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Machine‑learning‑based global 
optimization of microwave passives 
with variable‑fidelity EM models 
and response features
Slawomir Koziel 1,2* & Anna Pietrenko‑Dabrowska 2

Maximizing microwave passive component performance demands precise parameter tuning, 
particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a 
comprehensive approach due to their complex geometries and miniaturized structures. However, 
the computational burden of optimizing these components via full‑wave electromagnetic (EM) 
simulations is substantial. EM analysis remains crucial for circuit reliability, but the expense of 
conducting rudimentary EM‑driven global optimization by means of popular bio‑inspired algorithms 
is impractical. Similarly, nonlinear system characteristics pose challenges for surrogate‑assisted 
methods. This paper introduces an innovative technique leveraging variable‑fidelity EM simulations 
and response feature technology within a kriging‑based machine‑learning framework for cost‑
effective global parameter tuning of microwave passives. The efficiency of this approach stems from 
performing most operations at the low‑fidelity simulation level and regularizing the objective function 
landscape through the response feature method. The primary prediction tool is a co‑kriging surrogate, 
while a particle swarm optimizer, guided by predicted objective function improvements, handles the 
search process. Rigorous validation demonstrates the proposed framework’s competitive efficacy 
in design quality and computational cost, typically requiring only sixty high‑fidelity EM analyses, 
juxtaposed with various state‑of‑the‑art benchmark methods. These benchmarks encompass nature‑
inspired algorithms, gradient search, and machine learning techniques directly interacting with the 
circuit’s frequency characteristics.

Keywords High-frequency engineering, Globalized optimization, Surrogate-based design, Variable-fidelity 
models, Nature-inspired algorithms, EM-driven design, Response features

Over the years, the performance requirements formulated for high-frequency systems, including micro-
wave passive components, have increased significantly. Fields like mobile  communications1, radio-frequency 
 identification2, implantable  systems3, internet of  things4, or energy  harvesting5, require structures that can be 
 reconfigured6, enable  broadband7 or multi-band  operation8, harmonic  suppression9, but also feature small physi-
cal  dimensions10–12. The circuits delivering the aforementioned and other functionalities exhibit complex topolo-
gies, typically parameterized by large numbers of variables, mainly geometrical ones. Their layouts are often 
densely arranged, especially in the case of miniaturized components, obtained using approaches like transmission 
line  meandering13, slow-wave  phenomena14, or integrating extra components (e.g.,  resonators15,  stubs16, etc.). 
Precisely characterizing geometrically intricate microwave circuits necessitates full-wave electromagnetic (EM) 
analysis. Unlike conventional models  (analytical17, equivalent  networks18), EM simulations can accurately capture 
phenomena like cross-coupling, dielectric and radiation losses, and the effects of environmental components 
(e.g., SMA connectors). As a result, the use of electromagnetic tools has become indispensable today. They are 
extensively utilized across all design phases, from shaping the  geometry19, conducting parametric  studies20, to 
finalizing the  design21.

One of the most prevalent simulation-driven processes involves adjusting geometry parameters, yet it is 
a costly endeavour. Numerical optimization algorithms demand numerous system evaluations, making it an 
expensive task. Even with local optimization methods such as gradient-22 or stencil-based  search23, the expenses 
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can quickly accumulate, often requiring many dozens or even hundreds of EM analyses. Interactive methods 
(experience-driven parametric  studies24) are cheaper, yet unable to handle more than one or two parameters at a 
time, let alone several design goals and constraints. On the other hand, for a growing number of cases, it is at least 
recommended if not necessary, to employ global search methods. Examples include optimization of frequency 
selective  surface25, coding  metasurfaces26, metamaterial-based  components27, antenna pattern  synthesis28,29, 
design of  conformal30 or sparse  arrays31, as well as multi-objective  design32. Other instances include, among 
various others, redesigning microwave components across extensive ranges of operating  conditions33, and opti-
mization of compact  circuits34. For the latter, redundancy of geometry parameters introduced by using various 
miniaturization strategies (line  folding35,  CMRCs36) makes the relations between the circuit dimensions and its 
electrical characteristics rather unintuitive.

Currently, population-based algorithms inspired by  nature37–40 have taken the lead in global optimization. 
They are implemented to mimic various  biological41 or  social42 phenomena, including biological  evolution43, 
feeding or hunting strategies of various  species44,45, etc. The fundamental mechanisms involve information 
exchange among the individuals (particles, agents, members)46 within the pool of potential solutions (swarm, 
population, pack)47 for the specific problem. This exchange can impact the individuals by altering their com-
position (through crossover,  mutation48), or by repositioning them within the search space. For instance, this 
might involve introducing a randomized bias towards the best solution discovered thus far, whether individual 
or  overall49. Practical observations confirm global search capability achieved using such means although there 
is little of no supporting theory. Further, the computational efficiency of population-based algorithms is poor. 
A typical algorithm run requires thousands of objective function evaluations, which essentially rules out direct 
nature-inspired optimization of EM simulation models unless the evaluation time is short (e.g., up to 10–30 s per 
analysis). Common techniques within this category comprise  genetic50 and evolutionary  algorithms51, particle 
swarm optimization (PSO)52, differential  evolution53, firefly  algorithms54, ant  systems55, grey wolf  optimization56. 
Although every year witnesses new  development57–60, it seems that—despite fancy names—the new algorithms 
offer incremental adjustments of the existing techniques.

Enabling nature-inspired EM-driven optimization requires acceleration, which can be achieved using sur-
rogate modelling  methods61,62. Several widely used techniques in this context involve Gaussian process regression 
(GPR)63,  kriging64, neural  networks65, and polynomial chaos  expansion66. Typically, the surrogate model serves as 
a predictor, determining optimal design locations, and continuously updates using full-wave simulation results 
gathered in the course of the search  process67. The criteria for infilling depend on the objective, such as enhanc-
ing model accuracy (maximizing mean squared error  reduction68), identifying the global optimum (minimizing 
predicted objective  function69), or balancing exploration and  exploitation70. The search procedures of this class 
are often referred to as machine learning  methods71–73. The fundamental issue with surrogate-assisted methods 
is building the metamodel. Modelling the behaviour of microwave circuit responses, usually represented as 
frequency characteristics, becomes challenging due to their highly nonlinear nature. Covering extensive fre-
quency ranges and accounting for diverse geometry/material parameters demands substantial training datasets. 
Many of machine learning frameworks in the realm of high-frequency design are therefore demonstrated for 
systems defined over small parameters spaces, either in terms of dimensionality or parameter  ranges74,75. These 
issues can be mitigated using variable-fidelity  simulations76. Other potential acceleration techniques include 
constrained  modelling77–79, and the response feature  technology80; however, no machine learning approach 
incorporating these methods has been described in the literature thus far. Yet another approach that might be 
useful for enhancing dependability of data-driven modelling is data normalization, which is normally applied 
to transform the features of the system at hand to be on a similar scale. This contributes to the improvement of 
the performance and model training stability. Some of popular normalization and data augmentation techniques 
include min–max normalization, Z-score  normalization81, decimal scaling, or class-balancing (e.g., synthetic 
minority oversampling technique,  SMOTE82, oriented towards oversampling minority classes thereby improving 
the balance of the dataset).

This study introduces a machine-learning framework aimed at accelerating the global optimization of micro-
wave passive components, also miniaturized structures. The approach tackles the design challenge by focusing 
on response features—a discrete set of points derived from EM-simulated outputs that quantify the circuit’s per-
formance specifications. Leveraging the weakly-nonlinear dependence of feature point coordinates on geometry/
material parameters enables efficient surrogate modelling. The algorithm’s initial phases, i.e., parameter space 
pre-screening and surrogate model construction, utilize low-fidelity EM models. The core iteration involves gen-
erating infill points and refining the surrogate model, primarily based on the co-kriging approach. This method 
combines low-fidelity data with high-fidelity EM analyses carried out at this stage. By employing characteristic 
points and multi-resolution EM analysis, the computational efficiency is noteworthy: the average optimiza-
tion cost is around sixty high-fidelity EM simulations for the circuit under design. Concurrently, the quality 
and consistency of designs compete favourably against benchmarks, which encompass multiple-start gradient 
search, nature-inspired optimization, and kriging-based machine learning directly working with circuit frequency 
responses. This highlights the significance of response features in enhancing both reliability and computational 
efficiency within the proposed algorithm.

Global machine‑learning microwave optimization using response features 
and multi‑resolution computational models
This section delves into the intricacies of the proposed optimization approach. "Microwave design optimization. 
Problem statement", “Response feature methodology”, "Variable-fidelity computational models" sections revisit 
the formulation of the design task, the concept of characteristic points, and variable-fidelity simulation models, 
respectively. A concise overview of kriging and co-kriging surrogates is presented in "Surrogate modelling using 
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kriging and co-kriging" section. The optimization process begins with the pre-screening stage, detailed alongside 
the construction of the initial (kriging) surrogate model in "Parameter space pre-screening. Initial surrogate 
model construction" section. "Generating infill by means of nature-inspired optimization. Co-kriging surrogate" 
section expounds on the machine-learning framework involving co-kriging models and the infill criterion based 
on predicted objective function improvement. Lastly, "Complete optimization framework" section encapsulates 
the entire procedure using the pseudocode and a flow diagram.

Microwave design optimization. Problem statement
In this study, optimizing microwave circuits involves adjusting their independent variables, typically geometry 
parameters like component widths, lengths, and their spacings, consolidated within the parameter vector x 
(as illustrated in Fig. 1). The objective vector Ft comprises the design goals, encompassing target operating 
parameters such as center frequency, power split ratio, and bandwidth. Evaluating the design x in relation to the 
target vector Ft is accomplished through a scalar objective function U(x,Ft). Figure 2 provides several examples 
of common design scenarios along with the corresponding definitions of U. The primary type of microwave 
circuit responses are scattering parameters (cf. Fig. 1)83, along with the quantities that can be derived therefrom 
(e.g., the phase characteristic).

It is important to highlight that most real-world design challenges involve multiple objectives; that is, there 
is a need to enhance or regulate more than just one parameter or quantity. As most of available optimization 
algorithms are single-objective ones, multi-criterial problems are normally reformulated, e.g., by casting all but 
the primary objective into  constraints84. Another popular option is scalarization using, e.g., a linear combination 
of  goals85. Genuine multi-objective design is outside the scope of this paper.

Now, we can express the microwave optimization task as a minimization task represented by the following 
form:

where x* represents the sought-after optimal design, and X denotes the parameter space, typically an interval 
determined by the lower and upper variable bounds for xk, k = 1, …, n.

Response feature methodology
Full-wave computational models ensure reliable evaluation of microwave components, but they are CPU-inten-
sive. This is a major hindrance to optimization procedures. The nonlinearity of circuit responses poses additional 
obstacles to globally exploring the parameter space. Figure 3 shows examples of frequency characteristics of a 
microstrip coupler at a number of randomly generated designs. Circuit optimization for a centre frequency of 
1.5 GHz requires global search as local tuning initiated from most of the shown designs would not succeed.

The response feature  techniques86 were introduced to address the mentioned challenges by redefining the 
design problem using a discrete set of characteristic points (or features) from the system  outputs87. This method 
leverages straightforward connections between the circuit’s geometry/material parameters and the frequency and 
level coordinates of these  points80,86–89. Consequently, it regularizes the objective function, hastening optimiza-
tion  processes87, and simplifying behavioural  modelling89.

The characteristics points are tailored to address specific design  objectives80. Take, for example, a microwave 
coupler like the rat-race structure, and its responses depicted in Fig. 3. To regulate the center frequency, band-
width of isolation characteristics, and power division ratio, the feature points can be defined as illustrated in 
Fig. 4, further detailed in the figure caption. Figure 4b demonstrates the straightforward connections between 
these feature points and the adjustable parameters. For further insights into this topic, additional discussions 
can be found in references such  as80  and86. In this work, we exploit these properties to facilitate a construction 
of surrogate models employed to enable and accelerate the global search process.

(1)x∗ = argmin
x∈X

U(x, F t)

Figure 1.  Microwave design optimization: notation and terminology.
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At this point, it should be emphasized that utilization of response feature adds a layer of complexity in algo-
rithm implementation, which is due to the necessity of defining and extracting the feature points. In practice, 
this requires implementation of a separate algorithm for scanning the frequency characteristics and identifying 
the feature points, here, realized in Matlab. On the other hand, especially when the parameter space is very large 
(broad ranges of geometry parameters) and highly-dimensional, the features might be difficult to identify. The 
latter normally occurs for heavily distorted responses at poor-quality designs. In practice, designs like these may 
be assigned high value of the objective function UF to mark them as low-quality. Nonetheless, the aforementioned 
issue constitutes a limitation of the proposed approach, yet can be mitigated to a certain extent by appropriate 
selection of the parameter space (e.g., based on prior experience with a given microwave circuit).

To integrate the response feature approach into the optimization process, we must establish suitable nota-
tion. Specifically, we will denote the feature points of the circuit under design as fP(x) = [ff(x)T fL(x)T]T, with 
ff(x) = [ff.1(x) … ff.K(x)]T and fL(x) = [fL.1(x) … fL.K(x)]T being the vector of frequency and level coordinates, respec-
tively. Table 1 provides a selection of example characteristics points for a microwave coupling circuit, focusing 
on the device’s operating frequency and power split ratio.

Figure 2.  Examples of microwave design optimization problems. Verbal description of the task (left) is followed 
by a definition of the target vector Ft (middle), and a possible definition of the objective function (right).
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Figure 3.  Miniaturized rat-race coupler and its scattering parameters: (a) circuit architecture, (b) scattering 
parameters at randomly selected designs. If local search based on the objective function (as illustrated in Fig. 2, 
with the target frequency set at 1.5 GHz and marked using vertical lines) were initiated from many of the shown 
designs, it would prove unsuccessful due to significant misalignment between the target and the actual operating 
conditions.

Figure 4.  Characteristic points selection for a microwave coupler: (a) possible feature point choices: 
open circle—points corresponding to the minima of the matching and isolation characteristics, *—points 
corresponding to the power split ratio (evaluated at the frequency f0 being the average of the frequencies of 
|S11| and |S41| minima), open square—points corresponding to − 20 dB levels of |S11| and |S41|; (b) relationship 
between operating conditions (extracted from the response features, here the center frequency f0 and power split 
ratio KP) and selected geometry parameter of the circuit. The plots are created using a set of randomly-generated 
designs. Only the points for which the corresponding characteristics allow for extracting the approximated 
operating parameters, as indicated above, are shown. Clear patterns are visible even though the trial points were 
not optimized whatsoever.
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Having fP, we denote by Fo(x) = Fo(fP(x)) the circuit’s operating parameters, computed from fP(x). Following 
this, the design task posed in terms of characteristics points appears as:

The analytical form of the function UF is similar to that shown in Fig. 2 but employs Fo(x) rather than scat-
tering parameters Skl. It can also be written in a compact manner as

Here, the function U0 accounts for the main objective. For clarification, consider a scenario, under which we 
seek to achieve the following: (i) align the coupler center frequency at the target value ft, (ii) establish the target 
power division ratio, and (iii) reduce |S11| (impedance matching) and |S41| (port isolation) at ft. 

In this case, the main goal is to reduce fL.1 and fL.2, cf. Table 1, i.e., we have U0(fP(x)) = max{fL.1(x),fL.2(x)}. 
Further, given Ft = [ft KP]T, we define Fo(fP(x)) = [(ff.1 + ff.2)/2 fL.3 – fL.4]T. The importance of the operating condi-
tion alignment is controlled by the scalar factor β. Typically, we set β = 100. It should be noted that conventional 
formulation (as shown in Fig. 2) is equivalent to (3) assuming that the optimum is attainable. Further, the second 
term in (3) (not present in standard formulation) acts as a regularization factor that facilitates identification of 
the optimum. 

Variable‑fidelity computational models
Reducing the EM analysis resolution—by decreasing the structural discretization density (alternative options 
discussed  in90)—expedites the simulation process but compromises accuracy, as shown in Fig. 5. This accu-
racy loss can be rectified by appropriately adjusting the low-fidelity model, forming the basis of physics-based 
surrogate-assisted methodologies. One prominent example is space  mapping91,92. The degree of acceleration 
achievable varies with the problem. For most microwave passive components, it ranges between 2.5 and six for 
the low-fidelity model, ensuring adequate representation of crucial circuit output details.

In this study, the low- and high-resolution models are denoted as Rc(x) and Rf(x), respectively. Rc will be 
utilized to:

(2)x∗ = argmin
x

UF(x, f P(x), F t)

(3)UF(x, f P(x), F t) = U0(f P(x))+ β||Fo(f P(x))− F t ||
2

Table 1.  Example response features for a microwave coupler (cf. Fig. 4).

Verbal description
Four feature points:
    Two points corresponding to the minima of the |S11| and |S41| responses
     Two points corresponding to the power split ratio (i.e., the evaluations of |S31| and |S21| at the centre frequency 
of the circuit)

Vector notation f f (x) =
[

ff .1(x) ff .2(x) ff .3(x) ff .4(x)
]T

f L(x) =
[

fL.1(x) fL.2(x) fL.3(x) fL.4(x)
]T

Explanation of terms

ff.1 and ff.2—frequencies corresponding to the minima of |S11| and |S41|
fL.1 and fL.2—corresponding minima levels
ff.3 = ff.4 = [ff.1 + ff.2]/2 = f0—approximated operating frequency of the coupler
fL.3 and fL.4—levels of |S31| and |S41| at f0
The power split ratio can be computed as KP = fL.3 – fL.4

Figure 5.  Variable-fidelity models: (a) geometry of an exemplary compact branch-line coupler, (b) scattering 
parameters evaluated using the low-fidelity EM model (gray) and the high-fidelity one (black). At the design 
shown, the simulation time of the high-fidelity model is about 250 s, whereas the evaluation of the low-fidelity 
model takes about 90 s.
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• Pre-screen the parameter space, i.e., to generate a set of random observables, from which those with extract-
able feature points will be selected for further processing;

• Construct the initial surrogate model using kriging (cf. "Surrogate modelling using kriging and co-kriging" 
section).

Subsequent optimization steps will employ the low-fidelity samples into a co-kriging surrogate (cf. "Sur-
rogate modelling using kriging and co-kriging" section), which will also incorporate Rf data acquired during 
the algorithm run.

At this point, it should be emphasized that the pre-screening process in large parameter spaces (broad ranges 
of geometry parameters, high dimensionality) may be a limiting factor in terms of the computational efficiency. 
This is because is large spaces, the percentage of random designs with extractable features might be low, mean-
ing that acquisition of a required number of accepted design would incur considerable expenses. One way of 
mitigating this issue is appropriate selection of the search space, based on engineering experience and prior 
knowledge about the circuit at hand, so that reasonably narrow parameter ranges can be established. On the 
other hand, the aforementioned issue would be also detrimental to any global search algorithm, whether it is a 
direct method of surrogate-assisted one.

Surrogate modelling using kriging and co‑kriging
Kriging and co-kriging  interpolation93,94 will be used as the modelling methods of choice within the machine 
learning framework proposed in this work. Both techniques are briefly recalled below. 

We consider two datasets:

• The low-fidelity one {xBc
(k),Rc(xBc

(k))}k = 1, …, NBc, which consists of the parameter vectors xBc
(k) and the cor-

responding circuit outputs;
• The high-fidelity set {xBf

(k),Rf(xBf
(k))}k = 1, …, NBf, acquired through evaluation of the high-fidelity model Rf at 

parameter vectors xBf
(k).

Tables 2 and 3 outline both kriging and co-kriging models sKR(x) and sCO(x), respectively. Note that the co-
kriging surrogate incorporates the kriging model sKRc set up based on the low-fidelity data (XBc, Rc(XBc)), and 
sKRf generated on the residuals (XBf, r); here r = Rf(XBf) – ρ⋅Rc(XBf). The parameter ρ is included in the Maximum 
Likelihood Estimation (MLE) of the second  model94. If the low-fidelity data at XBf is unavailable, one can use an 
approximation Rc(XBf) ≈ sKRc(XBf). The same correlation function is utilized by both models (cf. Tables 2 and 3).

Table 2.  An outline of the kriging surrogate modeling. More information can be found in the literature, e.g.,94.

Model component Analytical form

Model formulation
sKR(x) = Mγ + r(x) ·�−1 · (Rc(XBc)− Fγ )
where M is a NBc × t model matrix of XBc, whereas F is a 1 × t vector of 
the evaluation point x (t is the number of terms used in the regres-
sion  function91)

Regression function coefficients γ = (XT
Bc�

−1XBc)
−1XBc�

−1Rf (XBc)

1 × NBc vector of correlations between x and XBc r(x) = (ψ(x, x
(1)
Bc ), ...,ψ(x, x

(NBc )
Bc ))

Correlation matrix Ψ = [Ψi,j] is a correlation matrix, where Ψi,j = ψ(xBf
(i),xBf

(j))

Correlation function ψ(x, x′) = exp
(

∑n
k=1 −θk |x

k − x
′k |P

)

Model identification: finding hyperparameters θk, k = 1, …, n, using Maximum Likelihood Estimation  (MLE94)

(θ1, ..., θn) = arg min
θ1 ,...,θn

[

−(NBf /2) ln(σ̂
2)− 0.5 ln(|�|)

]

where
σ̂ 2 = (Rf (XBf )− Fα)T�−1(Rf (XBf )− Fα)/NBf
and |Ψ| is the determinant of Ψ. In practice, a Gaussian correlation 
function (P = 2) is often employed, as well as F = [1 …  1]T and M = 1

Table 3.  An outline of the co-kriging surrogate modeling. More information can be found in the literature, 
e.g.,94.

Model component Analytical form

Model formulation sCO(x) = Mγ + r(x) ·�−1 · (r − Fγ )

Vector of correlations r(x) = [ρ · σ 2
c · rc(x), ρ

2 · σ 2
c · rc(x,XBf )+ σ 2

d · rd(x)]

Correlation matrix
� =

[

σ 2
c �c(XBc ,XBc) ρ σ 2

c �c(XBc ,XBf )

ρ σ 2
c �c(XBf ,XBc) ρ2σ 2

c �c(XBf ,XBf )+ σ 2
d�d

]

where and M = [ρMc Md] where (Fc, σc, Ψc, Mc) and (Fd, σd, Ψd, Md) are matrices obtained from sKRc and sKRf, 
 respectively91; parameter ρ is included in the MLE during model identification
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Parameter space pre‑screening. Initial surrogate model construction
The initial stage of the machine learning process described in this paper involves screening the parameter space, 
conducted at the level of low-fidelity EM models. Subsequently, an initial surrogate model is developed, utilizing 
the low-fidelity data collected during this phase. The pre-screening stage operates at the response feature level 
(refer to "Response feature methodology" section), enabling a sizeable curtailment of the number of samples 
compared to analysing the complete frequency characteristics of the designed circuit.

The primary aim of the initial surrogate s(0)(x) is to capture the behaviour exhibited by the frequency and 
level coordinates of the feature points delineated for the optimized circuit. We have

The model is rendered by means of  kriging95 (cf. "Surrogate modelling using kriging and co-kriging" section, 
Table 2). The training data pairs are denoted as {xBc

(j),fP(xB
(j))}, j = 1, …, Ninit. The points are generated randomly 

in the parameter space X using independent joint uniform probability distributions; only the observables with 
extractable response features are included into the training set. The dataset size Ninit is adjusted to secure a suf-
ficient surrogate model accuracy. For quantification, we utilize the relative RMS error, wherein the acceptance 
threshold Emax serves as a controlling parameter within the process. Given the characteristics of the response 
feature, the demand for training points to establish a dependable model remains minimal, typically ranging 
from fifty to one hundred. Depending on the parameter space’s dimensionality and ranges, the ratio of accepted 
observables falls between twenty to seventy percent. Consequently, the actual count of low-fidelity EM simu-
lations required to compile the dataset {xBc

(j),fP(xB
(j))} varies from 1.5Ninit to 5Ninit. In practice, the process of 

rejecting (possibly significant) subset of the random samples acts as a pre-selection mechanism: it enables the 
identification of promising regions within the parameter space, concentrating the search process on these areas 
while excluding others. The pre-screening procedure has been summarized in Table 4.

Generating infill by means of nature‑inspired optimization. Co‑kriging surrogate
The core part of the optimization run consists of iterative generation of candidate solutions x(i), i = 1, 2, …, to 
the problem (2), (3), and construction of the refined surrogate models s(j), j = 1, 2, … . This stage is carried out 
using the high-resolution model Rf. Each iteration produces a new design

using the current surrogate s(i), which is a co-kriging model (cf. "Parameter space pre-screening. Initial surrogate 
model construction" section) constructed using the low-fidelity dataset {xBc

(j), fP(xBc
(j))}, j = 1, …, Ninit, and the 

high-fidelity dataset {xf
(j), fP(xf

(j))}, j = 1, …, i, consisting of the samples accumulated until iteration i.
The formulation of the sub-problem (5) is the same as for the task (2), except that the response features are 

obtained from s(i). Optimization is conducted in a global sense using the particle swarm optimization (PSO) 
 algorithm97. PSO was chosen as a representative nature-inspired method, which also belongs to the most popu-
lar ones. Yet, any other population-based technique can be used instead because operating at the level of fast 
surrogate does not imposes any practical constraints on the computational budget expressed as the number 

(4)s(0)(x) =

[

[

s
(0)
f .1 (x) . . . s

(0)
f .K (x)

]T[

s
(0)
L.1(x) . . . s

(0)
L.K (x)

]T
]T

(5)x(i+1) = argmin
x∈X

UF(x, s
(i)(x), F t)

Table 4.  Parameter space pre-screening and initial surrogate model construction. A pseudocode.

1. Input parameters: 
� Design space X (interval [l u], w here l  and u are low er and upper bounds for designable 

parameters; other constraints are possible per designer’s needs);
� Required modelling error Emax;

2. Set j = 0;
3. Generate a sample xtmp � X using uniform probability distribution;
4. Evaluate circuit characteristics at xtmp using low -fidelity EM analysis;
5. Extract the feature vector fP(xtmp); assign fP(xtmp) = 0 if  features are not extractable (cf. Fig. 3);
6. if ||fP(xtmp)|| > 0

Set j = j + 1;
Set xBc(j) = xtmp;
Construct surrogate model stmp(x) using dataset {xBc(k),fP(xBc(k))}k = 1, …, j;
Estimate model error Etmp using K-fold cross-validation96, K = min{j,10};
if Etmp < Emax

Go to 8;
end

end
7. Go to 3;
8. Return s(0)(x) = stmp(x);
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of objective function calls. Furthermore, finding the global optimum of UF(x,s(i)(x),Ft) is considerably easier 
handling the original merit function U(x,Ft) due to inherent regularization that comes with the employment of 
response features.

In view of machine learning, generating candidate designs using (5) corresponds to the infill criterion being 
the predicted objective function  improvement98. Upon completing the pre-screening stage, the parameter space 
subset containing the optimum has been presumably identified, therefore, the search process can now be focused 
on its exploitation, rather than enhancing the overall metamodel’s accuracy. The algorithm is stopped either due 
to convergence in argument, i.e., ||x(i+1) – x(i)||< ε or if no improvement of the objective function has been detected 
over the last Nno_improve iterations, whichever occurs first. The default values of the termination thresholds are 
ε =  10–2 and Nno_improve = 10.

Complete optimization framework
The proposed global optimization framework is outlined in Table 5 as a pseudocode and depicted in Fig. 6 as 
a flow diagram. The pre-screening stage unfolds within Steps 2 and 3, while the heart of the search process—
creating infill points and refining the surrogate model—is executed across Steps 4 through 8. Step 9 verifies the 
termination criteria.

Let us discuss the control parameters compiled in Table 6. It is essential to note that there are only three 
parameters, with two determining the termination conditions. Their primary function is to govern the resolu-
tion of the optimization process. The third parameter manages the accuracy of the initial surrogate. The default 
value of Emax corresponds to ten percent of the relative RMS error, which is a mild condition. A small number of 
control parameters is an advantage of the method as it eliminates the need for tailoring the setup to the particular 
being solved. In fact, identical arrangement will be used for all verification experiments described in  "Verifica-
tion experiments and benchmarking" section.

The full-wave electromagnetic simulations were performed on Intel Xeon 2.1 GHz dual-core CPU with 
128 GB RAM, using CST Microwave Studio. The optimization framework has been implemented in MATLAB. 
The particle swarm optimizer and CST simulation software communicate through a Matlab-CST socket. The 
kriging and co-kriging surrogate models were set up using the SUMO toolbox  of99. As mentioned earlier, the 
underlying optimization engine is particle swarm optimizer  PSO100, which is one of the most representative 
nature-inspired population-based algorithms. PSO processes a swarm of N particles (parameter vectors) xi 
and velocity vectors vi, which stand for the position and the velocity of the ith particle, respectively. These are 
updated as follows:

Table 5.  Pseudocode of the ML framework for feature-based global parameter tuning of microwave 
components introduced in this study.

1. Input parameters: 

� Target operating frequencies Ft (cf. “Microwave design optimizat ion. 

Problem statement” section);

� Definition of the response features fP and the objective function UF (cf. “Response 

feature methodology” section);

� Design space X (interval [l u], w here l  and u are low er and upper bounds for designable 
parameters);

� Required modelling error Emax;
� Termination thresholds �and Nno_improve;

2. Generate the set of initial samples {xBc(k),fP(xBc(k))}k = 1,…,Ninit, as described in “Parameter 

space pre-screening. Initial surrogate model construction” section (cf. Fig. 4), 

using low -fidelity simulation data;
3. Construct (initial) kriging surrogate model s(0)(x);
4. Set i = 0;
5. Use the PSO algorithm to obtain infill point xf(i+1) by solving (5):

)()1( arg min ( , ( ), )ii
F tX

U+

�
=

x

6. Update the dataset: {xBc(k),fP(xBc(k))}k = 1, …, Ninit � {xf(k),fP(xf(k))}k = 1, …, i;
7. Set i = i + 1;
8. Construct the co-kriging surrogate model s(i)(x) using the updated dataset;
9. if ||x(i) – x(i–1)|| < � OR no objective function improvement for Nno_improve iterations

Go to 11;
end

10. Go to 5;
11. Return x* = x(i);
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where r1 and r2 are vectors whose components are uniformly distributed random numbers between 0 and 1; · 
denotes component-wise multiplication. In our numerical experiments we use a standard setup:

• Size of the swarm N = 10,
• Maximum number of iterations kmax = 100,
• Control parameters, χ = 0.73, c1 = c2 = 2.05, cf.100.

As indicated in (7), the first step of altering the positions xi of the particles is the adjustment of the velocity 
vector, which is partially stochastic. There are three components therein, one being the current velocity, the 
second fostering particle relocation towards its local best position xi

*, and the third one pushing the particle 
towards global best position g found so far by the swarm. The mentioned setup of control parameters is the most 
widely used one, typically recommended in the  literature99.

Verification experiments and benchmarking
The validation of the optimization algorithm outlined in "Global machine-learning microwave optimization 
using response features and multi-resolution computational models" section involves numerical testing with 
two microstrip circuits. For comparison, these devices are also optimized with the use of several benchmark 
methods that include a gradient-based search with random starting point, a particle swarm optimizer (PSO), 
but also two machine-learning frameworks: (i) a procedure that directly handles frequency characteristics of the 

(6)vi ← χ[vi + c1r1 · (x
∗
i − xi)+ c2r2 · (g − xi)]

(7)xi ← xi + vi

Figure 6.  Flow diagram of the proposed ML algorithm for global optimization of microwave passive 
components.

Table 6.  Control parameters of the proposed ML algorithm for global optimization microwave passives.

Parameter Meaning Default value

Emax
Maximum value of relative RMS error of the initial surrogate model (error estimated using cross-validation), cf. "Parameter 
space pre-screening. Initial surrogate model construction" section 10%

ε Termination threshold for convergence in argument, cf. "Generating infill by means of nature-inspired optimization. Co-kriging 
surrogate" section 10–2

Nno_improve
Termination threshold for no objective function value improvement, cf. "Generating infill by means of nature-inspired optimiza-
tion. Co-kriging surrogate" section 10
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circuit, and (ii) the algorithm of "Global machine-learning microwave optimization using response features and 
multi-resolution computational models" section exclusively using high-fidelity EM simulations. We chose these 
specific methods to showcase the multimodal nature of the design challenges and to validate the significance 
of the algorithmic tools embedded in the proposed procedure—particularly the use of response features and 
variable-fidelity simulations. The performance evaluation criteria encompass the optimization process’s reliability 
(quantified as a success rate, i.e., the proportion of algorithm runs yielding acceptable outcomes), design quality, 
and computational efficiency.

The material in this section is arranged as follows: "Verification circuits" section offers insights into the veri-
fication structures. The experimental setup and results are outlined in "Experimental setup. Numerical results" 
section, while "Discussion" section delves into the characteristics of the techniques considered and encapsulates 
the overall performance of the proposed approach.

Verification circuits
The machine learning procedure introduced in this study is demonstrated using two planar structures:

• A miniaturized rat-race coupler (RRC) with meandered transmission lines (Circuit I)101;
• A dual-band power divider with equal division ratio (Circuit II)102.

The circuit topologies are depicted in Figs. 7a and 8a, respectively. Essential data for both circuits, includ-
ing substrate parameters, design variables, and design goals, are detailed in Figs. 7b and 8b. The computational 
models are simulated in CST Microwave Studio, employing the time-domain solver. The low-fidelity models are 
representations with coarser discretization compared to the high-fidelity versions. For specific details regarding 
the number of mesh cells and simulation times for Rc and Rf, please refer to Table 7.

Figure 7.  Circuit I (rat-race coupler with folded transmission lines)101: (a) geometry, (b) essential parameters.

Figure 8.  Circuit II (dual-band equal-split power divider)102: (a) geometry, (b) essential parameters.

Table 7.  EM simulation models for Circuit I and II.

Circuit

EM simulation model

Low-fidelity Rc High-fidelity Rf

Discretization density (# of mesh cells) Simulation time [s] Discretization density (# of mesh cells) Simulation time [s]

I  ~ 50,000 50  ~ 180,000 120

II  ~ 130,000 60  ~ 570,000 310
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The design goals for have been set as follows:

• Circuit I (i) enhance the matching and isolation responses, |S11| and |S41|, at the required frequency f0; (ii) 
realize required power division |S31| – |S21|= KP [dB] (also at f0).

• Circuit II (i) enhance input impedance matching |S11|, output matching |S22|, |S33|, and isolation |S23| at the 
frequencies f1 and f2 corresponding to the two operating bands of the circuit, (ii) ensure equal power division 
at f1 and f2. Here, the second condition automatically follows from the circuit symmetry.

In order to expand the scope of the verification experiments, two design scenarios are considered for each 
circuit as detailed in Table 8. One can also notice that the search spaces, determined by the bounds on design 
variables, are extensive: the (mean) upper-to-lower bound ratio is 13 and 5 for Circuit I and II, respectively.

Experimental setup. Numerical results
Circuits I and II were optimized by means of the procedure proposed in this study. The setup uses default values 
of control parameters, as specified in Table 6: Emax = 10%, ε =  10–2, and Nno_improve = 10. It is kept identical for all 
considered design cases. For the purpose of comparison, our verification structures were also optimized using 
several benchmark methods. The technical details on these techniques can be found in Table 9. Below, we explain 
the reasons for selecting this particular testbed:

• Algorithm I: particle swarm optimizer (PSO), chosen as one of the most popular nature-inspired algorithms 
to date. Its inclusion in the benchmark set aims to showcase the difficulties associated with direct EM-driven 
population-based optimization. For practical reasons, PSO is run at low computational budgets of 500 (ver-
sion I) and 1000 objective function evaluations (version II), yet, the computational costs entailed even with 
these budgets are at the edge of being prohibitive;

• Algorithm II: A gradient-based search with random initial design. This method is selected to illustrate multi-
modality of our optimization tasks, thereby indicating the need for employing global search methodologies;

• Algorithm III: Machine-learning procedure processing complete frequency responses of the circuit at hand. 
The algorithm utilizes the similar components as those described in "Global machine-learning microwave 
optimization using response features and multi-resolution computational models" section (kriging surrogates, 
predicted objective function improvement) but works exclusively with the high-resolution EM model. This 
method is selected to investigate the benefits of incorporating response features.

• Algorithm IV: Feature-based machine-learning procedure similar to that described in "Global machine-
learning microwave optimization using response features and multi-resolution computational models" sec-
tion, but only using high-fidelity EM models. Consequently, kriging surrogate is employed throughout the 

Table 8.  Design goals and parameter spaces for Circuits I and II.

Circuit

Target operating parameters

Parameter space X (lower bounds l and upper bounds u)Symbols Specific values for numerical experiments

I Ft = [f0 KP]T
Case 1: f0 = 1.8 GHz, KP = − 3 dB l = [0.5 5.0 5.0 0.2 0.2 0.2]T

u = [15.0 30.0 50.0 2.0 2.0 2.0]TCase 2: f0 = 1.2 GHz, KP = 0 dB

II Ft = [f1 f2]T
Case 1: f1 = 3.0 GHz, f2 = 4.8 GHz l = [10.0 1.0 10.0 0.5 1.0 0.1 1.5]T

u = [40.0 20.0 40.0 15.0 6.0 1.5 8.0]TCase 2: f1 = 2.0 GHz, f2 = 3.3 GHz

Table 9.  Benchmark algorithms: the outline.

Algorithm Algorithm type Setup

I Particle swarm optimizer (PSO) Swarm size N = 10, standard control parameters (χ = 0.73, c1 = c2 = 2.05); number of 
iterations set to 50 (version I) and 100 (version II)

II Trust-region gradient based  optimizer103
Random initial design, response gradients estimated using finite differentiation, 
termination criteria based on convergence in argument and reduction of the trust 
region  size103

III Machine learning algorithm (cf. "Global machine-learning microwave optimiza-
tion using response features and multi-resolution computational models" section)

Algorithm similar to that of "Global machine-learning microwave optimization 
using response features and multi-resolution computational models" section
    Initial surrogate set up to ensure relative RMS error not higher than 10% with 
the maximum number of training samples equal to 400;
    Optimization based on processing the antenna frequency characteristics (unlike 
response features in the proposed procedure);
      Infill criterion: minimization of the projected objective function 
 improvement98

IV Feature-based machine learning algorithm utilizing high-fidelity EM simulations 
only

Algorithm highlights
    Surrogate model constructed at the level of response features;
    Optimization process only uses high-fidelity EM simulations;
     Infill criterion: minimization of the predicted objective  function98
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entire optimization run instead of co-kriging. This approach serves to highlight the benefits of integrating 
variable-fidelity models into the method presented in this work.

Each algorithm underwent ten executions, and the average outcomes (merit function value, computational 
expenses) are documented in Tables 10 and 11 for Circuit I and II, respectively. The success rate denotes the 
number of runs (out of ten) generating designs that sufficiently match their target operating parameters. Fig-
ures 9, 10, 11, and 12 exhibit the circuit responses and the progression of the objective function value across both 
design cases and chosen algorithm runs.

Table 10.  Optimization of Circuit I: results. a The cost expressed in terms of the number of high-fidelity EM 
simulations of the circuit under design. b Number of algorithms runs at which the operating frequency was 
allocated near the target value.

Optimization algorithm

Performance figure

Average objective function value [dB] Computational  costa Success  rateb

Case 1
f0 = 1.8 GHz, KP = − 3 dB

Algorithm I: PSO (50 iterations) − 24.8 500 9/10

Algorithm I: PSO (100 iterations) − 34.0 1000 10/10

Algorithm II: Trust-region gradient-based algorithm − 18.7 102.8 6/10

Algorithm III: Machine learning procedure handling complete circuit 
responses − 34.1 435.7 10/10

Algorithm IV: Feature-based machine learning procedure using high-
fidelity model only − 34.8 89.9 10/10

Proposed algorithm (feature-based machine learning with variable-
fidelity simulation models) − 34.5 48.2 10/10

Case 2
f0 = 1.2 GHz, KP = 0 dB

Algorithm I: PSO (50 iterations) − 23.7 500 9/10

Algorithm I: PSO (100 iterations) − 36.2 1000 10/10

Algorithm II: Trust-region gradient-based algorithm 48.3 68.7 5/10

Algorithm III: Machine learning procedure handling complete circuit 
responses − 45.6 433.6 10/10

Algorithm IV: Feature-based machine learning procedure using high-
fidelity model only − 43.9 106.3 10/10

Proposed algorithm (feature-based machine learning with variable-
fidelity simulation models) − 44.1 59.3 10/10

Table 11.  Optimization of Circuit II: results. a The cost expressed in terms of the number of high-fidelity EM 
simulations of the circuit under design. b Number of algorithms runs at which the operating frequency was 
allocated near the target value.

Optimization algorithm

Performance figure

Average objective function value [dB] Computational  costa Success  rateb

Case 1
f1 = 3.0 GHz, f2 = 4.8 GHz

Algorithm I: PSO (50 iterations) − 19.6 500 8/10

Algorithm I: PSO (100 iterations) − 18.8 1000 9/10

Algorithm II: Trust-region gradient-based algorithm − 12.3 95.1 2/10

Algorithm III: Machine learning procedure handling complete circuit 
responses − 32.0 446.8 10/10

Algorithm IV: Feature-based machine learning procedure using high-
fidelity model only − 32.8 194.4 10/10

Proposed algorithm (feature-based machine learning with variable-
fidelity simulation models) − 32.3 85.2 10/10

Case 2
f1 = 2.0 GHz, f2 = 3.3 GHz

Algorithm I: PSO (50 iterations) − 18.8 500 8/10

Algorithm I: PSO (100 iterations) − 19.7 1000 9/10

Algorithm II: Trust-region gradient-based algorithm − 20.6 93.8 7/10

Algorithm III: Machine learning procedure handling complete circuit 
responses − 22.5 430.5 10/10

Algorithm IV: Feature-based machine learning procedure using high-
fidelity model only − 21.1 153.2 10/10

Proposed algorithm (feature-based machine learning with variable-
fidelity simulation models) − 21.9 52.4 10/10
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Discussion
The data presented in Tables 10 and 11 are examined here to evaluate the efficiency of the suggested machine-
learning approach and to juxtapose it with benchmark techniques. We’re particularly focused on evaluating the 
following metrics: the search process’s reliability assessed through the success rate, the design quality evaluated 
using the merit function value, and the cost efficiency of the global search process.

Figure 9.  Exemplary runs of the proposed machine-learning framework. Shown are: S-parameters of Circuit 
I (Case 1) at the designs produced by the proposed technique (top), and the evolution of the objective function 
value (bottom): (a) run 1, (b) run 2. The iteration counter starts after constructing the initial surrogate model. 
Target operating frequency, here, 1.8 GHz, marked using the vertical lines.

Figure 10.  Exemplary runs of the proposed machine-learning framework. Shown are: S-parameters of Circuit 
I (Case 2) at the designs produced by the proposed technique (top), and the evolution of the objective function 
value (bottom): (a) run 1, (b) run 2. The iteration counter starts after constructing the initial surrogate model. 
Target operating frequency, here, 1.2 GHz, marked using vertical lines.
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Another point for discussion is the effect of incorporating the response features and variable-fidelity simula-
tion models. The observations are as follows:

• Search process reliability Reliability is measured using the success rate (right-hand-side columns of Tables 10 
and 11), which is the number of algorithm runs yielding the designs that feature operating parameters being 
close to the targets. For the proposed method, the success rate is 10/10, just as it is for both benchmark 
machine learning methods (Algorithms III and IV) and PSO (Algorithm I) set up with the budget of 1000 
objective function calls. However, PSO working with the computational budget of 500 function evaluations 

Figure 11.  Exemplary runs of the proposed machine-learning framework. Shown are: S-parameters of Circuit 
II (Case 1) at the designs produced by the proposed technique (top), and the evolution of the objective function 
value (bottom): (a) run 1, (b) run 2. The iteration counter starts after constructing the initial surrogate model. 
Target operating frequencies, 3.0 GHz and 4.8 GHz, marked using vertical lines.

Figure 12.  Exemplary runs of the proposed machine-learning framework. Shown are: S-parameters of Circuit 
II (Case 2) at the designs produced by the proposed technique (top), and the evolution of the objective function 
value (bottom): (a) run 1, (b) run 2. The iteration counter starts after constructing the initial surrogate model. 
Target operating frequencies, 2.0 GHz and 3.3 GHz, marked using vertical lines.
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does not perform as well. Also, for Circuit II, which is a more challenging of the two test problems, the suc-
cess rate of PSO is 9/10 even the budget of 1000 function calls. This indicates that direct nature-inspired 
optimization needs higher budgets (e.g., > 2000) to ensure the perfect score. At the same time, gradient-based 
optimization routinely fails (e.g., the success rate is only 2/10 for Circuit II, Case 1), which corroborates 
multimodality of the considered design tasks.

• Design quality The solutions produced using the presented procedure exhibit comparable quality to those 
produced by other benchmark methods, as indicated by the average objective function value with the excep-
tion of gradient-based search, where the failed algorithm runs degrade the average. In terms of absolute 
numbers, all machine learning methods deliver results that are sufficiently good for practical applications, 
i.e., matching and isolation below − 20 dB, and power division close to the required values of 0 dB and 3 dB 
for Circuits I and II, respectively

• Computational efficiency The efficiency of the proposed framework is by far the best across the entire bench-
mark set and the considered test problems. We omit comparison with gradient-based algorithms as they 
were included in the benchmark solely to highlight the necessity of global optimization for the test problems 
considered. The average computational cost, quantified in terms of equivalent high-fidelity EM simulations, 
is approximately sixty. This signifies considerable savings compared to PSO (with the budget of 1000 function 
calls) are between 90 and 95 percent, depending on the test case. The savings over Algorithm II (machine 
learning processing full circuit responses) are about 85 percent on the average, and about 50 percent over 
Algorithm III (feature-based machine learning working at single-fidelity EM level). Regarding the latter, the 
average savings are 45 and over sixty percent for Circuit I and II, respectively, because the time evaluation 
ratio between the high- and low-fidelity model is more advantageous for the latter (5.2 versus 2.4).

• The above numbers confirm that the employment of both response features and variable-fidelity are instru-
mental in expediting the search process without being detrimental to its reliability. The speedup obtained due 
to variable-fidelity modeling is significant also because the majority of the circuit evaluations are associated 
with the parameter space pre-screening, which, in the proposed methods, is conducted using the low-fidelity 
system representation. A better perspective of the computational benefits due to the mentioned mechanisms 
can be provided by considering the acceleration factors. For example, the proposed methods is over 17 times 
faster than PSO, almost eight times faster than Algorithm III, and over twice as fast as Algorithm IV.

The overall performance of the presented methodology is quite promising. The variable-fidelity feature-based 
machine learning yields consistent results at remarkably low computational cost. Consequently, it seems to be 
suitable for replacing less efficient global optimization methods in the field of high-frequency EM-driven design. 
At this point, we should also discuss its potential limitation, which is related to the response feature aspect of 
the procedure. On one hand, defining and extracting characteristic points from the system outputs for a specific 
structure and design task adds complexity to the implementation process, albeit not in its core segment, which 
remains problem independent.

On the other hand, for highly-dimensional problems and very broad parameter ranges, the number of ran-
dom observables generated in the pre-screening stage may be large as compared to those that exhibit extractable 
features. Such factors would compromise the computational efficiency of the methods, impacting their overall 
performance. Naturally, these same factors would also impede the efficacy of all benchmark methods. Yet, assum-
ing that the parameter space is defined by an experienced designer, i.e., it is not excessively large, the risk of the 
occurrence of the aforementioned issue is rather low.

Conclusion
This paper introduced a machine-learning framework designed for the efficient global optimization of passive 
microwave components. Our methodology integrates several crucial mechanisms pivotal for achieving com-
petitive reliability and minimizing search process expenses. These mechanisms encompass the response feature 
approach, parameter space pre-screening, and the utilization of variable-fidelity EM simulations. The response 
feature method helps in regularizing the objective function landscape, consequently reducing the necessary 
dataset size for constructing precise surrogate models. Pre-screening of the parameter space aids in the initial 
identification of the most promising regions, while variable-resolution models contribute to additional compu-
tational acceleration. Within this framework, both low- and high-fidelity simulation data are combined into a 
unified surrogate model using co-kriging. The optimization process itself focuses on rapid identification of the 
optimum design, which is facilitated by the infill criterion applied in our framework (predicted objective func-
tion improvement). The particle swarm optimization (PSO) algorithm serves as the underlying search engine. 
Numerical verification experiments involving two microstrip components illustrate the superior performance of 
the proposed technique, showcasing its ability to achieve superior design quality, reliability, and computational 
efficiency. The CPU savings versus nature-inspired optimization are up to 95 percent (average acceleration factor 
of 17), 85 percent over the machine learning procedure working directly with circuit frequency characteristics 
(acceleration factor of eight), and 50 percent over the feature-based machine learning algorithm that only uses 
high-fidelity EM models (acceleration factor of two). The mean running cost corresponds to sixty high-resolu-
tion EM simulations. This level of expenses is comparable to local optimization. Consequently, the presented 
framework seems to be an attractive alternative to both conventional and surrogate-assisted global optimization 
procedures (including machine-learning algorithms) utilized so far in high-frequency engineering. A primary 
objective for future work involves extending the method to encompass other types of microwave components, 
such as filters. This extension would involve automating the procedures for defining and extracting feature 
points. Furthermore, utilization of alternative machine learning technique will be considered, oriented towards 
improving the reliability of surrogate model construction as well as computational efficiency of the modelling 
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process. Some of the tools to be employed include deep learning methods (e.g., convolutional neural networks, 
etc.). Finally, the properties of the presented technique will be investigated when applied to higher-dimensional 
problems (ten design variables and more), and enhancements wil be developed to facilitate operation of the 
framework under such challenging scenarios.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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