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Cerebellar state estimation 
enables resilient coupling 
across behavioural domains
Ensor Rafael Palacios 1*, Paul Chadderton 1, Karl Friston 2 & Conor Houghton 3

Cerebellar computations are necessary for fine behavioural control and may rely on internal models 
for estimation of behaviourally relevant states. Here, we propose that the central cerebellar function 
is to estimate how states interact with each other, and to use these estimates to coordinates extra-
cerebellar neuronal dynamics underpinning a range of interconnected behaviours. To support this 
claim, we describe a cerebellar model for state estimation that includes state interactions, and link 
this model with the neuronal architecture and dynamics observed empirically. This is formalised 
using the free energy principle, which provides a dual perspective on a system in terms of both the 
dynamics of its physical—in this case neuronal—states, and the inferential process they entail. As a 
demonstration of this proposal, we simulate cerebellar-dependent synchronisation of whisking and 
respiration, which are known to be tightly coupled in rodents, as well as limb and tail coordination 
during locomotion. In summary, we propose that the ubiquitous involvement of the cerebellum in 
behaviour arises from its central role in precisely coupling behavioural domains.

Behaviour, defined as the purposeful engagement of an agent with its environment, is complex, involving interac-
tions and coordination among multiple sensory  modalities1,2 and motor  systems3,4. The cerebellum is involved 
in all aspects of behaviour, ranging from simple stimulus-movement  association5 to decision  making6,7, and 
including coordination of motor systems and  effectors4,8,9, behaviourally relevant perceptual  processing10, spatial 
 localisation11 and social  interactions12. Yet, it remains unclear how cerebellar computations support this wide 
range of functions.

The cerebellum is thought to contribute to extra-cerebellar processing by supplying estimates of behaviourally 
relevant dynamics, based on internal probabilistic (i.e., generative or forward)  models13–16. This view is supported 
by a large amount of empirical  evidence17–19, showing that neuronal activity in the cerebellum can be read as state 
 estimation20. However, the precise nature of the link between cerebellar inference and extra-cerebellar dynamics 
remains an open question.

Some key cerebellar features are particularly important when looking to understand its function. First, the 
cerebellum has a relatively simple network architecture, possibly indicating it performs a specific universal or 
fundamental  computation21. Next, it receives and reciprocates input from most brain  regions22–25, making it a 
locus of convergence for behavioural integration. Lastly, it is primarily involved in learning associations between 
variables, for example, via cellular plasticity  mechanisms26. Taken together, these features speak to a high-level, 
general role of the cerebellum in providing extra-cerebellar regions with precise estimates of how various states 
interact during behaviour. In other words, because functional behaviour requires dynamic coordination of 
external and somatic states, we propose that the chief cerebellar function is to efficiently detect, learn and realise 
context-sensitive interactions among those states, in order to constrain and orchestrate extra-cerebellar dynamics.

This description of cerebellar computations can be formalised within computational neuroscience in many 
ways. For example, as a Smith predictor, as a forward model, as model predictive control or as an instance of 
predictive  coding14,27–30. Here, we will adopt a generic formalism provided by the free energy principle (FEP) 
that encompasses these accounts. In particular, the FEP furnishes an account of a system’s dynamics, such as 
neuronal dynamics in the cerebellum, based on minimising prediction errors (a.k.a. surprisal), or, equivalently, 
maximising model evidence (a.k.a. marginal likelihood)31,32.

Crucially, the FEP offers a dual perspective on the dynamics of a  system33, linking its trajectory in the space 
of physical—in this case neuronal—states to a trajectory in an implicit encoding space, where each point param-
eterises a probability distribution over latent states. As a result, an agent interacting with its environment is 
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necessarily a good probabilistic model of this environment, and the action-perception cycle underlying behav-
iour can be formalised in terms of Bayesian inference; this is known as active  inference32. This physics of self-
organising systems can be applied to neuronal  networks34, therefore providing a principled way to describe how 
the cerebellum implements probabilistic models to support behaviour: in essence, under the FEP, the cerebellar 
architecture defines the form of an implicit generative model, and neuronal dynamics reflect an inference or 
estimation process under this model. Technically, neuronal dynamics become a gradient flow on variational free 
energy, where (negative) variational free energy scores the evidence for an agent’s generative model.

The application of the FEP to functional brain architectures generally reduces to identifying the structure and 
functional form of the generative model that best explains neuroanatomy and neurophysiology. The viewpoint we 
follow in this paper is that the cerebellum occupies a deep or high level in a hierarchical generative model subserv-
ing behaviour. This view is supported by the empirical properties of the cerebellum described above, including its 
widespread connectivity to other brain regions, which speak to a high-level role in contextualising lower, extra-
cerebellar levels. This hypothesis is also corroborated by lesion-deficit models, showing that cerebellar lesions 
lead to deficits (e.g., cerebellar ataxia) that are characterised by a loss of coordination as opposed to behaviour 
per se. In short, the cerebellum generates the context for, but not the content of, behavioural coordination.

From the perspective of active inference, this means the cerebellum has to recognise the ongoing context—
through assimilating ascending prediction errors from extra-cerebellar levels—while, at the same time, supplying 
empirical priors (c.f., inductive biases) to guide or constrain (i.e., contextualise) dynamics at lower levels via 
descending predictions to extra-cerebellar levels. Here, the context is encoded by control states, whose inference 
depends on the co-occurrence or joint evolution of discrete behavioural states—the content. These control states 
in turn modulate—in a nonlinear fashion—the dynamics of lower (extra-cerebellar) levels. This requires a highly 
nonlinear extra-cerebellar model, in contrast to a simpler, weakly nonlinear model in the cerebellum, reflected 
in its simple circuitry. In what follows, we showcase this difference using a linear approximation to cerebellar 
dynamics and nonlinear (Kuramoto) oscillators at the extra-cerebellar level that are coupled via a cerebellar 
control state. This kind of architecture undergirds many active inference simulations of coordinated behaviour, 
and is based on the fundamental separation of context and content in deep generative models of coordination 
dynamics, see for  example35–37.

This paper is organised as follows: first, we introduce the FEP, as the theoretical framework for active inference 
and learning in the brain. Second, we describe how cerebellar models could contribute to active inference by out-
lining the functional form they could take, and establish a mapping from elements of the model to components 
of the cerebellar circuitry. We then simulate inference in a cerebellar model both during motor coordination of 
respiratory and whisker behaviour, and during locomotion-induced coordination of limbs and tail. The results 
of the simulations reveal that the cerebellum provides a corrective coupling between brain networks to maintain 
synchronisation in the presence of different types of noise and environmental perturbation. Importantly, these 
simple behavioural settings evinces the fundamental cerebellar contribution to coordinated behaviour, which 
can be generalised to all sorts of behavioural paradigms.

Results
Neuronal dynamics as inference
Under the FEP, neuronal dynamics are read as an inference process, estimating environmental states ϑ causing 
observations y . This inference process starts with the specification of a generative model m , namely, the joint 
probability distribution

between ϑ and y ; the form of m is defined by the neuronal architecture and connectivity structure. Then, neu-
ronal inference means that beliefs about environmental states, encoded by neuronal population activity, evolve 
to match the posterior probability over external states:

Hereafter, we omit conditioning on m for simplicity. Since the denominator in this equation, p(y) (a.k.a. 
model evidence), requires integration over all possible states, it is practically intractable. For this reason, the FEP 
supposes that the brain performs approximate Bayesian inference in the form of variational Bayes, whereby the 
negative logarithm of p(y) is approximated by an upper bound called variational free energy ( F),

and neuronal activity encodes approximate beliefs about external states, q(ϑ) so that

where a simple form is assumed for q(y). In particular, further Gaussian assumptions about random fluctuations 
imply that neuronal activity encodes the sufficient statistics of q(ϑ) , its mean value or expectation µϑ , which 
leads to a description of neuronal dynamics in terms of predictive coding or Bayesian  filtering35,38. In this case, 
F can be defined  as39:

(1)p(ϑ , y|m)

(2)p(ϑ |y,m) =
p(ϑ , y|m)

p(y|m)

(3)− log p(y) ≤ F

(4)p(ϑ |y) ≈ q(ϑ)

(5)F(µϑ , y) = − log p(µϑ , y)
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Notably, F can be read as the difference between sensory (or bottom-up) input and (top-down) predictions of 
that input; namely, the total amount of prediction error incurred during inference. The FEP therefore supposes 
that the brain solves a difficult inference problem with an easier optimisation procedure, based on minimisation 
of F . Approximate Bayesian inference is plausibly implemented by the brain because F is a function of the model 
entailed by the network itself, neuronal expectations µϑ , and observations y31,32. In essence, given a certain model 
m , F is minimised by maximising the probability of co-occurrence of expected states µϑ and observations y . This 
can be achieved either by changing µϑ , making q(ϑ) a better approximation of p(ϑ |y) (see Eq. 21 in methods), 
or by changing y , by acting on external or latent states so that they conform to internal expectations, hence 
increasing model evidence p(y) —a process sometimes known as self  evidencing40.

Cerebellar contribution to neuronal inference
The ability of a system to minimise F depends on how well its implicit generative model is able to track environ-
mental dynamics, or alternatively make it match its own dynamics to maximise model evidence. When consider-
ing cerebellar computation, one hypothesis is that it improves the accuracy and efficiency of state estimation or 
inference in other brain regions. In our hypothesis, this is achieved by rapidly contextualising extra-cerebellar 
inference; that is, the cerebellum may drive or modulate inference in one brain region depending on the specific 
behavioural context, where the latter corresponds to what is simultaneously being estimated in other brain 
regions.

Contextualisation is needed because when a system interacts with its environment, behaviour requires coor-
dination; consequently, neuronal dynamics encoding and controlling external and somatic states—within and 
across brain regions—must be coordinated. The cerebellum appears necessary for fluent coordination, as high-
lighted by research in the motor and cognitive (e.g., speech)  domain41. We therefore propose that the cerebellum 
coordinates information within and across brain regions by means of a general model: simple, thus efficiently 
estimating states and their associations.

In detail, we entertain the notion that the cerebellum contextualises behaviour by efficiently learning and 
realising the necessary coordination among states, through predictions that lead to smooth, synchronous and 
concerted extra-cerebellar inference dynamics. This is illustrated in Fig. 1, where the cerebellar model is placed 

Figure 1.  Illustration of cerebellar contribution to active inference in the brain. Extra-cerebellar structures 
implement a deep generative model of the environment, exemplified by three modules representing different 
streams of information (violet boxes), all potentially involving hierarchical processing. These modules can 
underpin discrete but interlinked behaviours, such as whisking and respiration. Within each module, neuronal 
populations infer or estimate hidden state x from observation y based on forward models (black arrows) of how 
x generates y . The accompanying inference process drives neuronal dynamics to update expectations about x 
by minimising prediction errors. Furthermore, modules can communicate with each other via within-module 
message passing, e.g., via predictions and prediction errors. The cerebellum, on the other hand, concomitantly 
receives and integrates information (observations or prediction errors) from many brain regions, and 
implements a forward model of how x ’s interact at lower (extra-cerebellar) levels (black line from all x ’s to all y
’s). Then, by providing top-down (empirical prior) constraints on extra-cerebellar inference through its own 
estimates, the cerebellum can realise expected interactions.
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on top of a modular generative model implemented by extra-cerebellar structures. Crucially, the advantage of 
this contextual inference relies on how well the cerebellum can bind together brain dynamics, which in turn 
depends on the underlying generative model.

The cerebellum: internal model and neuronal dynamics
We suggest that the relatively homogeneous and simple cerebellar architecture implements a linear or weakly 
nonlinear stochastic state space model. This model defines how the cerebellum extract information from ascend-
ing input to estimate behavioural variables and their interactions. This stochastic model includes observations 
y , carrying information from somatic or extra-cerebellar structures to the cerebellum, hidden states x , corre-
sponding to behaviourally relevant states that need to be inferred, and hidden causes v , which are latent control 
states mediating interactions among hidden states. (Bold face refers to vectors.) The noise terms Z , W and V  are 
normally distributed with covariance �z �w and �v . This cerebellar model predicts that y are generated from 
x through the mapping g , and x have dynamics controlled by v via equations of motion f  ; v in turn is uncon-
strained ( �v has large variance terms):

A key feature of this model is that it predicts the temporal derivative of hidden states, x′ , which allows the 
cerebellum to estimate the trajectory of x from streams of observations y . Moreover, the mapping from latent 
states to observations and equations of motion, defining the predictions of the model, can be approximated with 
a linear form, conforming with the simple cerebellar architecture:

Equations (6) and  (7) describe an implicit cerebellar model of how x and v generate y , in the sense that the 
computations carried out by the underlying neuronal dynamics implement its inversion: the inference process 
mapping from consequences, y , to causes, x and v . In more detail, with this particular model in place, state esti-
mation reduces to finding the expected values µx , expected motion µx′ , and µv that best explain observations y . 
These expectations parameterise cerebellar beliefs about hidden states and are encoded by its population activity. 
Therefore, given the generative model above, we can specify the requisite estimation equations (i.e., neuronal 
dynamics) for µx , µx′ and µv as follows (please see Eqs. 31–34 for derivations): 

 where the precision matrices, �’s, are the inverse covariance matrices � ’s specifying the size of random fluctua-
tions expected by the model in (6) ( � = �−1 ), κ ’s are learning rates and ε ’s are prediction errors:

We can now map the inversion dynamics described in Eqs. (8) and (9) onto specific neuronal components 
and dynamics of the cerebellum (see Fig. 2). We associate observations y with mossy fibre (mf) input, hidden 
causes µv with Purkinje cell population (Pjc) activity, and assume that both hidden states µx and velocities µx′ 
are represented by the granule cell population (grc). Therefore, grc activity reflects not only the instantaneous 
value of hidden states µx , but also their change µx′ , and potentially higher order derivatives, effectively encoding 
the trajectory of latent states as the coefficients of a Taylor expansion of the path as a function of time.

This temporal property is made explicit in the Eq.  (8a), where changes in expected values of hidden states, 
µ̇x , follow µx′ . From a biophysical standpoint, this means that the recent neuronal history impacts current state 
 estimation42. Additionally, µ̇x also depends on θTg �zεy and �wεx : the former equates to new or unexplained 
information εy , based on observations y and predictions g(µx) , where εy can be thought of as the net input to 
grc computed within glomeruli (glom); a specialised structure containing dendritic and axonal terminals from 
grc, Golgi cells (goc) and mf.

This net input drives state estimation depending on the connectivity matrix θTg  involving glom and grc, and 
is weighted or contextualised by its precision �z via goc inhibition, setting grc response gain and  threshold43; 
this weighting by �z controls how much mf drives the network, based on the context-dependent precision or 
relevance of incoming information. On the other hand, the last term, �wεx , incorporates feedback from Pjc 
representing hidden causes µv . This contribution may occur either via recurrent inputs from cerebellar nuclei 

(6)

y = g(x)+ Z Z ∼ Normal(0,�z)

dx

dt
= x′ = f (x, v)+W W ∼ Normal(0,�w)

v = V V ∼ Normal(0,�v)

(7)
g(x) = θgx

f (x, v) = −x + θf v

(8a)µ̇x = µ′
x + κx(θ

T
g �zεy −�wεx)

(8b)µ̇′
x = −κx′�wεx

(8c)µ̇v = κv(θ
T
f �wεx −�vεv)

(9)

εy = y − g(µx)

εx = µ′
x − f (µx ,µv)

εv = µv .
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(CN)44,45—whose dynamics are driven by mf and shaped by Pjc inhibition—or through direct Pjc modulation 
of cerebellar cortical  interneurons46 and grc47.

Next, Eq.  (8b) specifies updates of encoded velocities, µ̇′
x : these updates depend on predictions f  via εx , 

and in absence of (mf) input ultimately attract µx (grc activity) toward zero (enforcing sparsity). Similarly to 
µ̇x , updates µ̇x′ are a function of µv , and could plausibly rely on the same feedback mechanisms involving Pjc 
and CN.

Lastly, the equation for µ̇v , Eq.  (8c), describes µv (Pjc firing) updates that rely on µx and µx′ (grc activity) 
via εx ; crucially, how this information is transmitted depends on θTf  , which we associate with the particular 
connectivity afforded by parallel fibres (pf), terminating on molecular layer interneurons (mli) and Pjc.

Finally, the cerebellar model couples back to extra-cerebellar regions by sending estimates of latent states, 
µx ; these are constrained by cerebellar expectations about their interactions or associations, encoded in the pf 
connectivity structure, θTf  . This coupling is mediated by CN, whose activity also encodes hidden states µx , as 
they are assumed to receive the same information as cerebellar cortex via mf collaterals.

Figure 2.  Mapping elements of the model to cerebellar circuitry. Neuronal elements are distinguished from 
elements of the model by brown boxes. The cerebellum receives observation y from extra-cerebellar structures 
through mf, which drive prediction errors εy . This information enters the CN as well as the glom—specialised 
structures in the cerebellar cortex where the excitation–inhibition balance (E–I) drives grc and Goc activity. 
E–I results from the integration of different inputs, including Goc, CN and Pjc activity. Computationally, this 
is where descending predictions ( g , from Goc, f  , from Pjc and CN) minimise εy and precision ( �z , from 
Goc) modulates it. The residual εy then drives Pjc and mli activity via pf, based on the particular connectivity 
encoded by θTf  ; this connectivity encodes learned interactions among latent states, which are thus reflected 
in the dynamics of control states µv (Pjc activity). These hidden causes are then the source of predictions f  
modulating CN and (directly and indirectly) grc activity. This modulation constrains estimates of latent states 
µx according to expectations about their interactions. Finally, these estimates couple back to extra-cerebellar 
models via CN collaterals, updating estimates therein. Mossy fibres mf; Purkinje cells Pjc; granule cells grc; 
Golgi cells Goc; glomeruli glom; cerebellar nuclei CN; molecular layer interneurons mli. .
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Simulation of motor coordination
We now describe simulations of behavioural coordination, based on the cerebellar-dependent integration of 
information across multiple brain regions. This integration relies on the fact that the cerebellum learns to infer 
interactions between sensory modalities, effectors and task contingencies (e.g., preferred outcomes or reward). 
A key mechanism underlying associative learning is synaptic plasticity at the level of pf terminals, as seen in 
 conditioning48 and motor adaptation  paradigms49. Expectations about motor coordination, encoded in the pf 
connectivity matrix ( θTg  ), in turn guide dynamics in extra-cerebellar structures, as the cerebellum provides them 
with top-down (prior) constraints ensuring optimal behaviour.

In particular, we first focus on the coordination of the respiratory and whisker system in mice, a key feature 
of rodent’s  behaviour3 (Fig. 3). The production of these behaviours is underpinned by a rich network of intercon-
nected brain structures, including brainstem pattern generators and premotor cortical areas, all of which receive 
projections from CN4,50,51. This richness hints at the complexity of extra-cerebellar inference controlling orofacial 
behaviour, to which the cerebellum contributes by coordinating its various  components4.

In simulating active inference, we specify both a generative model, implemented by the cerebellum, and a 
generative process, the extra-cerebellar regions associated with the production of whisking and respiratory pat-
terns. Neuronal dynamics in these regions also reflect an inference process, whereby inference is about latent 
states related to the whisking and inspiration-expiration cycle (e.g. their amplitude and phase). Extra-cerebellar 

Figure 3.  Cerebellar contribution to motor coordination. The cerebellum receives information from extra-
cerebellar regions while providing top-down (prior) predictions (violet-brown cycle). Because the cerebellum 
has learned to expect coordinated (e.g., synchronised) dynamics between behavioural variables, such as 
respiration (grey line) and whisking (gold line), its predictions can contextualise behavioural domains on each 
other, by biasing or constraining extra-cerebellar inference. This contextualisation can span different behavioural 
regimes, here exemplified by a period of locomotor whisking, with low whisking and respiration rates (orange 
background), and a period of object exploration, with high whisking and respiration rates (green background), 
separated by a brief period with no whisking (pink background). Ultimately, extra-cerebellar-cerebellar 
interactions will therefore engender coordination between respiration and whisking.
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inference drives motor behaviour, by generating proprioceptive predictions that are realised at the level of motor 
reflex  arcs52; however, in this work we do not explicitly simulate extra-cerebellar inference, but approximate it 
with a stochastic process. Thus, by acting on this process, the cerebellum implicitly tunes the execution of whisk-
ing and respiratory behaviour.

In practice, we simulate whisking and respiration cycles with a Kuramoto system, whose output w and r rep-
resent somatic states, which could be associated with whisker position and expansion of the rib cage, respectively. 
In the Kurmoto model the two somatic states are defined by phases

The dynamics of these phases is a function of intrinsic angular velocities, ωw and ωr , and is subject to inde-
pendent Gaussian noise Qw and Qr and offset ω0:

Above we have introduced a term α that, together with ωw and ωr , is state dependent, that is, it can be changed 
throughout simulation time, so that the in silico mouse can stop or restart whisking, by setting α to 0 or 1, or 
change the frequency of whisking and respiration, by modifying ωw and ωr.

The key component of a Kuramoto system is the coupling term; in the standard Kuramoto formulation this is 
the sine of phase differences, and mediates the synchronisation of the oscillations. Here, in contrast, the coupling 
terms, k sin(xw − φw) and k sin(xr − φr) in the whisker and respiration model, relate the phases to xw and xr , 
respectively. These are the corresponding hidden states inferred by the cerebellar generative model, representing 
extra-cerebellar somatic states w and r . The crucial point is that there is no explicit coupling between the two 
oscillators, instead this coupling emerges from the cerebellar inference that rests on learned expectations about 
synchrony. In particular, the generative model is the same state space model in (6):

where y , x and v are now associated with whisking and respiration somatic states:

This formulation assumes that observations y—peripheral input originating from the same somatic states 
w and r returned by the generative process—are mapped linearly from xw and xr , which are in turn endowed 
with dynamics driven by hidden causes vw and vr . Notably, cerebellar expectations about w-r synchrony can be 
encoded in the pf connectivity θf :

These three sets of equations (Eqs. 12–14) define the generative model, whose inversion dynamics (Eqs.  8,  9) 
we associate with neuronal dynamics in the cerebellum. Cerebellar state estimation, therefore, is about the same 
whisker and respiratory states that extra-cerebellar models—here approximated by the generative process—are 
inferring; namely, hidden states xw and xr represent w and r . However, the underlying models are different: in 
the case of the cerebellum, the model is linear and relatively simple, conforming with empirical findings of linear 
encodings of many task-related  parameters53–55, whereas in the case of extra-cerebellar models, these can be non-
linear and arbitrarily complex, underlying for example the generation of cyclic patterns and nested  sequences36.

As such, the equations of motion governing the dynamics of somatic states in extra-cerebellar structures 
are synthesized in the cerebellum by a linear control of hidden states dynamics x′w and x′r from hidden causes 
or control states vw and vr . Notably, this is where the interaction between whisking and respiration occurs, as 
estimates of vw and vr (Pjc activity) bias through their predictions, f (x, v) , estimates of xw and xr—replicated in 
CN activity—which in turn are sent to the generative process where they enter the coupling terms k sin(xw − φw) 
and k sin(xr − φr) , thus enforcing synchrony between the two oscillators.

Having described the setup for modelling motor coordination, we now report the results of the simulations 
(Fig. 4). In the following, whisking and respiration undergo state-dependent behavioural changes, which exem-
plify cerebellar-dependent motor coordination in different behavioural regimes. These states include a period 
of locomotor whisking, characterised by low rates of whisking and respiration; a brief intermediate period 

(10)
r = sinφr

w = α sinφw .

(11)

dφw

dt
= ωw + k sin(xw − φw)+ Qw Qw ∼ Normal(0, σw)

dφr

dt
= ωr + k sin(xr − φr)+ Qr Qr ∼ Normal(0, σr)

ωr = ωw + ω0.

(12)

y = g(x)+ Z Z ∼ Normal(0,�z)

dx

dt
= x′ = f (x, v)+W W ∼ Normal(0,�w)

v = V V ∼ Normal(0,�v).

(13)y =

[

w
r

]

, x =

[

xw
xr

]

, v =

[

vw
vr

]

.

(14)
g(x) = θgx θg =

[

1 0
0 1

]

f (x, v) = −x + θf v θf =

[

1 1
1 1

]

.
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during which whisking stops; and a final period of object exploration, characterised by high rates of whisking 
and respiration (i.e., sniffing).

The results of these numerical studies are read from left to right; first the time evolution of the amplitude or 
displacement from a reference point of whisker and respiratory somatic states (i.e., w and r ); second the time 
evolution of their difference; and third the evolution of whisking and respiration variables in their joint state 
space, together with the synchronisation manifold (dotted black line).

Figure 4.  Cerebellar contribution to whisking-respiration coordination (1). Top half (‘With cerebellar 
contextualisation’): the cerebellar model expects coordination between whisking and respiration; these 
expectations in turn bias cerebellar estimates of whisking and respiration (please see Fig. 5). The left panels 
show the evolution of whisking and respiration over time; the middle panels show the evolution of their 
difference; the right panels show whisking and respiration dynamics in the joint state space together with the 
synchronisation manifold (straight line). Behavioural state-dependent modes are color-coded, with orange, pink 
and green background colors (left and middle panel) or lines (right panel) corresponding to low, high whisking/
respiration rate and no whisking, respectively; the transition from one mode to another is marked by vertical 
dotted red lines. There are three simulation conditions: first, whisking and respiration have different intrinsic 
angular velocities (‘Intrinsic offset’); second, extra-cerebellar dynamics are subject to internal independent 
noise (‘+ noise’); third, external perturbations are applied to whisking dynamics (the timings of perturbations 
are indicated by arrows; ‘perturbation’). These conditions apply different types of pressure on behaviour, but 
cerebellar contextualisation of extra-cerebellar dynamics is able to restore and maintain coordination. Bottom 
half (‘Without cerebellar contextualisation’): the cerebellum does not expect coordination; therefore it does 
not contribute to the evolution of whisking and respiration. As a consequence, behaviour quickly becomes 
chaotic and uncoordinated. Please see video S1 for a simulation combining intrinsic noise with offset in angular 
velocities.
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The top half of Fig. 4 (‘With cerebellar contextualisation’) shows the output of the generative process when 
the cerebellar model expects whisking-respiration coordination, that is, θf  is an all-one matrix as in Eq.  (13). 
Each row is associated with a different simulation condition. On the first row (‘intrinsic offset’), w and r have 
different angular velocities ωw and ωr ; this offset ω0  = 0 may be due to central pattern generators having distinct 
autonomous dynamics. On the second row (‘+ noise’), w and r dynamics are subject to independent Gaussian 
noise Normal(0, σw) and Normal(0, σr) . On the third row (‘perturbation’), a perturbation occurs that abruptly 
changes whisking phase φw , due to, for example, contact with an external object.

These conditions exemplify different types of (internal and external) sources of behavioural instability, that 
the cerebellum counteracts efficiently. This is highlighted both in the middle panels, showing that the difference 
between w and r returns and remains constantly below 1 a.u. (less than half the maximum difference), and in 
the right panels, where the two variables tend to converge onto the synchronisation manifold (dotted black line) 
in the joint state space.

In contrast, the bottom half of Fig. 4 (‘Without cerebellar contextualisation’) shows simulation results in 
absence of any cerebellar expectations about behavioural coordination; that is, θf  is an identity matrix. In this 
case, the two oscillators evolve without any cerebellar-dependent coupling, because cerebellar state estimation is 
not biased by any expectation about synchrony, and therefore does not realise it. As a consequence, the difference 
between w and r recursively reaches its peak at 2 a.u., as the two variables are consistently out of phase, circling 
around the joint state space, far apart from the synchronisation manifold. The (inductive) bias on cerebellar state 
estimation can be better appreciated by comparing inference in the presence or absence of cn outputs, namely, 
when the cerebellum can or cannot realise expected synchrony (Fig. 5, please see also video S1).

As a second example—dealing with whole-body dynamics—we simulate the coordination of limbs and tail 
during locomotion. Locomotion relies on coordination between many body parts, which in turn depends on 
an intact cerebellar cortex: Machado and colleagues showed that in mutant mice with a cerebellar deficit, for 
instance, pairwise coordination of front and hind limbs on opposite sides is lost, together with symmetric tail 
 dynamics56. Here, we model extra-cerebellar neuronal dynamics driving the vertical movement of limbs during 
the stride cycle:

(15)

lfr = sin φfr

lfl = sin φfl

lhr = sin φhr

lhl = sin φhl .

Figure 5.  Cerebellar expectations bias state estimation. Simulation results in which the cerebellum expects 
synchrony between whisking and respiration, whose intrinsic dynamics have different angular velocities. 
Whisking and respiration variables are split in the top and middle panels, respectively, and are displayed 
together with cerebellar estimates of the associated hidden states and causes. The bottom panel displays their 
difference. Left: the cerebellum sends empirical priors via CN outputs to extra-cerebellar structures. In this 
case, estimates about hidden states xw and xr (red lines) closely match real states w and r—in virtue of the fact 
that w and r are constrained towards xw and xr—while estimates about hidden causes vw and vw (violet lines) 
are regular and relatively high in amplitude, which reflects the congruence between expected and observed 
synchrony between behavioural states. Right: the output of CN to extra-cerebellar structures is suspended: 
now, estimates about hidden states and causes reduce in amplitude the more behaviour desynchronises. This 
is because there is a friction between predictions and observations, which has an impact on estimates about 
hidden causes—a function of behavioural synchrony due to expectations in θf—as well as hidden states—driven 
by contrasting ascending information and feedback predictions within the cerebellum.
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The displacement of the front right ( lfr ), front left ( lfl ), hind right ( lhr ) and hind left ( lhl ) limbs are mapped 
from their phase φ in the stride cycle, whose joint dynamics are described by a Kuramoto system, including 
cerebellar estimates x about limb position:

The generative process imposes a phase shift of π , 32π and 12π to lfl , lhr and lhl compared to the lfr , through 
the coupling terms k2 sin(φhr − φ) . This bias maximises the time during which at least one paw is touching the 
ground, and characterises locomotion in absence of cerebellar contributions to whole-body coordination in 
mice; individual limb dynamics, in contrast, are indistinguishable from those described in healthy  animals56 
(Fig. 6, right).

On the other hand, when cerebellar compensatory input, k1 sin(x − φ) , are present, lfr and lhl are phase-locked, 
as do lfl and lhr , and the two pairs are anti-correlated (Fig. 6, left). Compensatory input from the cerebellum rest 
on a generative model (a state space model as in Eq.  12) that holds expectations about inter-limb coordination 
in the pp connectivity matrix θf :

where

(16)

dφfr

dt
= ω + k1 sin(xfr − φfr)+ Qfr Qfr ∼ Normal(0, σfr)

dφfl

dt
= ω + k1 sin(φfr − φfl)+ k2 sin(xfl − φfl)+ Qfl Qfl ∼ Normal(0, σfl)

dφhr

dt
= ω + k1 sin(φfr − φhr)+ k2 sin(xhr − φhr)+ Qhr Qhr ∼ Normal(0, σhr)

dφhl

dt
= ω + k1 sin(φfr − φhl)+ k2 sin(xhl − φhl)+ Qhl Qhl ∼ Normal(0, σhl)

(17)

g(x) = θgx θg =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







f (x, v) = −x + θf v θf =







1 − 1 − 1 1
−1 1 1 − 1
−1 1 1 − 1
1 − 1 − 1 1






.

Figure 6.  Cerebellar-dependent coordination of limb and tail movements during locomotion. Left (‘With 
cerebellar contextualisation’): average vertical displacement of the front right, front left, hind right and hind left 
limbs as well as of the tail during locomotion across 14 strides. Shaded area denotes the standard deviation. In 
the presence of cerebellar expectations of inter-limb coordination, the front right and front left limbs are phase 
locked with the hind left and hind right limbs, respectively, and the two pairs of limbs have opposite phase. This 
results in the pairwise coordination of limb vertical displacement. At the same time, tail movements, which 
are modelled as a passive consequence of limb dynamics, symmetrically follows the dynamics of the two pairs 
of limbs. Right (‘Without cerebellar contextualisation’): in the absence of cerebellar control of limb dynamics 
there is no front-hind limb coordination, as each limb moves out of phase compared to the others, and tail 
movements become asymmetric.
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Finally, tail movements can be modelled as a passive consequence of limb  dynamics56:

Notably, in the presence of cerebellar coordination, tail excursions on the vertical axis ( t  ) are symmetric with 
respect to the dynamics of the two pairs of limbs (Fig. 6), which may improve balance and movement efficiency. 
Conversely, this symmetry is disrupted in the absence of cerebellar input. In other words, in our model, optimal 
tail movement during locomotion emerges from the cerebellar control and correction of limb dynamics.

In summary, these simulations illustrate how synchronisation of whisking and respiration is dependent on 
the cerebellar generative model: when this model holds expectations about motor coordination, it is able to 
orchestrate extra-cerebellar dynamics during various behavioural regimes (e.g., locomotor whisking and object 
exploration), despite the presence of different intrinsic rhythms and sources of noise. On the other hand, this 
cerebellar contribution is absent in the case of a naive model, namely, before learning or after lesion of pf.

Discussion
The cerebellum is a brain structure that plays a key role in the execution of behaviour. Notably, while it is not 
necessary for the production of behaviour, it is crucial for its coordination, fluency and  resilience56. At any given 
time, the cerebellum is thought to generate estimates about current and future states, such as upcoming limb 
positions, environmental dynamics, and mental  states16. However, the general principle guiding the generation 
of these neuronal representations, and their use in fine tuning behaviour, is still unclear. Here, we formalised the 
idea that the key cerebellar function is to estimate how different variables interact, and to bind them together to 
produce coordinate behaviour. In particular, we have described a general cerebellar model underlying behavioural 
coordination, and outlined how it could be implemented biologically. This model is simple, in accordance with 
the crystal-like cerebellar architecture, while general, compatible with the wide range of behavioural functions 
the cerebellum is involved in. As paradigmatic examples, we have simulated whisking-respiration and limbs-tail 
coordination, two processes that showcase the general but crucial contribution of cerebellar associative learning 
to behaviour.

One key challenge, faced by biological systems, is to constantly adapt behaviour to changing conditions 
and perturbations. This adaptation requires biological systems to learn new behavioural contexts, namely, new 
interactions between somatic and external states. For example, in the case of the vestibulo-ocular reflex, adjust-
ing its gain in response to experimental manipulation would require tuning expectations about the interaction 
strength between visual and vestibular variables. In the present model, this would entail changing the connectivity 
matrix involving the pf, θTf .

Our model focuses on the mf pathway, but climbing fibre (cf) inputs are also crucial for estimating and 
learning interactions among behavioural variables. Similarly to mf, cf carry a wide range of sensory, motor 
and cognitive  afferents7,57–60, which can also be regarded as prediction errors, updating Pjc estimates of the 
ongoing behavioural context. Importantly, cf input are particularly informative about changes in behavioural 
contingencies (e.g. presence of an unconditioned stimulus in conditioning  paradigms28), in the sense that they 
drive learning of new interactions or associations between states (e.g. conditioned stimulus and unconditioned 
responses), by triggering changes in the pf connectivity (please see Fig. 7). Thus, behavioural adaptation rests 
on fine tuning of cerebellar expectations by cf input.

Practically, cerebellar state estimation and the underlying neuronal dynamics comply with the FEP, which 
explains the dynamics of biological systems from first physics principles (e.g., a principle of stationary action)32,33. 
Under the FEP, neuronal networks implicitly invert probabilistic models of their environment, such that physical 
dynamics of neuronal (internal) states are equipped with belief dynamics in the space of probability distribu-
tions over (environmental) states. This licenses a formal link between cerebellar  networks21 and their internal 
 models15,16. In this formulation, the cerebellum performs Bayesian filtering based on a state space model, which 
generalises prominent theories of the cerebellum as a state estimator or Kalman  filter13,14,20.

In active inference, the generative model implemented by the brain is dynamic, meaning that forward mod-
els are an integral part of sensorimotor control. This effectively allows state estimation throughout the brain to 
compensate for delays incurred by in neuronal message passing between peripheral and central nervous system, 
or between brain areas. In other words, because both action and perception are the product of inference, the 
delay affecting sensory feedback or prediction errors are accounted for by predictions about the dynamics of 
proprioceptive and external states. Please  see61 for a worked example in the oculomotor system.

The cerebellar model is an integral part of the overarching model that is the nervous system. The key question 
is therefore: what is the specific cerebellar contribution to inferential processes in the brain? We proposed that 
its key function is to learn and infer how dynamics across the brain are associated, and to enact these associa-
tions by constraining (i.e., contextualising) them via empirical priors. This has several implications that need 
to match empirical evidence. First, it requires precise representations of behavioural dynamics. Indeed, the 
cerebellum matches dynamics in extra-cerebellar structures, and accurately represents all kinds of variables, 
including motor, sensory, somatic, autonomic and cognitive states, task-contingencies (e.g., reward signals) and 
general motor  activation4,62–65.

Second, cerebellar state estimation relies on (approximately) linear computations, which conform with empiri-
cal findings of linear encoding of many task-related  variables53–55. Nevertheless, this model also accounts for the 

(18)x =







xfr
xfl
xhr
xhl






, v =







vfr
vfl
vhr
vhl






.

(19)t = sin φfr + sin φfl
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often neglected recurrent connectivity within the cerebellum, involving feedback loops from Pjc and CN back to 
grc, Goc and other  interneurons44–47. Moreover, various network and cellular mechanisms, including resonance 
in the grc  layer26, intrinsic excitability of Pjc66 and rebound bursting of CN  neurons67 may also allow the cerebel-
lar model to account for some forms of nonlinear interactions between variables, which could be introduced by 
using nonlinear functions g and f 68. In this case, the cerebellum could model hidden states as the product of the 
nonlinear convolution of hidden causes, and ensuing state estimation would result in the nonlinear deconvolu-
tion of extra-cerebellar  input69; such a cerebellar model, in turn, could be particularly appropriate when dealing 
with behavioural contexts where more complex interactions between behaviourally-relevant states are in play.

Finally, cerebellar outputs enter extra-cerebellar inference as empirical priors, constraining or modulating 
neuronal dynamics to conform with its own predictions. This places the cerebellum at a high level in the brain 
hierarchy, in reciprocal communication with virtually all brain structures, including peripheral  networks70, sub-
cortical  structures71,72, and most cortical  areas29,73. Importantly, cerebellar outputs do not substitute the content of 
inference in extra-cerebellar structures, but rather refines it based on information about conditional dependencies 
among behaviourally relevant variables. This can account for the cerebellar widespread contributions to behav-
iour, involving preparatory activity underlying decision  making7 and motor  initiation6, calibration of ongoing 

Figure 7.  Olivo-cerebellar circuitry. Mapping of elements of the model for a conditioning paradigm to 
elements of the olivo-cerebellar circuitry. The mossy fibre pathway is the same as in Fig. 2, but here it is 
exclusively concerned with the estimation of the conditioned stimulus (c superscript). The inferior olive-
climbing fiber pathway, instead, is concerned with the estimation of the unconditioned stimulus (u subscript), 
also based on a state space model (Eq. 23). In practice, the inferior olive (IO) could receive prediction errors 
εuy  about the unconditioned stimulus from extra-cerebellar structures, as shown in Fig. 1—illustrating message 
passing between neuronal structures. Meanwhile, the IO would also receive predictions f  about the motion 
of unconditioned states, µu

x′ , from CN-mediated Pjc input. Together, error and prediction input would drive 
expectations encoded by IO neurons about the unconditioned stimulus, µu

x ,µ
u
x′ . Notably, the comparison 

between predicted, f  , and expected motion of the unconditioned state, µu
x′ , encoded by error units εx in the 

IO, would drive cf activity and subsequent updates of expectations about the control state, µv , encoded in the 
Pjc population. In a conditioned paradigm, the climbing fibre pathway described above is responsible for the 
estimation of the unconditioned stimulus that drives baseline behavioural response pattern in extra-cerebellar 
structures. Following learning, the presentation of the conditioned stimulus becomes associated with the 
unconditioned stimulus, and can elicit a response on its own, called conditioned response. Associative learning 
in the cerebellum involves changes in the pf connectivity matrix, θ cf  , and, similarly to inference, it complies 
with the free energy minimisation imperative, but on a slower time scale: thus, learning can be specified with a 
gradient descent on free energy with respect to θf  . In this specific case, for example, θ cf  would increase in value 
because the cerebellar model that best explains IO and mf input is the one which expects the control state µv , 
indicating the behavioural context, to generate both unconditioned, µu

x , and conditioned states, µc
x.
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movement  trajectories70,74, precise refinement of timing, amplitude and sequencing of conditioned  responses5, 
 reflexes75, as well as mental (e.g., speech)  processing41, and more in general coordination of behaviour in time 
and  space11,76. Crucially, all these contributions rely on learned associations between task-relevant variables.

Methods
Neuronal dynamics as inference
In Bayesian inference, we seek the posterior distribution over unknown states ϑ , given some observations y and 
a model m of how these observations have been generated:

Finding the posterior is generally intractable due to the calculation of the marginal likelihood or normali-
sation constant (a.k.a. model evidence) p(y|m) . Therefore, it has been suggested that the brain approximates 
Bayesian inference using variational Bayes, an optimisation procedure that allows us to find a variational or 
recognition density over environmental states, q(ϑ) , which approximates the true posterior p(ϑ |y) : this enables 
to solves a difficult inference problem with an easier optimisation procedure. This optimisation relies on the 
the minimisation of the Kullback-Liebler (KL) divergence between the proposed and true posterior density. 
Importantly, the KL divergence can be expressed as a variational free energy (F)39. Leaving out the m for clarity, 
we substitute from the Bayes law, Eq. (20)

where

F depends on the generative model m , since p(ϑ , y) does, as does the recognition density q(ϑ) . The sufficient 
statistics (e.g., mean or expectation) of q(ϑ) are assumed to be encoded by the brain. The equation for the KL 
divergence, Eq. (21), shows that minimising F by changing q(ϑ) automatically reduces Dkl , because log p(y) does 
not depend on q(ϑ) . Thus, minimising the free energy F makes the recognition density, q(ϑ) a good proxy for 
p(ϑ |y).

This leaves open the question of what form q(ϑ) takes; under the Laplace approximation it is restricted to a 
Gaussian distribution. Thus, in this picture, the brain encodes q(ϑ) through the sufficient statistics µ and ξ , the 
mean and variance respectively, of a Gaussian distribution q(ϑ;µ, ξ)38, effectively constraining beliefs about 
hidden or latent states to be normally distributed. Under the Laplace assumption, the variance of the recogni-
tion density that minimises free energy is an analytic function of the expectation; this means that the brain only 
needs to encode the expected value µ of these beliefs in order to minimise F.

State space models
The functional form of F is specified by m , which is, in this work, a stochastic state space model with first-order 
generalised motion (bold face refers to vectors)38:

This model assumes the existence of two hidden or latent states, v and x , which bring about observations y ; 
v can be thought of as the control or exogenous input to a system and x as the state of a system whose temporal 
dynamics x′ are a function of itself and the control states v . On the other hand, Z and W are noise terms affect-
ing the mapping g from x to y and equations of motion for x ; V  is a noise term with high variance, indicating 
a noninformative prior over v . With this model, the free energy can then be decomposed as (omitting some 
terms for clarity):

and, using the model, as described in Eq. (23), these log probabilities can be written as:

(20)p(ϑ |y,m) =
p(y|ϑ ,m)p(ϑ |m)

p(y|m)
.

(21)
Dkl(q(ϑ)|p(ϑ |y)) =

∫

q(ϑ) log
q(ϑ)

p(ϑ |y)
dϑ

= F + log p(y)

(22)F(q(ϑ), y) =

∫

q(ϑ) log
q(ϑ)

p(ϑ , y)
dϑ .

(23)

y = g(x)+ Z Z ∼ Normal(0,�z)

dx

dt
= x′ = f (x, v)+W W ∼ Normal(0,�w)

v = V V ∼ Normal(0,�v).

(24)
F(µ, y) = − log p(µ, y) = − log p(µx ,µv , y)

= − log p(y|µx)− log p(µx|µv)− log p(µv)
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which in turn gives the following functional form:

where we have used the precision matrix in place the covariance matrix ( � = �−1 ) and the auxiliary variables 
ε to indicate the prediction error terms:

where

It is proposed that neuronal dynamics can be understood as minimising F . This can be achieved by specifying 
their temporal evolution as a gradient descent on F:

where κ are rate constants. It is important to note that in this gradient descent scheme, the term updating expecta-
tions about beliefs encoded by neuronal dynamics, µ̇ , is distinct from the motion of those expectations, µ′ ; that 
is, the motion of the expectations is distinct from expected motion. The two equate only when F is  minimised38. 
The equation of motion, Eq. (29), describes the general form of recognition dynamics underlying perception, 
that is, the dynamics of neuronally encoded states which minimise F . Alternatively, minimisation of F can be 
achieved by changing the state of the environment through action a , so that observations conform to  beliefs52. 
Action dynamics can be specified with a gradient descent on F:

In this formulation, action a does not enter in the definition of F(µ, y) , because the brain does not entertain 
any explicit belief about a in its model m about the environment. However, the brain possesses an inverse model 
of how a acts on the environment and changes y : this could be implemented for example by a cascade of belief 
propagation down to the level of arc reflexes in the spinal cord, hardwired to satisfy expectations about limb 
position by producing the appropriate pattern of muscle  contractions52. In the present work, because of the way 
we couple the cerebellum to extra-cerebellar structures through estimates of x , we do not deal with a explicitly. 
As such, we only focus on the recognition dynamics for x , x′ , v based on the internal energy, Eq. (26). This gives 
dynamical equations for the means:

Here the expected motion µ′
x only enters the recognition dynamics of µx , because for µ′

x there is no expected 
motion, that is, there is no µ′′

x = dµ′
x/dt , and v does not have any dynamics. Finally, the partial derivatives in 

equations of motions for the means, Eq. (31), can be expanded into equations for the rate of change of F(µ, y) 
with respect to µx:

(25)

log p(y|µx) = −
1

2
(y − g(µx))

T�−1
z (y − g(µx))−

1

2
log |�z |

log p(x|v) = −
1

2
(µ′

x − f (µx ,µv))
T�−1

w (µ′
x − f (µx ,µv))−

1

2
log |�w|

log p(v) = −
1

2
µT
v �

−1
v µx −

1

2
log |�v|

(26)F(µϑ , y) =
1

2
εTy �zεy −

1

2
log |�z | +

1

2
εTx�wεx −

1

2
log |�w| +

1

2
εTv �vεv −

1

2
log |�v|

(27)

εy = y − g(µx)

εx = µ′
x − f (µx ,µv)

εv = µv

(28)
g(µx) = θgµx

f (µx ,µv) = −µx + θfµv .

(29)µ̇ = µ′ − κµ
dF(µ, y)

dµ

(30)
ȧ = −κa

dF(µ, y)

da
F(µ, y)

da
=

dy

da

dF(µ, y)

dy
.

(31)

µ̇x = µ′
x − κx

F(µ, y)

dµx

µ̇′
x = −κx′

F(µ, y)

dµ′
x

µ̇v = −κv
F(µ, y)

dµv

(32)

F(µ, y)

dµx

=
1

2

(

d[µy − θgµx]
T

dµx

2�zεy

)

+
1

2

(

d[µx′ − (−µx + θfµv)]
T

dµx

2�wεx

)

= −θTg �zεy +�wεx
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with respect to µx′:

and with respect to µv:

where we used the matrix differentiation property

for symmmetric A.

Data availability
Code to replicate the simulations is available at https:// zenodo. org/ record/ 79416 93.
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