z0

��

if − 2z0 ≤ z ≤ 2z0

r0 Otherwise

(2.2)
∂u

∂r
+

u

r
+

∂w

∂z
= 0

(2.3)
ρ

(

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)

= µ

(

∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2
+

∂2u

∂z2

)

ρ

(

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

= A0 + A1 cos(nt)+ µ

(

∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

)

− σB20w

(2.4)ρCp

(

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

)

= k

(

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)

+ φ + σB20w
2

(2.5)
∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z
= D

(

∂2C

∂r2
+

1

r

∂C

∂r
+

∂2C

∂z2

)

+
DKT

Tw

(

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)

− βC

(2.6)φ = µ

[

(

∂u

∂r
+

∂v

∂z

)2

+ 2

(

∂v

∂r

)2

+ 2

(

∂u

∂z

)2
]

(2.7)η =
r

rc
, z∗ =

z

rc
, w∗

=
w

Wc
, u∗ =

u

Wc
, τ =

tWc

rc
, A∗

0 =
A0rc

ρW2
c

(2.8)A∗
1 =

A1rc

ρW2
c

, m =
rcn

Wc
, T∗

=
T − T0

Tw − T0

, C∗
=

C − C0

Cw − C0

, β∗
=

βr2c
ν

(2.9)
∂u

∂η
+

u

η
+

∂w

∂z
=0

(2.10)
∂u

∂τ
+ u

∂u

∂η
+ w

∂u

∂z
=

1

Re

(

∂2u

∂η2
+

1

η

∂u

∂η
−

u

η2
+

∂2u

∂z2

)

(2.11)
∂w

∂τ
+ u

∂w

∂η
+ w

∂w

∂z
=A0 + A1 cos(mt)+

1

Re

(

∂2w

∂η2
+

1

η

∂w

∂η
+

∂2w

∂z2

)

−
M2

Re
w

(2.12)

∂T

∂τ
+ u

∂T

∂η
+ w

∂T

∂z
=

1

Pr Re

(

∂2T

∂η2
+

1

η

∂T

∂η
+

∂2T

∂z2

)

+
Ec

Re
M2w2

+
Ec

Re

[

2

(

∂w

∂η

)2

+ 2

(

∂u

∂z

)2

+

(

∂w

∂z
+

∂u

∂η

)2
]



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6364  | https://doi.org/10.1038/s41598-024-56844-2

www.nature.com/scientificreports/

where Re =
ρWcrc

µ
 , M = B0Wc

√

σ

µ
 , Pr =

µcp

k
 , Ec =

W2
c

cp(Tw − T0)
 , Sc =

ν

D
 and Sr =

DKT (Tw − T0)

ν(Cw − C0)
 are 

respectively Reynolds number, Hartman number, Prandtl number, Eckert number, Schmidt number and Soret 
number.

The boundary and initial conditions in dimensionless form become;

Solution of the problem
Radial coordinate transformation
In this section we find the solution of the formulated model. The finite difference method is used. However, 
before dicretizing, we minimize chances of interpolation errors by introducing the radial coordination transfor-
mation ξ =

η

H(z)
 . This aims at immobilizing the constricted artery into a rectangular domain. Using such suit-

able transformation, the continuity, momentum, energy and mass transfer equations becomes;
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The model above is solved subject to the following conditions

The radial momentum
We now find the radial velocity in terms of of the axial momentum. I that regard, we multiply the continuity 
equation by ξH and integrate with respect to ξ subject to the given boundary conditions. This gives

From the radial momentum above, we find the partial derivatives 
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Numerical procedure
To study the dynamics of blood flow, heat and mass transfer in a stenosed artery, we make use of the finite dif-
ference approximations. Developing the scheme for finite difference approximations, we put in place the central 
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In this case, �ξ is the increment in radial direction, �z is the increment in axial direction and �τ is the incre-
ment in time.

Besides, the discretization of w(i, j, k), θ(i, j, k) and C(i, j, k) is written as wk
i,j , θ

k
i,j and Ck

i,j respectively. The 
following definitions are also considered;

Substituting the finite difference schemes into our model equations we get the following;
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Concentration equation:

We now discretize the boundary conditions. The Neumann boundary condition at ξ = 0 is given as:

The equation above leads to the relations wk
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which gives wk
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i,1 . Thus, the discretized boundary conditions are given as shown 

below.

the initial axial velocity W0 = W(ξ) is given as

Results and discussion
In the current section, the graphical simulations of velocity, temperature and concentration profiles are presented.

Arterial blood’s velocity profiles
Figure 2 shows the effect of Hartman number on the axial velocity. It is observed that as the Hartman number 
increases, the velocity profile diminishes. The Hartman number serves as a measure of the drag forces which 
result from the magnetic induction, the Lorentz force. This Lorentz force (which is in opposite direction) has 
the tendency of slowing down the motion. As the Hartman number increases, the Lorentz force increases and 
consequently diminishes the axial velocity. Besides, this physically implies that the velocity is diminished as a 
result of the enhancement of the increase in electrical conductivity. In that regard therefore, Magnetic fields can 
be used for clinical purposes to control the velocity of blood.

The effect of the Reynolds number on axial velocity is observed in Figure 3. From the figure, It is observed that 
increasing Reynolds number results to the increase in the axial velocity. The Reynolds number is the mathemati-
cal ratio of the inertial force to the viscous force present in the fluid (in this case blood). As Reynolds number 
increases the inertial force increases which results to the increase of the fluid’s velocity.

Figure 4 shows the effect of stenotic height on axial velocity. It is revealed that, as the stenotic height increases, 
the axial velocity declines. The decline of the axial velocity is reasoned in the manner that as the stenotic height 
increases, the flow region declines. Besides, the steady-state part of pressure gradient is varied to see its effect on 
axial velocity. as expected, increasing A0 leads to the increase in the axial velocity profile. See Figure 5.

Figure 6 presents both, axial and radial velocities. We observe that, the radial velocity is much lesser than 
the axial velocity. This is because the study assumes that the pressure is more dominant in axial direction than 
in radial direction. The radial velocity is observed to start at velocity 0 and increases gradually, however ending 
with velocity 0 again on the arterial wall. this is to suit the no slip condition considered.
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Figure 2.  Effect of Hartman number on axial velocity.
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Figure 3.  Effect of Reynolds number on axial velocity.

Figure 4.  Effect of Stenotic height on axial velocity.

Figure 5.  Effect of steady-state part of pressure gradient on axial velocity.
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Temperature profiles
This part presents the dynamics of temperature profiles for various parameters. the impact of increasing Prandtl 
number Pr , Eckert number Ec , Reynolds number Re and the Hartman number M is studied.

It is observed from Figure 7 that increase in Prandtl number, diminishes the temperature profiles. The Prandtl 
number represents the ratio of momentum diffusivity to thermal diffusivity. Increasing Prandtl number implies 
that the momentum diffusivity or kinematic viscosity is more dominant thermal diffusivity. Besides, increasing 
Prandtl number weakens the thermal boundary that results to reduction of the temperature profile.

The impact of altering Eckert number on temperature profile is shown on Figure 8. As shown from the figure, 
increase in Eckert number, enhances temperature. In this regard, the Eckert number characterizes the self heat-
ing of the fluid (blood) as a result of viscous dissipation. Increasing the Eckert number leads to increase in the 
internal friction of the fluid and eventually enhancing the fluid’s temperature profile. In this regard therefore, it 
is suggested that the effect of self heating of the fluid due to viscous dissipation should not be neglected.

Figure 9 shows the effect of Reynolds number on temperature profile. From the figure, it is observed that 
the temperature declines with increase in the Reynolds number. The decline of the temperature is as a result of 
increase in inertial force. Besides, increase in the Reynolds number implies that inertial force is dominant than 
viscous force and thus diminishing heating which eventually declines the temperature.

The effect of Hartman number on temperature is shown on Figure 10. The figure reveals that, the increase in 
Hartman number, enhances temperature. Physically, increasing the Hartman number raises the characteristic 
value of te magnetic induction and the Lorentz force in general which results to increase in internal energy and 
the collision of electrons in the fluid, eventually enhancing the fluid’s temperature.

Figure 6.  The arterial axial and radial velocities.

Figure 7.  Effect of Prandtl number on temperature profile.
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Figure 8.  Effect of Eckert number on temperature profile.

Figure 9.  Effect of Reynolds number on temperature profile.

Figure 10.  Effect of Hartman number on temperature profile.
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Concentration profiles
The dynamics of concentration as a result of altering Schmidt number, Reynolds number, chemical reaction 
parameter, and Soret number is graphically presented.

It is observed on Figure 11 that concentration declines with increase in chemical reaction, Schimdt number 
and the Reynolds number. However, concentration increases with Soret number. Chemical reaction therefore is 
like a destructive agent in the fluid. In the presence reaction, mass transfer diminishes. The concentration is also 
observed to decrease with increase in the Schmidt number. The Schmidt number is the ratio of the momentum 
diffusion to the mass diffusion. Increase in Schmidt number implies that the mass diffusion is dominated by 
the momentum or kinematic viscosity. As mass diffusion is dominated, the concentration declines. Regarding 
Reynolds number, its increase implies that the inertial force is dominant that the viscous force. Reynolds num-
ber enhances the flow velocity of the fluid, thus diminishing the concentration of the fluid due to the increased 
velocity.

Opposite behavior of the concentration is observed when the Soret number is altered. The concentration 
of the fluid increases with increase in the Soret number. Principally, the increase in Soret number, raises the 
temperature which results to high convective flow, this in turn increases the concentration.

Comparison of the findings
The results of the current study were compared with the previous similar study done  by29 This is as shown in 
the Figure 12. In this regard, the velocity profile of the current study was plotted in same figure with that  of29. 
Magnetic field for the current study was set to be zero. The profiles show a convincing agreement of the two 
studies though the previous study show involved the multiple stenosis of the artery.

(a) (b)

(c) (d)

Figure 11.  The Dynamics of the concentration profiles.
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Conclusion
Modeling and computation of a constricted arterial blood flow, heat and mass transfer for a human body sub-
jected to the magnetic resonance imaging (MRI) scan machine are studied. The simultaneous effects of magnetic 
fields, joule heating and chemical reaction have been investigated. The finite difference method was used to tackle 
the problem numerically. The simulation of fluids blood’s velocity, temperature and the concentration was done 
using the MATLAB software.

The study reveals that, the blood’s axial velocity diminishes with magnetic fields available in MRI scanning 
machine, height of stenosis and is enhanced with the Reynolds number and the steady-state part of the pressure 
gradient. An interesting finding is that, the axial velocity diminishes with stenotic height but the radial velocity 
increases with increase in height of stenosis.Temperature profile diminishes with increase in Prandtl number and 
Reynolds number.Opposite behavior is observed when Eckert number and Hartman number increase. Finally, 
The concentration profile declines with increase in chemical reaction parameter, Schmidt number and Reynolds 
number. Soret number is observed to enhance concentration.

Data Availibility
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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