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Identifying microRNAs associated 
with tumor immunotherapy 
response using an interpretable 
machine learning model
Dong‑Yeon Nam  & Je‑Keun Rhee *

Predicting clinical responses to tumor immunotherapy is essential to reduce side effects and the 
potential for sustained clinical responses. Nevertheless, preselecting patients who are likely to 
respond to such treatments remains highly challenging. Here, we explored the potential of microRNAs 
(miRNAs) as predictors of immune checkpoint blockade responses using a machine learning 
approach. First, we constructed random forest models to predict the response to tumor ICB therapy 
using miRNA expression profiles across 19 cancer types. The contribution of individual miRNAs to 
each prediction process was determined by employing SHapley Additive exPlanations (SHAP) for 
model interpretation. Remarkably, the predictive performance achieved by using a small number of 
miRNAs with high feature importance was similar to that achieved by using the entire miRNA set. 
Additionally, the genes targeted by these miRNAs were closely associated with tumor‑ and immune‑
related pathways. In conclusion, this study demonstrates the potential of miRNA expression data for 
assessing tumor immunotherapy responses. Furthermore, we confirmed the potential of informative 
miRNAs as biomarkers for the prediction of immunotherapy response, which will advance our 
understanding of tumor immunotherapy mechanisms.

Immunotherapy targets immune checkpoints and is a type of cancer treatment that modulates the immune 
system to eliminate tumor  cells1. Immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4), programmed death-ligand 1 (PD-L1), and programmed death 1 (PD1), have been thoroughly 
explored and have emerged as targets in immune checkpoint blockade (ICB)  therapy2. In comparison to conven-
tional cancer treatment methods such as radiotherapy and chemotherapy, immunotherapy offers the advantage of 
patient-specific production and the potential for a sustained response with fewer side effects. However, the high 
cost of cancer immunotherapy and the fact that not all patients respond to ICB therapy have created significant 
barriers to  treatment3. Therefore, predicting ICB response before treatment is crucial.

To address this problem, several methods have been developed based on computational analyses. For exam-
ple, Litchfield et al. identified predictors of ICB responses through a meta-analysis of tumor mechanisms using 
whole-exome and transcriptomic data for checkpoint inhibitor (CPI)-treated patients and devised a machine 
learning approach (XGBoost) to predict ICB  responses4. Moreover, Chowell et al. developed a machine learning 
model that predicted ICB responses by integrating genomic, demographic, and clinical data from patient cohorts 
treated with ICB across various cancer  types5. Kong et al. proposed a network-based machine learning framework 
to predict the treatment response to immune  CPIs6. Moreover, Zhang et al. devised a computational model, Tres, 
which leverages single-cell transcriptomic data to discern robust T-cell signatures associated with immunosup-
pressive signals. Tres has shown efficacy in predicting clinical responses to immunotherapy in melanoma, lung 
cancer, triple-negative breast cancer, and B-cell  malignancies7.

A prominent computational method called Tumor Immune Dysfunction Exclusion (TIDE)8 has also emerged. 
This method is based on the premise that transcriptome signatures, among various factors (such as PD-L1 
expression  level9, neoantigen  load10, immune infiltration  level10, and tumor  aneuploidy11) can serve as biomark-
ers that affect the effectiveness of ICB. To predict the response to ICB, the authors of TIDE focused on how 
tumors evade the immune system and categorized the tumor immune evasion mechanism into dysfunction and 
 exclusion12,13. Dysfunction refers to the infiltration of cytotoxic T cells into the tumor at a high level. However, 
these T cells are in a dysfunctional state and are unable to attack the tumor cells. In contrast, exclusion involves 
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immunosuppressive factors in the tumor that prevent T cells from entering. TIDE utilizes key gene signatures 
as biomarkers and measures the TIDE score to predict ICB responses, thereby offering insights into the two 
evasion mechanisms.

Recently, various studies have supported the role of microRNAs (miRNAs) in regulating immune responses 
with diverse effects on the immune system. miRNAs are non-coding RNAs approximately 22 nucleotides in 
length that participate in post-transcriptional gene regulation by forming pairs with mRNA; they are intricately 
linked to various  diseases14,15. The expression patterns of miRNAs are disease-specific, including those in cancer, 
making them valuable for reflecting disease occurrence and differentiation  states16. Consequently, understand-
ing the function of miRNAs can aid in identifying the pathological mechanisms underlying diseases and can 
potentially be associated with the ICB response. For instance, miR-20017 and miR-42418 influence the interaction 
between the PD-1 receptor and PD-L1 ligand by modulating PD-1 expression, which is an immune checkpoint 
molecule. Furthermore, miR-138 binds to the 3’-UTR of CTLA-4 and PD-1, reducing their expression and 
serving as a tumor-suppressive factor. It has also been investigated as a potential component of novel immune 
 treatments19. Given that miRNAs regulate gene expression and are closely associated with the immune system, 
they can be used as biomarkers to predict ICB responses.

In this study, we developed a stepwise machine-learning model to predict ICB responses in patients with 
tumors based on miRNA expression profiles (Fig. 1). The model has two steps: the first step is to predict cytotoxic 
T lymphocyte (CTL) levels, and the second step is to predict T cell dysfunction and exclusion scores. Moreover, 
we employed SHapley Additive exPlanations (SHAP)20,21 for the interpretability of our machine learning model 
and analyzed the intrinsic mechanism guiding our predictions. Our study had the following objectives: first, to 
assess the efficacy of the ICB response prediction model using miRNA expression data, and second, to uncover 
the miRNAs that are closely related to ICB responses using SHAP analysis. Furthermore, we analyzed the bio-
logical functions of the genes targeted by these miRNAs and determined their potential impact on the immune 
systems of patients with tumors.

Figure 1.  Workflow for ICB response prediction based on microRNA expression profiles. (A) Gene expression 
data is preprocessed by performing normalization and prior therapy screening. Subsequently, ICB response 
prediction results are obtained using TIDE method. (B) The TIDE results and miRNA expression data are 
aligned based on sample ID. (C) The data are divided into two groups; train/test and external validation. (D) 
The three machine learning models for predicting CTL levels, dysfunction scores, and exclusion scores, are 
trained. (E) Each trained model utilizes test data to obtain predicted values and measure its performance. (F) 
Each trained model uses external validation data to obtain predicted values and measure the performance. (G) 
The final ICB response is estimated based on the stepwise prediction by combining the trained models. (H) The 
final combined stepwise model uses test data to obtain the predicted result value and measure performance. 
(I) The external validation data is used for the final combined model to obtain the predicted result value and 
measure performance.
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Results
ICB response prediction using miRNA expression profiles
We compiled predictive ICB responses using the TIDE model and miRNA expression profiles from 7721 samples 
across 19 different tumor types within The Cancer Genome Atlas (TCGA) dataset (Table 1). To predict immu-
notherapy response using miRNA expression profiles, we first developed a random forest classifier to determine 
CTL levels. The optimal parameters for the random forest classifier were determined through a grid search with 
tenfold cross-validation (Table 2). Using the identified optimal parameters, we trained random forest classifiers 
on the designated training data and rigorously assessed the predictive performance on the independent test 
data. The results showed that the random forest classifier predicted the CTL levels well, with an AUC of 0.9400 
(Fig. 2A). Furthermore, when evaluating the performance using the F1 score and Balanced AUC indicators, high 
performance was confirmed, with an F1 score of 0.9849 and a Balanced AUC of 0.7182.

Next, we predicted the dysfunction and exclusion scores based on random forest regression. A grid search 
with tenfold cross-validation was performed to determine the optimal parameters for random forest regression 
(Table 2). Employing the optimal parameters, two random forest regression models to predict the dysfunction 
and exclusion scores were independently learned from the training data. The predictive results with the inde-
pendent test datasets showed that the MSE of the regression model for predicting the dysfunction and exclusion 
scores were both 0.0361. The Pearson correlation coefficient (PCC) between the observed and predicted values 
was also calculated. The PCC for the dysfunction score prediction model was 0.8158 and that for the exclusion 
model was 0.8704. This indicated a strong positive correlation between the predicted and actual values in both 
models (Fig. 2B,C).

Finally, we predicted the ICB responses based on the TIDE score by combining the two-step machine learning 
model, constructed a random forest classifier for CTL prediction, and random forest regression models for the 
dysfunction and exclusion scores. The MSE of the combined stepwise model was 0.0360. Furthermore, the PCC 
between the observed and predicted values exhibited a strong positive correlation of 0.9270 (Fig. 2D).

Identification of miRNAs with high feature importance
Thereafter, we used SHAP, an interpretable machine learning approach, to analyze the results of our machine 
learning models. Using SHAP analysis, we identified informative miRNAs that contributed to the prediction of 
target values. Figure 3 shows the top 20 miRNAs ranked according to their feature importance scores in each 
model.

For CTL-level prediction based on a random forest classifier, hsa-miR-155 was the most informative feature 
with the highest Shapley value. In particular, focusing on high and low CTL predictions, the expression of hsa-
mir-155 was positively associated with CTL-level prediction (Fig. 3B,C). Notably, miR-155 is an essential factor 

Table 1.  Abbreviation for tumor type and number of samples from The Cancer Genome Atlas (TCGA) gene 
and microRNA (miRNA) expression. *GBM was not used in our experiments because the miRNA expression 
data were insufficient. **LAML was not employed in our experiments because it was not a solid tumor.

Tumor type Abbreviation Number of samples (gene expression)
Number of samples (miRNA 
expression)

Breast invasive carcinoma BRCA 1217 1202

Kidney renal clear cell carcinoma KIRC 607 592

Uterine corpus endometrial carcinoma UCEC 583 575

Head and neck squamous cell carci-
noma HNSC 546 569

Lung adenocarcinoma LUAD 585 564

Brain lower-grade glioma LGG 529 530

Lung squamous cell carcinoma LUSC 550 523

Ovarian serous cystadenocarcinoma OV 379 498

Stomach adenocarcinoma STAD 407 477

Colon adenocarcinoma COAD 512 461

Skin cutaneous melanoma SKCM 472 452

Bladder urothelial carcinoma BLCA 430 432

Liver hepatocellular carcinoma LIHC 424 425

Kidney renal papillary cell carcinoma KIRP 321 326

Cervical squamous cell carcinoma and 
endocervical adenocarcinoma CESC 309 312

Sarcoma SARC 265 263

Pancreatic adenocarcinoma PAAD 182 183

Esophageal carcinoma ESCA 173 198

Uveal Melanoma UVM 80 80

Glioblastoma multiforme* GBM 173 5

Acute Myeloid Leukemia** LAML 151 188
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orchestrating the CD8 + T cell response in cancer, and its overexpression has been associated with the enhance-
ment of the anti-tumor  response22,23. hsa-miR-150, which had the second-highest impact on model predictions, 
exhibited a similar trend. miR-150 also plays a crucial role in the differentiation and functional regulation of 
CD8 + T  cells24. The absence of miR-150 leads to a decline in the killing ability of CD8 + T  cells24. In addition, 
hsa-miR-4772, hsa-miR-21, hsa-miR-142, and hsa-miR-10a were also identified with notably high Shapley values.

In the random forest regression model used to predict the dysfunction score, the miRNA with the highest 
Shapley value was hsa-miR-10b. The Shapley value of hsa-mir-10b was negative when its expression was low, 
and positive when its expression was high (Fig. 3E). This indicated a positive correlation between hsa-miR-
10b expression and dysfunction prediction. In contrast, hsa-miR-183 negatively correlated with dysfunction 
prediction. Both miR-150 and miR-155 showed positive correlations in dysfunction predictions and played an 
important role in dysfunction mechanisms, as well as in CTL level predictions. Furthermore, miR-151a and 
miR-210 exhibit negative correlations, similar to those of miR-183.

In the random forest regression model predicting the exclusion score, hsa-miR-10b also showed the largest 
Shapley value (Fig. 3G); however, it exhibited a negative correlation with hsa-miR-10b and the exclusion predic-
tion, in contrast to the dysfunction prediction model. This observation serves as an example of how exclusion 
prediction, which has a mechanism opposite to that of dysfunction, is negatively correlated with dysfunction 
prediction. In contrast to the dysfunction results, hsa-miR-150 and hsa-miR-155 demonstrated opposite behav-
iors in exclusion prediction. Additionally, hsa-miR-10a, which was also identified in the CTL-level prediction, 
showed a positive correlation with exclusion prediction and played an important role in model prediction. Fur-
thermore, the expression level of miR-194-1 and miR-194-2 is negatively correlated to the exclusion prediction.

Prediction of ICB response using informative miRNAs
Next, we verified whether ICB response could be predicted using a small number of informative miRNAs. We 
selected miRNAs with an average absolute Shapley value of 0.01 or higher (SHAP 0.01). Using this criterion, 
three miRNAs were identified in the CTL model, five miRNAs in the dysfunction prediction model, and 12 in 
the exclusion prediction model (Fig. 3A,D,F). Because only a limited number of features were used to construct 
the models, we employed a simple algorithm to predict immunotherapy response.

To predict the CTL level, we applied logistic  regression25 and determined the optimal parameters by conduct-
ing a grid search with tenfold cross-validation (Table 2). The model using the three informative miRNAs achieved 
an F1 score of 0.9805, a balanced accuracy of 0.7249, and an AUC value of 0.9300 (Fig. S1A). This analysis con-
firmed that a small subset of highly informative miRNAs displayed a similar performance in predicting CTL 
levels, even when a logistic regression model was utilized.

Table 2.  Parameters of each model tuned through GridSearchCV (tenfold cross validation). *RFC: Random 
forest classifier, RFR: Random forest regression model, Logistic: Logistic regression classifier, Linear: Linear 
regression model. **[CTL]: model for predicting CTL level, [Dys]: model for predicting dysfunction score, 
[Exc]: model for predicting exclusion score, [CTL →  Dys]: model for predicting the ICB response using [Dys] 
model when [CTL] model predicts the CTL level as high, [CTL → Exc]: model for predicting the ICB response 
using [Exc] model when [CTL] model predicts the CTL level as low. ***All: All miRNA features, SHAP 
0.01: miRNAs with feature importance of mean (|Shapley values|) > 0.01, SHAP 0.02: miRNAs with feature 
importance of mean (|Shapley values|) > 0.02.

Model Best parameter

RFC* [CTL]** (All***) (criterion = ’entropy’, max_features = None, n_estimators = 250)

Logistic* [CTL] (SHAP 0.01***) (class_weight: None, penalty: ’l2’, solver: ’liblinear’)

Logistic [CTL] (SHAP 0.02***) (class_weight: None, penalty: ’l2’, solver: ’liblinear’)

RFR* [Dys]** (All) (max_depth = 25, n_estimators = 700)

Linear* [Dys] (SHAP 0.01) (default)

Linear [Dys] (SHAP 0.02) (default)

RFR [Exc] (All) (max_depth = 20, n_estimators = 300)

Linear [Exc] (SHAP 0.01) (default)

Linear [Exc] (SHAP 0.02) (default)

Stepwise model [CTL → Dys] (all) RFC [CTL]: (criterion = ’entropy’, max_features = None, n_estimators = 250)
RFR [Dys]: (max_depth = 25, n_estimators = 700)

Stepwise model [CTL → Exc] (all) RFC [CTL]: (criterion = ’entropy’, max_features = None, n_estimators = 250)
RFR [Exc]: (max_depth = 20, n_estimators = 300)

Stepwise model [CTL → Dys] (SHAP 0.01) Logistic [CTL]: (class_weight: None, penalty: ’l2’, solver: ’liblinear’)
Linear [Dys]: (default)

Stepwise model [CTL → Exc] (SHAP 0.01) Logistic [CTL]: (class_weight: None, penalty: ’l2’, solver: ’liblinear’)
Linear [Exc]: (default)

Stepwise model [CTL → Dys] (SHAP 0.02) Logistic [CTL]: (class_weight: None, penalty: ’l2’, solver: ’liblinear’)
Linear [Dys]: (default)

Stepwise model [CTL → Exc] (SHAP 0.02) Logistic [CTL]: (class_weight: None, penalty: ’l2’, solver: ’liblinear’)
Linear [Exc]: (default)
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Subsequently, dysfunction and exclusion scores were predicted using a small number of informative miRNAs 
based on multiple linear regression. The obtained results showed that the MSE for the dysfunction model using 
the top miRNA (SHAP 0.01) was 0.0754 and that for the exclusion prediction model was 0.0840. The PCCs 
between the predicted and actual values were 0.5707 and 0.6638 for the dysfunction and exclusion prediction 
models, respectively (Figs. S1B,C). From these results, we confirmed that the performance was slightly degraded 
with a reduced number of features; however, the models still demonstrated comparable performance with only 
a small number of selected miRNAs.

Finally, to predict the ICB responses based on the TIDE scores, we applied a stepwise machine learning model 
by combining the logistic regression classifier for the CTL level and the linear regression model for dysfunction 
and exclusion scores. The MSE of the model that used the most informative miRNA (SHAP 0.01) was 0.0690. 
We also observed a strong positive correlation with informative miRNAs; the PCC of the top miRNA (SHAP 
0.01) was 0.8457 (Fig. S1D).

Similarly, we applied robust criteria for the identification of informative miRNAs and verified whether hav-
ing fewer miRNAs could result in the accurate prediction of immunotherapy response. We selected miRNAs 
with an average absolute Shapley value of 0.02 or higher (SHAP 0.02); two miRNAs were identified in the CTL 
model, four miRNAs in the dysfunction prediction model, and five miRNAs in the exclusion prediction model 
(Fig. 3A,D,F).

For CTL level prediction using logistic regression, the model obtained an F1 score of 0.9800, a balanced 
accuracy of 0.7459, and an AUC value of 0.91 (Fig. S2A). In addition, the models showed good performance for 
dysfunction and exclusion score prediction using linear regression. The MSE for dysfunction prediction was 
0.0810 and that for exclusion prediction was 0.0984. The PCCs were 0.5220 and 0.5900 for the dysfunction score 
and exclusion score prediction models, respectively (Fig. S2B,C). Furthermore, for the ICB response prediction 
based on the TIDE scores using the two-step machine learning model combining logistic regression and linear 
regression, the MSE was 0.0753 and the PCC was 0.8595 (Fig. S2D). Although the performance was slightly lower 
than that of the model using all miRNAs for predicting the ICB response, these results suggest that informative 
miRNAs based on Shapley values still exhibit strong predictive capability, even with a limited number of miRNAs 
and relatively simple classification and regression models.

Figure 2.  Predicted results for each model learned using miRNA expression profiles. (A) ROCAUC of the 
random forest classifier that predicts the CTL level. The class “True” signifies the high group and “False” signifies 
the low group. (B) Scatterplot of the random forest regression model for predicting the dysfunction score. The 
red line indicates the regression line. (C) Scatterplot of the random forest regression model for predicting the 
exclusion score. The red line indicates the regression line. (D) Scatterplot of the stepwise prediction model 
predicting ICB response based on the TIDE score. The red line indicates the regression line.
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Enrichment analysis for target genes of informative miRNAs
To examine the biological roles of the informative miRNAs, we predicted the target genes of the informative 
miRNAs selected by Shapley values using miRDB and TargetScan. A list of the genes targeted by the top miRNAs 
from each model is shown in Tables S1 and S2. We investigated the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways enriched in the target genes. Tables 3, 4, 5 and Tables S3–S5 show the results of enrich-
ment analyses using the informative miRNAs (SHAP 0.01) of each model. The top 20 pathways are listed in 
Tables 3, 4, 5 in ascending order of P-values, and all KEGG pathways satisfying statistical significance (adjusted 
P value < 0.05) are shown in Tables S3–S5.

The first-ranked KEGG pathway in the CTL-level prediction model was the TNF signaling pathway (Table 3). 
The following pathways are involved in the Hepatitis B and IL-17 signaling pathway. Hepatitis B is a significant 
contributor of hepatocellular carcinoma (HCC)26. Additionally, immune-related pathways such as the Fc epsilon 

Figure 3.  Shapley value plot for exhibiting feature importance. (A) SHAP feature importance for the random 
forest classifier to predict CTL level, (B) summary plot for the random forest classifier when the CTL prediction 
model predicts the CTL level is high, (C) summary plot for the random forest classifier when the CTL prediction 
model predicts the CTL level is low, (D) SHAP feature importance for random forest regression to predict 
dysfunction score, (E) summary plot for random forest regression to predict dysfunction score, (F) SHAP 
feature importance for random forest regression to predict exclusion score, and (G) summary plot for random 
forest regression to predict exclusion score. (A, D, F) are plots that arrange features based on the average of the 
absolute Shapley values, which serve as indicators of feature importance. (B, C, E, G) are summary plots that 
depict feature importance and feature effects simultaneously. Each point signifies the Shapley value of the feature 
and instance. The x-axis represents the Shapley value, and the y-axis represents each feature. The color of each 
point corresponds to the high and low feature values (i.e., miRNA expression values).
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RI signaling pathway and the T cell and B cell receptor signaling pathways were observed at the top. Enrichment 
analysis also revealed several other cancer-related terms, including “Pathways in cancer,” “PI3K-Akt signaling 
pathway,” “Prostate cancer,” “Renal cell carcinoma,” and “Pancreatic cancer” (Table S3). These results suggest a 
significant role for these miRNAs and their target genes in cancer and immunotherapy.

Tables 4 and S4 present the informative pathways identified using the dysfunction score prediction model. 
One of the most significantly enriched pathways was melanogenesis, which produces mutagenic intermedi-
ates that induce immunosuppression. The following term represents the Wnt signaling pathway and the ErbB 
signaling pathway. Moreover, our analysis identified various cancer-related terms, including “Hepatocellular 
carcinoma,” “Prostate cancer,” “Breast cancer,” and “Gastric cancer,” as well as “Pathways in cancer” (Table S4).

Tables 5 and S5 present the pathways identified using the exclusion score prediction model. The first pathway 
is “Proteoglycans in cancer,” which plays a significant role in regulating cytokine and chemokine expression on 
the cell surface. Moreover, various cancer-related pathways and terms, such as “MAPK signaling,” “PI3K-Akt 
signaling pathway,” and “Rap1 signaling pathway”, “Pathways in cancer,” “Prostate cancer,” “Renal cell carcinoma,” 
“Lung cancer,” and “Breast Cancer,” were also identified, along with immune-related pathways like “T cell and 

Table 3.  Kyoto encyclopedia of genes and genomes (KEGG) pathways enriched by genes targeted by miRNAs 
with an average absolute Shapley value of 0.01 or higher in the random forest classifier predicting the CTL level 
(adjusted P-value < 0.05).

KEGG pathway Adjusted P-value

TNF signaling pathway 0.0046

Hepatitis B 0.0063

IL-17 signaling pathway 0.0063

Fc epsilon RI signaling pathway 0.0067

Pathogenic Escherichia coli infection 0.0067

Adherens junction 0.0067

T cell receptor signaling pathway 0.0067

Pathways in cancer 0.0211

Osteoclast differentiation 0.0291

PI3K-Akt signaling pathway 0.0296

Lipid and atherosclerosis 0.0296

Cholinergic synapse 0.0296

Prostate cancer 0.0296

Fluid shear stress and atherosclerosis 0.0296

B cell receptor signaling pathway 0.0296

Growth hormone synthesis, secretion and action 0.0296

Table 4.  Kyoto encyclopedia of genes and genomes (KEGG) pathways enriched by genes targeted by miRNAs 
with an average absolute Shapley value of 0.01 or higher in the random forest regression model predicting the 
dysfunction score (adjusted P-value < 0.05).

KEGG pathway Adjusted P-value

Cushing syndrome 5.04E−06

Melanogenesis 5.04E−06

Wnt signaling pathway 9.80E−05

Axon guidance 9.80E−05

Dopaminergic synapse 1.25E−04

Adrenergic signaling in cardiomyocytes 1.68E−04

Long-term potentiation 2.57E−04

ErbB signaling pathway 5.63E−04

Cholinergic synapse 6.62E−04

Cortisol synthesis and secretion 7.59E−04

Glucagon signaling pathway 0.0012

Circadian entrainment 0.0016

Phospholipase D signaling pathway 0.0028

Growth hormone synthesis, secretion and action 0.0028

Neurotrophin signaling pathway 0.0028

Pathways in cancer 0.0043
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B cell receptor pathway” and “Helper T cell differentiation.” Furthermore, the presence of “PD-L1 expression” 
and the “PD-1 checkpoint pathway in cancer” indicate that the genes targeted by miRNAs are directly associated 
with immunotherapy.

Additionally, it was noted that several pathways related to the brain and neurons were observed, including 
“Axon guidance”27, a subfield of neurodevelopment associated with the process of neurons sending axons to 
reach accurate targets; “Neurotrophin signaling pathway”28, a protein that supports the survival, development, 
and function of neurons; “Long-term potentiation”29, a process that strengthens signal transmission between 
neurons; as well as “Dopaminergic synapse” and “Cholinergic synapse” (Table S5). This could be because the 
majority of CTL-low (exclusion) samples were involved in the TCGA LGG tumor type (Table S6).

Enrichment analysis results using the top miRNAs (SHAP value 0.02) of each model also identified diverse 
pathways related to cancer and immunity (Table S7-S9). These findings would provide valuable insights into the 
molecular mechanisms underlying exclusion and immune response regulation in cancer.

Validation using other TCGA tumor types
We proceeded to validate the stepwise machine learning model based on a random forest trained on all miR-
NAs using data from 12 distinct tumor types not included in the previous training and test phases (Fig. 1F,I 
and Table S10). For the random forest classifier predicting CTL levels, we achieved an F1 score of 0.9912 and 
an AUC value of 0.9400 (Fig. S3A). When predicting the dysfunction and exclusion scores via random forest 
regression models, the MSE for the dysfunction score prediction model was 0.0478, and that for the exclusion 
score prediction model was 0.0641. The MSE value of the stepwise machine learning model for predicting the 
ICB response based on the TIDE score was 0.0475. Moreover, it could be observed that both the predicted value 
and the actual value showed a positive correlation (PCC = 0.8698). (Fig. S3B-D).

Furthermore, we validated the predictive potential of our immunotherapy response prediction model using 
small subsets comprising informative miRNAs (SHAP 0.01 and SHAP 0.02) by applying the same approaches to 
the 12 tumor types (Fig. 1F,I). The models employing informative miRNAs (SHAP 0.01) to predict CTL levels 
using logistic regression showed an F1 score of 0.9901 and an AUC of 0.9300 (Fig. S4A). In the dysfunction and 
exclusion score predictions using linear regression, the MSE were 0.0660 and 0.0677, respectively. Moreover, a 
positive correlation was observed between the predicted and actual values (PCC = 0.2899 and 0.4198, respec-
tively) (Fig. S4B,C). Lastly, the stepwise model used to predict the ICB response based on the TIDE score with 
informative miRNA (SHAP 0.01) yielded an MSE of 0.0661 and a PCC of 0.8335 (Fig. S4D).

Additionally, the results of models with a smaller number of informative miRNAs and strict criteria (SHAP 
0.02) revealed compelling outcomes. CTL-level prediction using the logistic regression classifier model showed 
an F1 score of 0.9904 and an AUC of 0.9300. (Fig. S5A). The linear regression models to predict the dysfunction 
and exclusion scores also achieved good performances, with the dysfunction score prediction model showing an 
MSE of 0.0585 and a PCC of 0.3822 and the exclusion score prediction model displaying an MSE of 0.0797 and 
a PCC of 0.2816 (Fig. S5B,C). In addition, for the prediction of the ICB response using the combined stepwise 
machine learning model with SHAP 0.02, the MSE was 0.0594 and the PCC was 0.8538 (Fig. S5D). Notably, 
the experimental results from the external validation datasets confirmed that not only did our model exhibit 
robust predictive performance regardless of tumor type, but the informative miRNAs were also useful for tumor 
immunotherapy response prediction.

Table 5.  Kyoto encyclopedia of genes and genomes (KEGG) pathways enriched by genes targeted by miRNAs 
with an average absolute Shapley value of 0.01 or higher in the random forest regression model predicting the 
exclusion score (adjusted P-value < 0.05).

KEGG pathway Adjusted P-value

Proteoglycans in cancer 7.02E−10

Axon guidance 1.53E−09

Pathways in cancer 8.50E−09

MAPK signaling pathway 6.93E−07

PI3K-Akt signaling pathway 7.77E−07

Rap1 signaling pathway 9.61E−07

Human cytomegalovirus infection 1.05E−06

Thyroid hormone signaling pathway 2.28E−06

Prostate cancer 6.95E−06

Endocytosis 1.16E−05

Neurotrophin signaling pathway 1.32E−05

Long-term potentiation 1.34E−05

Focal adhesion 1.79E−05

Renal cell carcinoma 1.93E−05

Cushing syndrome 1.93E−05

Cellular senescence 2.06E−05
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Validation using external independent dataset
We further validated the stepwise machine learning model trained on all miRNAs, using novel external independ-
ent data from PCAWG (Pancancer Analysis of Whole Genomes). The parameters of each model were set through 
grid search with tenfold cross-validation (Table S11). For the random forest classifier predicting CTL levels, we 
achieved an F1 score of 0.9589 and an AUC value of 0.9226 (Table S12). Regarding the prediction of dysfunction 
and exclusion scores through a random forest regression model, the MSE for the dysfunction score prediction 
model was 0.0245, and for the exclusion score prediction model, it was 0.0251 (Table S12). The MSE value of the 
stepwise machine learning model for predicting ICB response based on the TIDE score was 0.0248 (Table S12).

Furthermore, we identified informative miRNAs using the SHAP analysis in the PCAWG cohort (Fig. S6). In 
addition, we investigated which miRNAs were informative in each tumor type using SHAP (Table S13). It was 
noted that the informative miRNAs at TCGA cohorts were also similarly identified even at the PCAWG data-
sets, even though the direct comparison of the miRNAs is difficult because TCGA represents precursor miRNA 
expression and the PCAWG provides the mature forms. For instance, miR-150 demonstrated the significance in 
CTL and Dysfunction models. Furthermore, miR-155 was also assigned at a high ranking.

We also validated the predictability of ICB response prediction models in the PCAWG cohort using the 
informative miRNAs (SHAP 0.01 and SHAP 0.02) extracted from the TCGA cohort (Table S12). The model 
employing informative miRNAs (SHAP 0.01) achieved an F1 score of 0.9556 and an AUC of 0.9161 for predicting 
CTL levels via logistic regression. For dysfunction and exclusion score predictions using linear regression, the 
MSEs were 0.0371 and 0.0528, respectively. The stepwise model for predicting ICB response based on the TIDE 
score with informative miRNA (SHAP 0.01) yielded an MSE of 0.0376.

Similarly, the model utilizing informative miRNAs (SHAP 0.02) extracted from the TCGA cohort attained 
an F1 score of 0.9527 and an AUC of 0.9097 for predicting CTL levels via logistic regression. For dysfunction 
and exclusion score predictions using linear regression, the MSEs were 0.0364 and 0.0798, respectively. Finally, 
the stepwise model for predicting ICB response based on the TIDE score with informative miRNA (SHAP 0.02) 
yielded an MSE of 0.0364. The results with the external datasets from PCAWG further affirmed the effectiveness 
of the informative miRNAs in predicting ICB responses.

Investigation in ICB responses based on each tumor type
Next, we employed the random forest-based ICB response prediction model on the TCGA cohort, stratified by 
tumor type, to investigate variations in the efficacy of ICI treatment in each tumor type. The parameters of each 
model were set through grid search with tenfold cross-validation (Table S11). The MSE values of the combined 
stepwise models for each tumor type ranged from 0.0093 to 0.0494 (Table S12). Notably, these results closely 
similar to the predictive performance derived from the entire tumor cohort. Thus, this suggests that the differ-
ences in ICI treatment response among various cancer types are minimal.

In addition, we investigated which miRNAs were informative in each tumor type using SHAP (Table S13). 
Even though there existed some differences in each tumor type, some informative miRNAs such as miR-150 
and miR-155 were frequently observed at the highly-ranked miRNAs. This result indicates that these miRNAs 
are closely related to ICB responses across the tumor types.

Moreover, we also evaluated how well the stepwise model pre-trained using the whole 19 TCGA cohorts 
predicted the test data (20%) for each tumor type (Table S14). The MSE was ranged from 0.0113 to 0.1824 using 
total miRNAs. Using the information miRNAs (SHAP 0.01), the MSE was ranged from 0.0166 to 0.5530. Simi-
larly, in the SHAP 0.02 model, the MSE was ranged from 0.0159 to 0.5562. These results showed the informative 
miRNAs were utilized for the prediction of ICB treatment responses even at a variety of cancer types.

Discussion
In this study, we explored the feasibility of employing miRNAs as potential regulators of gene expression to 
predict clinical responses to ICB. To achieve this objective, we applied a supervised machine learning approach, 
specifically, a random forest model, and investigated informative miRNAs for ICB response prediction based 
on Shapley values.

In our experiment, we attempted to predict ICB response using the TIDE score as the target value. The TIDE 
score is an indicator for predicting the clinical response to ICB and was originally estimated from gene expres-
sion profiles. In our initial attempt, we attempted to predict the TIDE score directly using miRNA expression 
values; however, the experimental results were far from satisfactory, yielding an MSE of 0.2510. To overcome this 
problem, we devised a two-step approach that incorporates the CTL level and leverages either the dysfunction 
or exclusion scores. This strategic refinement led to a remarkable improvement in predictive performance, with 
an MSE of 0.0360 for predicting the TIDE score.

Additionally, by utilizing the SHAP approach to unravel the black-box issue in machine learning models, we 
elucidated the miRNAs that influenced model prediction. Through this process, we identified potential candi-
date miRNAs associated with tumor immunotherapy responses. Notably, miR-155 and miR-150 has emerged 
as prominent miRNAs. MiR-155 and miR-150 are pivotal as a regulatory factor essential for the CD8 + T cell 
response in cancer and its important role in the tumor microenvironment has been  confirmed22,23,30.

Other top miRNAs for the CTL level prediction have been linked to tumors and immune responses. Decreased 
miR-4772 expression tends to increase the risk of recurrence and death from colon  cancer31. miR-21 is considered 
one of the cancer-promoting ’oncomiRs’ that target various tumor suppressor genes and its levels are indicative 
of immune cell  activation32. In mice, miR-21 overexpression was shown to induce malignant B-cell  lymphoma32. 
Furthermore, miR-142-3p, a member of the miR-142 family, is believed to be involved in the development and 
metastasis of various malignant tumors by targeting several  mRNAs33.
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Among the informative miRNAs for the dysfunction score prediction, miR-10b has been studied as a regula-
tory factor that causes cell movement and invasion when overexpressed in non-metastatic and metastatic breast 
tumor  cells34. It has also been linked to immune escape through regulation of the immune microenvironment, 
leading to poor survival  prognosis35. miR-183 reduces the expression of the tumor suppressor gene PTEN, con-
tributing to its carcinogenic  effects36. Furthermore, miR-194-1 and miR-194-2 can show a negative correlation 
with the tumor evasion mechanism of exclusion by reducing pancreatic tumor cell PD-L1  expression37.

The enrichment analyses on the target genes of the informative miRNAs further verified that the miRNAs 
would have potentials into the underlying the immunotherapy response in cancer. For instance, the top pathway 
was TNF signaling pathway in the CTL-level prediction model. TNF, also known as tumor necrosis factor, acts as 
both an inhibitor and a cytokine closely associated with cancer, playing a role in cancer cell growth, proliferation, 
invasion, and  metastasis38. In particular, combining TNF blockade to increase the effectiveness of ICB has been 
explored as a novel treatment strategy. When this treatment strategy was applied to a mouse melanoma model, 
the prognosis was better than when using only ICB  treatment39. Moreover, the IL-17 signaling pathway is also 
closely associated with tumor immune responses. IL-17 is a pro-inflammatory cytokine produced by CD4 + helper 
T cells and is strongly implicated in malignant tumor formation and  metastasis40.

Melanogenesis, identified using the dysfunction score prediction model, produces mutagenic intermediates 
that induce immunosuppression and plays a crucial role in melanoma treatment by modulating the immune 
 responses41,42. Aberrant Wnt signaling is closely related to various cancer types and influences tumor development 
by affecting the tumor  microenvironment43. Furthermore, the ErbB signaling pathway plays a vital role in cancer 
development and progression, and targeting ErbB with tumor inhibitors is a widely used therapeutic  approach44.

Proteoglycans in cancer, the first pathway in exclusion score prediction model plays a significant role in 
regulating cytokine and chemokine expression on the cell surface. It acts as a signaling coreceptor that influences 
the tumor microenvironment during the progression of solid and malignant  tumors45. Additionally, it was noted 
that several pathways related to the brain and neurons were observed, including “Axon guidance”27, a subfield of 
neurodevelopment associated with the process of neurons sending axons to reach accurate targets; “Neurotrophin 
signaling pathway”28, a protein that supports the survival, development, and function of neurons; “Long-term 
potentiation”29, a process that strengthens signal transmission between neurons; as well as “Dopaminergic syn-
apse” and “Cholinergic synapse” (Table S5). This could be because the majority of CTL-low (exclusion) samples 
were involved in the TCGA LGG tumor type (Table S6).

Furthermore, we showed that even a limited number of miRNAs could exhibit highly accurate predictions 
using independent datasets. The results across diverse cohorts highlighted the potentials of miRNA as a pivotal 
factor in predicting ICB responses.

Nonetheless, this study has some limitations. First, the TIDE scores used to predict the ICB responses were 
computationally estimated using the patients’ gene expression profiles. In other words, the score may not accu-
rately reflect the actual response to immunotherapy. Moreover, because the TIDE score was primarily designed 
to focus on gene expression data, the TIDE score might not reveal the effects of all other biological factors that 
might potentially affect tumor immunotherapy responses. However, the usefulness of the TIDE score for immu-
notherapy response prediction has been proven in previous  studies8; thus, we used the TIDE score as the final 
target value in our investigation. In addition, in the search for machine learning model parameters, exhaustive 
verification of all possibilities of the model parameters is very time-consuming because of the nature of the 
continuous parameter values. Although rigorous efforts have been made through grid searches with cross-
validation to identify optimized parameter values, it is still possible that some ideal combinations may not be 
explored. Moreover, at present, given the unavailability of real ICB-treated patients with high-throughput miRNA 
expression profiles, we should consider alternative indirect approaches to further validate our findings. Further 
validation using real patients with tumors treated with ICB would be necessary.

Finally, studies involving in vivo experiments investigating the impact of miRNAs can be crucial for confirm-
ing the clinical relevance and translational potential of our findings. Even though conducting such experiments 
is beyond the scope of this study, some previous works proved some potentials of the informative miRNAs by 
several wet-lab experiments. For example, in murine in vivo experiments, it was discovered that miR-142-5p 
modulates PD-L1 expression, suggesting that upregulation of miR-142-5p could potentiate the anti-tumor 
immune  response46. Moreover, both murine and human NK cell experiments validated that therapeutic control 
of miR-150 enhances NK cell-mediated immunotherapy against  cancer47. Furthermore, miR-155 has shown the 
efficacy in initiating an anti-tumor response within dendritic cell-based immunotherapy, resulting in a notewor-
thy enhancement in the survival rate of mice with colorectal  cancer48.

Despite these limitations, our study demonstrates the potential utility of miRNAs as valuable predictors of 
immunotherapy response and suggests promising roles for informative miRNAs in tumor immunotherapy and 
microenvironments.

Looking ahead, future research directions would focus on refining predictive models through prospective 
validation studies, incorporating additional clinical variables, and exploring novel therapeutic targets identified 
through miRNA profiling. Moreover, efforts to elucidate the underlying mechanisms by which informative miR-
NAs regulate immune responses will deepen our understanding of tumor immunology. In addition, accessing 
larger datasets would enable the selection of precise miRNA biomarkers tailored to more specific groups such 
as tumor subtypes, sexes, age, and so on.

Furthermore, to the best of our knowledge, this study is the first computational model to predict the ICB 
responses. The current computational models predicting the ICB responses predominantly rely on genetic sig-
natures, tumor mutation burden (TMB), and tumor PD-L1 levels assessed by immunohistochemistry (IHC)4. 
By integrating of some previously known predictive features and multi-omics datasets, including mRNA, DNA 
methylation, proteomic data, and miRNA, the prediction models of immunotherapy responses will be able to 
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be enhanced. By addressing these challenges, it will be possible to advance personalized medicine in cancer 
treatment and improve patient outcomes in the era of immunotherapy.

Materials and methods
Data collection and preprocessing for gene expression profiles
To derive predictive immune response outcomes using the TIDE algorithm, bulk RNA-seq data were acquired 
from The Cancer Genome Atlas (TCGA) UCSC Xena browser (GDC repository) (https:// gdc. xenah ubs. net)49. A 
total of 21 tumor types in TCGA cohorts were gathered, and the same tumor types are available on the TIDE web 
browser (http:// tide. dfci. harva rd. edu/)8 (Table 1). Subsequently, gene expression data were used to predict the 
tumor immune response using the TIDE web browser. Gene expression values for all samples were normalized 
by subtracting the average log2 (FPKM + 1) value from each gene expression  value8. Concurrently, ensemble ID 
for each gene was converted into gene symbol using the R package "org.Hs.eg.db" (version 3.16.0). Genes with 
duplicate symbols were replaced by calculating the average expression values.

Furthermore, a stringent filtering process was applied to the experiments, ensuring the inclusion of only 
TCGA samples lacking any prior treatment history, as it was not definitively confirmed whether immunotherapy 
had been administered to the samples. In addition, the study was limited to solid tumors; therefore, cases with 
acute myeloid leukemia were excluded. Finally, 8,037 samples harboring 35,096 genes across 20 tumor types 
were included.

ICB response prediction based on TIDE
ICB response prediction was performed based on the TIDE method using TCGA gene expression data (Fig. 1A). 
These outcomes were conveyed through CTL level, dysfunction, exclusion values, and TIDE score. The CTL level 
was represented as either “True” or “False”, indicating high or low CTL levels, respectively. The TIDE scores were 
influenced by dysfunction and exclusion values. Specifically, when the CTL level was “True”, the dysfunction 
score was adopted as the TIDE score; conversely, if the CTL was “False”, the exclusion score was taken as the 
TIDE score. A sample with a positive TIDE score indicated that it was a non-responder, whereas a sample with 
a negative TIDE score was a responder.

MicroRNA expression data
miRNA expression quantification (stem loop) data were also downloaded from the TCGA UCSC Xena browser 
(GDC repository) (https:// gdc. xenah ubs. net)49. This dataset comprised 1,881 miRNA expression values (log2 
(RPM + 1)) per sample, encompassing 20 tumor types, identical to the TCGA gene expression data (Table 1). Nor-
mal samples were excluded from miRNA expression data. The GBM tumor type was excluded because the GBM 
included only five normal samples. In total, the dataset comprised 7721 samples from 19 tumor types (Fig. 1B).

For independent validation purposes, a validation dataset with 12 tumor types distinct from the 21 types avail-
able in the TIDE browser was used (Table S10). The validation dataset encompassed 1,947 samples (Fig. 1B,C).

Developing ICB response prediction model
Random forest is an ensemble method that addresses overfitting by learning multiple decision  trees50. This 
serves as a representative bagging model for both classification and regression tasks. In the classification model, 
the random forest predicts a class by selecting the most frequent class from among the predictions of multiple 
trees. For the regression model, the output was the average of the values obtained from individual trees as the 
prediction result.

A random forest classifier was employed to predict CTL levels based on miRNA expression values. For model 
learning and evaluation, the dataset comprising 7721 samples was divided into training (80%) and test (20%) 
datasets (Fig. 1C). The classifier model incorporates several parameters and its performance varies depending 
on the combination of these parameters. The training dataset was utilized to assess the performance of the 
model for each combination of the parameters through grid search (tenfold cross validation). Subsequently, the 
combination of parameters with the best performance was selected to the optimal parameters of the model. The 
parameters used are listed in Table 2. To assess the predictive performance of the trained model, F1 score and 
Balanced Accuracy were employed (Fig. 1D,E). The F1 score, a commonly used metric for data with unbalanced 
classes, represents the harmonic mean of Precision and Recall as follows:

The F1 score, which ranges from 0 to 1, combines the Precision and Recall values, both of which must be 
high to indicate good performance. Therefore, it is employed as the final performance evaluation  indicator51.

Balanced accuracy is also one of the useful indicators when dealing with imbalanced  datasets52, as follows:

Sensitivity represents the true-positive rate, indicating the model’s ability to identify positive cases, and speci-
ficity denotes the true-negative rate, indicating the model’s capacity to identify negative cases. Balanced Accuracy, 
ranging from 0 to 1, reflects the model’s overall performance, with higher values indicating better performance.

To predict dysfunction and exclusion scores based on miRNA expression values, a random forest regression 
model was used. The regression model was fine-tuned through a grid search (tenfold cross validation) using 
the training dataset. The parameters ultimately utilized are listed in Table 2. The prediction performance of the 

F1Score = 2×
Recall × Precision

Recall + Precision

Balanced Accuracy =
Sensitivity + Specificity

2

https://gdc.xenahubs.net
http://tide.dfci.harvard.edu/
https://gdc.xenahubs.net
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regression models was assessed using MSE indicators (Fig. 1D,E). The MSE represents the average of the squared 
differences between the actual and predicted values. The formula is as follows:

where N is the number of samples, fi is the predicted value of sample i, and yi is the actual value (target value) 
of sample i.

The ultimate computational goal of the study was to compute the ICB response, that is, the TIDE score, 
which depends on the CTL level and either the dysfunction or exclusion score. This process requires a stepwise 
combination of the predictive classifier for the CTL level and two regression models that predict the dysfunction 
and exclusion scores (Fig. 1G).

First, a random forest classifier was employed to predict the CTL. Subsequently, two distinct models come into 
play: random forest regression, which is responsible for predicting the dysfunction score, and the exclusion score. 
When the predicted CTL value was deemed true (indicating a high CTL level), the TIDE score was estimated 
using a random forest regression model to predict the dysfunction score. Conversely, if the predicted CTL value 
was assessed as false (corresponding to a low CTL level), the TIDE score prediction drew on the random forest 
regression model to predict the exclusion score. The predictive performance of the ICB response using the TIDE 
score was evaluated using MSE (Fig. 1H). All the implementations of the two-step machine learning models and 
performance evaluations were conducted using the Python scikit-learn  library53.

Feature importance of miRNAs in random forest models
The importance of miRNAs within the random forest models was assessed using SHapley Additive exPlanations 
(SHAP)20,21, an effective tool for elucidating the predictive outcomes of the black-box model, by leveraging 
Shapley values. Values were harnessed to measure the importance of the features (i.e., miRNAs) within each 
random-forest-based model employed in these studies. The Shapley value was calculated using the Python SHAP 
library (version 0.41.0).

For the informative miRNAs, the miRNAs exhibiting an average absolute Shapley value of 0.01 or higher 
were selected (SHAP 0.01). The selected informative miRNAs were investigated for their potential to accurately 
predict ICB responses using TIDE scores. Furthermore, the potentials were examined even at the strict criterion 
with a smaller number of informative miRNAs, with an average absolute Shapley value of 0.02 or higher (SHAP 
0.02) (Fig. 1E,H).

When constructing a model utilizing informative miRNA (SHAP 0.01, SHAP 0.02), a simplistic approach 
was adopted due to the limited number of features relative to the number of samples, which mitigates overfitting 
risks. A logistic regression classifier model in charge of classification was used to predict CTL level prediction, 
and a linear regression model in charge of regression was used to predict Dysfunction and Exclusion scores.

For model training and evaluation, the dataset was identically divided into training (80%) and testing (20%) 
sets (Fig. 1C). The logistic regression classifier model for adjusting the CTL level prediction involved fine-tuning 
parameters such as class weight, penalty, and solver, through grid search (tenfold cross-validation) using the 
training set. As the linear regression model is a straightforward algorithm, no parameter adjustments were nec-
essary. The approach to constructing a stepwise model for predicting ICB responses using a logistic regression 
classifier and a linear regression model mirrored the method employed in the previous random forest model. 
These models were also implemented and evaluated using the Python scikit-learn  library53. The comprehensive 
list of parameters examined in all models is provided in Table S15 Moreover, the ultimate parameter configura-
tions of the models for validation are detailed in Table 2 and Table S11. For reproducibility, detailed preprocessing 
steps and implementation information for all models are available on GitHub (https:// github. com/ dongy eon99/).

When constructing the machine learning models, the selected informative miRNAs and simpler methods 
were adopted: logistic regression for classification tasks and linear regression for regression  tasks25,53. The miRNA 
expression value was normalized using scikit-learn StandardScaler  package53 to apply these models.

Target gene prediction and enrichment analysis
TargetScan54 and  miRDB55 were used to identify genes with high feature importance. miRDB is an online database 
for miRNA target prediction, in which all predicted targets have a prediction score between 50 and 100. Accord-
ing to the authors’  guidelines55, targets with a prediction score of 80 or higher were considered highly reliable. 
Thus, genes with a prediction score of 80 or higher were selected as miRNA targets by miRDB in our experi-
ments. For concrete target prediction, the selected target genes were obtained by taking the intersection of the 
prediction results from miRDB and TargetScan. The enrichment analysis was performed using EnrichR (https:// 
maaya nlab. cloud/ Enric hr/)56. Enrichment terms with an adjusted P value of less than 0.05 were finally selected.

Additional independent validation data
For additional validation, bulk RNA-seq and mature miRNA expression data were acquired from PCAWG (Pan-
Cancer Analysis of Whole Genomes) (https:// pcawg. xenah ubs. net)49. For RNA-seq, 1341 samples and 33831 
genes were identified from the PCAWG dataset for inclusion in our analysis (Fig. 1A). By integrating the mature 
miRNA expression data, 775 samples were utilized in the validation experiment (Fig. 1B,C). Whereas the TCGA 
miRNA expression included precursor forms, the PCAWG miRNA data consisted of mature miRNAs. Thus, the 
prediction model was re-trained using the PCAWG mature miRNA expression data to investigate the informa-
tive miRNAs based on Shapley values. Furthermore, to test the validity of the trained models with informative 
precursor miRNAs (SHAP 0.01 and 0.02) from TCGA cohorts, its corresponding mature forms were all used.

MSE =
1

N

N∑

i=1

(fi − yi)
2

https://github.com/dongyeon99/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://pcawg.xenahubs.net
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Data availability
The miRNA expression data for the TCGA cohorts can be accessed at https:// gdc. xenah ubs. net. The ICB response 
results (TIDE) are available at http:// tide. dfci. harva rd. edu/. Additionally, the gene expression data for TCGA 
cohorts, which were used as input data for the TIDE method, can be found at https:// gdc. xenah ubs. net. The gene 
and miRNA data from PCAWG cohort can be accessed at https:// pcawg. xenah ubs. net. The ICB response values 
(TIDE scores) for each sample were obtained from the GitHub repository (https:// github. com/ dongy eon99/ 
ML_ immun other apy_ respo nse).

Code availability
The necessary codes and scripts for this analysis can be downloaded from https:// github. com/ dongy eon99/ ML_ 
immun other apy_ respo nse.
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