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Estimating the size of populations 
at risk for malaria: a case study 
in cattle herders and agricultural 
workers in Northern Namibia
Francois Rerolle *, Jerry O. Jacobson , Cara Smith Gueye , Adam Bennett , Sidney Carrillo , 
Henry Ntuku  & Jennifer L. Smith 

Cattle herders and agricultural workers have been identified has key high-risk populations for malaria 
in northern Namibia. Population size estimates for these groups are lacking but are important 
for planning, monitoring and evaluating the effectiveness of targeted strategies towards malaria 
elimination in the region. In this analysis, we extend population size estimation methods routinely 
used in HIV research, specifically social mapping and multiple source capture-recapture, to the 
context of malaria to estimate how many cattle herders and agricultural workers lived in two regions 
of northern Namibia over the course of the 2019–2020 malaria season. Both methods estimated 
two to three times more agricultural workers than cattle herders but size estimates based on the 
multiple source capture-recapture method were two to three times greater than the mapping-based, 
highlighting important methodological considerations to apply such methods to these highly mobile 
populations. In particular, we compared open versus closed populations assumptions for the capture-
recapture method and assessed the impact of sensitivity analyses on the procedure to link records 
across multiple data sources on population size estimates. Our results are important for national 
control programs to target their resources and consider integrating routine population size estimation 
of high risk populations in their surveillance activities.

After years of steady decline, progress towards eliminating malaria has stalled across southern Africa and world-
wide. Seasonal outbreaks of malaria in Namibia’s northern regions1 since 2016 have highlighted a need to identify 
coverage gaps and improve delivery of effective interventions2. Previous case–control studies and formative 
research conducted in two northern provinces, Ohangwena and Zambezi, identified specific occupations and 
behaviors that define malaria high-risk populations (HRP), as well as key intervention gaps3,4. Groups with high 
mobility and outdoor exposure to mosquitos, including seasonal agricultural workers (AW) and cattle herders 
(CH), are particularly challenging to access through routine surveillance and intervention strategies, which pri-
marily target resident communities at their households. In low endemicity settings such as present-day northern 
Namibia, HRPs are thought to have a role in sustaining transmission and tailoring prevention and treatment 
efforts to address gaps in coverage is crucial in order to reach malaria elimination5. Yet, the population size of 
these groups is unknown and due to their high mobility, challenging to estimate through conventional methods.

An estimate of the population size of these groups is an essential input for planning, scaling, monitoring 
interventions and assess their coverage but also to understand and model patterns of transmission6. Population 
size estimates (PSE) can also mobilize resources and political will to support equitable malaria control programs6. 
When malaria risk is widespread in a community, size estimation can be as straightforward as conducting a 
household census, but when risk becomes more focused among individuals with specific occupations and behav-
iors or those who are harder-to-reach, more nuanced and targeted strategies are needed. This is particularly true 
in contexts where the activity leading to increased exposure may be informal, illicit or stigmatized.

Multiple studies7–13 and guidelines6 focusing on PSE for HRP in the context of HIV exist, but to our knowl-
edge, there are no such equivalents for malaria. Yet, the most accepted PSE methods in use today in the HIV 
context originally hail from other disciplines and could be readily extended to other infectious diseases, such 
as malaria. For example, the capture-recapture method was developed in wildlife ecology to study population 
sizes of animals14, while the multiplier method and social mapping and enumeration have long been employed 
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throughout the social sciences. When transmission is clustered among high-risk subpopulations and particularly 
hard-to-reach populations, researchers have recommended including PSE studies as a part of malaria surveillance 
systems15, following similar guidance for HIV surveillance16,17.

In this study, we illustrate adapting social mapping and multiple source capture-recapture to the context of 
malaria HRPs to estimate the population size of cattle herders and agricultural workers in Zambezi and Ohang-
wena Regions, in northern Namibia. Along the way, we highlight important methodological considerations to 
link ascertainments of individuals across multiple data sources and account for HRP’s mobility, and discuss 
challenges and opportunities for the routine use of these approaches.

Methods
Study context and overall estimation approach
The PSE was planned as part of a quasi-experimental randomized controlled trial (NCT04094727; September 
19, 2019) to evaluate the impact of a tailored package of interventions on malaria and coverage outcomes in 
agricultural workers and cattle herders in northern Namibia. The study was conducted over the 2019–2020 
malaria season (November–June) in 8 health facility catchment areas (HFCA) across Zambezi and Ohangwena 
Regions, in northern Namibia (Fig. 1) where the total population was respectively 23,022 and 9995. The main trial 
comprised six components: (1) baseline mapping of worksites; (2) baseline worker survey; (3) delivery of malaria 
interventions in randomized HFCAs; (4) reactive case detection (RACD) at worksites; (5) endline mapping of 

Figure 1.   Study area and study timeline. Top: study timeline with intervention and RACD conducted between 
baseline and endline mapping and workers surveys. Bottom: study area in where 8 HFCAs randomly allocated 
to an intervention or control arm. ESRI imagery from the leaflet R packages was used for the basemap.
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worksites; (6) endline worker survey. These components differed for the two target populations and regions, as 
described below. Data collection to support size estimation was incorporated into each component from initial 
study conception. The mapping-based PSE drew on the baseline and endline mapping data; the multiple source 
capture-recapture PSE drew on the survey and intervention data. Table 1 lists the criteria to define high-risk 
agricultural workers and cattle herders in each survey.

Data sources
Baseline and endline mapping of worksites
Mapping of worksites was conducted to generate a sampling frame for surveys and sites to target the interven-
tion. Specifically, meetings were held with community health workers and community leaders in each region to 
develop a list of all farms and/or cattle posts that were thought to meet risk criteria. In Ohangwena, a veterinary 
services database was consulted to identify potential work sites; local leaders drew on this list and their knowl-
edge of permits they had issued to cattle owners to authorize taking their cattle to and from Angola in order to 
limit the list to cattle posts where workers may engage in cross-border travel. Then, field teams conducted an 
interviewer-administered questionnaire with the owner or a manager at all worksites thus identified, with data 
collection by tablet. Data obtained included the number of workers expected to meet the high-risk population 
criteria defined in Table 1, over the course of the malaria season (i.e., November–May).

Baseline and endline workers surveys
The baseline and endline worker surveys were conducted among workers at a random sample of the worksites 
identified by the mapping. The surveys were interviewer-administered with data collection by tablet. The baseline 
and endline surveys were conducted at the beginning (November–January) and end (May–June) of the malaria 
season, respectively. Eligibility criteria were similar to those used in the mapping, however with a narrower time 
period of reference for the risk activity (see Table 1).

Intervention
The interventions were rolled out in four randomly sampled HFCAs between baseline and endline, during Feb-
ruary and March. They included provision of presumptive treatment with artemether-lumefantrine to workers 
at worksites, indoor residual spraying (IRS) of worksite structures, and provision of a vector control pack to 
workers in Zambezi who did not sleep in a sprayed structure. Interventions were delivered in coordination with 
employers, at visits conducted independently of baseline, endline, and RACD surveys. Intervention participants 
were screened for eligibility (See Table 1). A second planned intervention round was interrupted by the SARS-
CoV-2 pandemic in April 2020 and discontinued when Namibia entered lockdown.

RACD
The study team visited worksites to screen and interview co-workers of malaria cases reported by health facilities. 
See Table 1 for eligibility criteria. RACD was conducted in both intervention and control areas from February 
2020 to March 2020, when it was discontinued due to the SARS-CoV-2 pandemic.

PSE method 1: social mapping
The mapping-based size estimates were calculated in three steps based on worker counts obtained from worksites 
owners. First, the retrospective count reported by owners at endline were summed across worksites, based on 
the question item, “How many total workers [meeting the respective risk criteria] did you have from November 
2019 to May 2020?”.

Second, to account for workers at worksites no longer operational by the endline mapping, we calculated a 
total prospective count reported during baseline interviews at these sites, based on a question item on the num-
ber of workers expected to meet the risk criteria between November 2019 and June 2020, which was otherwise 
identical to the endline item. Then, this sum was corrected for potential projection error by accounting for how 

Table 1.   High-risk eligibility criteria for mapping, surveys, and interventions.

Data source Zambezi Ohangwena

Baseline and endline mapping of worksites
Cattle herders and/or agricultural workers employed by this owner 
who will sleep/slept or work(ed) outside at least one night at this 
farm/cattle post between Nov and May

Cattle herders employed by this owner who will spend/spent at 
least one night in Angola between Nov and May prior to returning 
to Ohangwena between Nov and May

Baseline and endline worker surveys
Primary occupation is agricultural worker or cattle herder
Slept or worked outside at least one night at this farm/cattle post 
in past 1 week or will in upcoming 3 weeks

Primary occupation is cattle herder
Spent at least one night working in Angola between Nov and May, 
in position as cattle herder

Interventions:

Presumptive treatment Agricultural worker or cattle herder workers who regularly sleep 
overnight at farms or cattle posts Cattle herders who are cross-border travelers

IRS Sprayable structures at farms or cattle posts that were not covered 
during the primary spray campaign

Sprayable structures at cattle posts located within 10 km of the 
border that were not covered during the primary spray campaign

Vector control pack Those who do not sleep in a sprayed structure Those who do not sleep in a sprayed structure in Angola

RACD Agricultural worker or cattle herder workers who regularly sleep 
overnight at farms or cattle posts Cattle herders who are cross-border travelers
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the prospective and retrospective worker counts differed at sites that were included in both the baseline and 
endline. Specifically, the sum was multiplied by the ratio of the endline total divided by the baseline total. Next, 
this corrected count was added to the sum across endline sites calculated in the first step.

Finally, the result of the above was corrected for potential double-counting of workers who had worked at 
multiple sites in the respective region during the period by dividing by a mobility factor, which was calculated as 
the mean number of worksites per worker, based on responses to the endline survey question item, “How many 
employers/worksites in the [study region] have you worked for between November 2019 and today?”. The mobil-
ity adjustment factors and their associated 95% confidence intervals (CI) were estimated for each region and, in 
Zambezi, separately for agricultural workers and cattle herders. Dividing each summed count by the respective 
mobility point estimate and its 95% CI limits produced the corresponding PSE point estimate and its 95% CI.

PSE method 2: multiple‑source capture‑recapture
The multiple source capture-recapture method draws on three or more statistically independent samples of the 
target population—all of which may be non-probability samples—and applies log-linear regression to estimate 
the population size based on patterns of overlap of individuals across these data sources or “captures”18,19. Here, 
four surveys—conducted at baseline, endline, during the intervention, and during RACD, respectively—served 
as the captures in each region.

Data management and record linkage
Birth place, birth order and three names variables (traditional, Christian and surname) were used to identify 
individuals across data sources. See appendix for details.

Records were linked using a flexible algorithm with a hierarchy of three different possible matching types:

•	 Perfect match: same 3 names in any order, same birth place and same birth order

or.

•	 Excellent match: same 3 names in any order and same birth place or same birth order

or.

•	 Good match: two of the same names in any order, same birth place and same birth order

Record linkage was first carried out within surveys for de-duplication and then across datasets to create cap-
ture histories for all records. When necessary, better matches were favored (e.g., perfect over excellent matches).

Sensitivity analysis to optimize record linkage parameters
We conducted sensitivity analysis to identify the optimal parameter settings for the clustering algorithms that 
were used to standardize the names and birth places reported by survey participants, as a preliminary step before 
record linkage. The two clustering algorithms in OpenRefine20 software were the n-gram fingerprint method 
(requiring a parameter n) and the Levenshtein nearest-neighbor method (requiring a radius of 1, 2, 3, or 4 and 
a block character setting of 3 or 4). These parameters determine the flexibility of the clustering; stricter settings 
may fail to identify similar spellings of names that in fact represent the same individual whereas overly flexible 
ones may erroneously cluster together the names of different respondents.

We selected the optimal values of the three parameters by repeating the clustering and record linkage pro-
cedure under all 24 possible combinations of the settings. Then, we manually reviewed a random sample of 100 
records for which linkage results differed across the 24 parameter scenarios and classified the performance under 
each setting as correct or incorrect. Based on these samples, we calculated sensitivity and specificity and plotted 
a ROC curve to identify the parameter settings that produced the most accurate record linkage.

Statistical analysis
We developed capture histories (i.e., counts of individuals exhibiting each possible pattern of presence or absence 
across the four surveys) from the linked data. The capture histories were then analyzed by log-linear regression 
models18 using the RCapture19 package in R statistical software21 to produce the population size estimates. Models 
were developed under both closed- (i.e., no in- or out-migration) and open-population assumptions. The former 
allowed for heterogeneity in capture probabilities across surveys and across individuals.

Since the surveys and resulting model results reflect the intervention areas in each region, we applied an 
upweighting factor to extend the size estimates to control areas (where intervention surveys were not conducted) 
in the study area. Upweighting factors were calculated as the inverse of the proportion of baseline workers sur-
veyed in intervention areas. Importantly, the baseline survey is assumed to be a representative sample of workers 
in the study areas and the relative proportion of workers in intervention versus control areas is assumed to be 
constant over the entire season.

Ethics
This study was approved by Namibia’s Ministry of Health and Social Services (Approval #17/3/3HN), by the 
University of Namibia Research Ethics Committee (Approval #MRC/510/2019) and by the UCSF ethical review 
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board (Approval #19-28530). The informed consent process was consistent with local norms, and all study areas 
had consultation meeting with, and approvals from, village elders. All participants provided informed written 
consent; caregivers provided consent for all children under 18. The study was conducted according to the ethical 
principles of the Declaration of Helsinki of October 2002.

Results
Social mapping PSE
In the Zambezi and Ohangwena regions respectively, 426 and 296 worksites were surveyed during both the 
baseline and endline mapping, with 1912 and 874 HRP workers projected to be employed over the season at 
baseline and 2353 and 731 HRPs reported to be employed over the season at endline. Therefore, projection factors 
applied to the prospective counts were 1.23 in Zambezi, where the sum total across sites at endline was greater 
than the total at baseline, and 0.84 in Ohangwena, where the situation was reversed.

Self reported levels of mobility of workers among worksites were modest. The mean number of worksites per 
worker from the endline survey was 1.07 [1.05; 1.08] for agricultural workers in Zambezi, 1.08 [1.05; 1.11] for 
cattle herders in Zambezi and 1.04 [1.02; 1.07] for cattle herders in Ohangwena. In Zambezi, 92.9% (N = 1121) of 
the 1207 endline survey participants reported working at one site and 7.1% (N = 86) had worked at two sites. In 
Ohangwena, 71.6% (N = 346) of 483 endline survey participants worked at one site, nine at two sites, and three 
at three sites, while 25.9% (N = 125) did not respond to the question item.

Table 2 shows the results from the mapping PSE. The calculation began with the number of workers reported 
in the endline mapping. Then, the number of workers projected in the baseline mapping worksites absent from 
the endline mapping, corrected by the projection factor, is added. Finally, the total is adjusted for mobility fac-
tors, yielding 724 [705; 745] cattle herders and 1914 [1896; 1950] agricultural workers in Zambezi and 725 [705; 
739] cattle herders in Ohangwena.

Multiple source capture‑recapture PSE
Record linkage
Overall, response rates for the variables collected for purposes of record linkage (Table S1) were 90% or greater 
in the combined data across surveys and regions. Response rates were lower for Christian name in the Zambezi 
surveys (78–91%) and birth place and birth order in the RACD survey in Ohangwena (58%).

Varying standardization parameters in OpenRefine20 led to 24 scenarios that linked differently 651 (13%) 
of the total 5067 respondents across records. Among the review sample of 100 (15%), sensitivity and specificity 
varied quite a bit across scenarios (Fig. 2), ranging from 29 to 91% and 21 to 96% respectively. Two scenarios 
closest to the top left corner of the figure stand out. The first one (n-gram = 2, chars = 3, radius = 2, top left orange 
point) reached very good sensitivity (81%) while maintaining excellent specificity (96%) and was adopted in our 
subsequent PSE analyses. The second one (n-gram = 2, chars = 3, radius = 3, top centered pink point) had better 
sensitivity (91%) but at the expense of specificity (63%).

We also confirmed the extent to which combinations of the identifying variables for the adopted standardi-
zation parameters scenario uniquely identified records in the baseline and endline surveys, since to be eligible 
an individual should not have participated previously. Indeed, in our adopted record linkage algorithm, there 
were only 2 (0.2%) duplicated records in Zambezi’s baseline survey, none in Ohangwena’s baseline survey and 1 
duplicated record in both Ohangwena and Zambezi’s endline surveys, representing 0.2% and 0.08% of records 
in the respective data source.

Table 2.   Mapping population size estimation.

Zambezi Region Ohangwena Region

Worksites

Total 515 307

Worksites in endline mapping 432 300

Worksites both in endline and baseline mapping 426 296

Worksites in baseline mapping but absent from endline mapping 83 7

Workers Cattle herders Agricultural workers Cattle herders

Total among endline sites 700 1656 738

Total among baseline sites not in endline, prior to applying correction 
factor 67 319 19

Total among baseline sites not in endline, after applying correction factor 82 392 16

Total among all sites, unadjusted for mobility 782 2048 754

Mobility adjustment factor
[95% CI] 1.08 [1.05; 1.11] 1.07 [1.05; 1.08] 1.04 [1.02; 1.07]

Total among all sites, adjusted for mobility [95% CI] 724 [705; 745] 1914 [1896; 1950] 725 [705; 739]
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Statistical analysis
In the baseline survey in Ohangwena, 240 cattle herders were interviewed in the intervention areas and 194 in 
the control areas, yielding an upweighting factor of 1.8 (= [240 + 194]/240). In Zambezi, the upweighting factor 
was 2.2 (= [769 + 923]/769) for agricultural workers and 1.8 (= [505 + 404]/505) for cattle herders.

In the baseline, intervention, RACD and endline surveys in the intervention areas across both regions, a total 
of 800, 1300, 83, and 823 HRPs were ascertained, respectively, with 1921 unique HRPs based on record linkage. 
The Venn diagram in Fig. 3 illustrates the capture histories identified. See Figures S1, S2 and S3 in the appendix 
for similar Venn diagram stratified by region and high-risk groups.

Table 3 shows the results of the capture-recapture log-linear regression models, under closed- and open-pop-
ulation assumptions. Under the closed-population assumption, the best fitting model incorporated temporal and 
individual heterogeneity, allowing capture probabilities to vary both across surveys and workers (Mth models). 
Based on the AIC, the closed population model performed considerably better than open population models. 
In addition, the PSEs resulting from the open population models appear unsatisfactory as they are characterized 
either by an uninformative 95% CI (Ohangwena) or a point estimate only slightly above the total number of 
workers ascertained in surveys (upweighted to the study area). On the other hand, the open population model has 
the advantage of providing estimates of the baseline-intervention turnover rate, defined here as the probability a 
given worker leaves the area between baseline survey (November–January) and intervention (February–March). 
These turnover estimates were similar across population groups (13–20%) although non-significantly larger for 
cattle herders than agricultural workers in Zambezi.

Sensitivity analysis of record linkage parameters
We ran the same closed population models on capture histories data resulting from the record linkage under 
four scenarios that vary parameterization of the clustering algorithm used to standardize names in the unique 
identifier: the strictest (n-gram = 1, radius = 1, block chars = 4), the most flexible (n-gram = 2, radius = 4, block 
chars = 3), the best (n-gram = 2, radius = 2, block chars = 3), and the second-best scenario (n-gram = 2, radius = 3, 
block chars = 3). These correspond respectively to the bottom left blue triangle, the top right pink circle, the top 
left orange circle, and the top center pink circle on Fig. 2. Figure 4 shows the ratio of the PSE obtained under 
each scenario relative to the strictest one (as the reference). The Delta method22 was used to compute 95% CI.

Greater flexibility in the record linkage algorithm yielded more matches across surveys, hence resulting in 
a smaller PSE (ie PSE ratio less than one). In Zambezi, none of the ratios are statistically different from one, 
meaning the standardization parameters scenarios would have resulted in non-significantly different PSEs. In 
Zambezi, the biggest difference occurred for agricultural workers with a PSE 0.88 [0.63; 1.12] times smaller in 
the most flexible scenario compared to the strictest one, representing an absolute difference of (2106–1848 =) 258 
workers. In Ohangwena on the other hand, the most flexible and second-best scenarios yielded PSEs statistically 
significantly lower than the strictest ones with PSE ratios of 0.70 [0.46; 0.94] and 0.72 [0.47; 0.97] respectively. 
In Ohangwena, the best scenario resulted in a PSE 0.80 [0.51; 1.08] times smaller than the strictest scenario, but 
this was not statistically significant.

Figure 2.   ROC curve. Assessment of how sensitivity and specificity change across the different standardization 
scenarios, with varying clustering parameters in OpenRefine: n in the n-gram fingerprint method; radius 
and block chars in the Levenshtein nearest-neighbor method. Scenarios with n-gram = 3 produced almost 
indistinguishable results as n-gram = 2 and were therefore discarded from the plot.
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Discussion
In this study, we leveraged two PSE methods to estimate the total population size, in our study area and over the 
2019–2020 malaria season (November–June), of two occupational groups that met risk criteria derived from pre-
vious research in northern Namibia: cattle herders and agricultural workers. Size estimates based on the multiple 
source capture-recapture method (Table 3) were two to three times greater than the mapping-based estimates 
(Table 2). Similar differences are common in HIV size estimation studies, where mapping-based estimates are 
generally viewed as a lower bound6, highlighting the need to triangulate PSE results over several methods. Here, 
work site owners may have intentionally or unintentionally omitted employees whereas the capture-recapture 
method may have produced a more complete count by drawing on intervention and RACD data in addition 
to worksite surveys. Both methods estimated two to three times more agricultural workers than cattle herders 
in Zambezi suggesting that the former group may be more critical to malaria elimination; however, this also 
depends on the relative infection prevalence, which we did not assess here.

Our results point towards several methodological considerations of assumptions used in closed and open 
population models used in capture-recapture methods. While model fit and face validity of size estimates result-
ing from our closed population models appeared superior to those from our open population models, there is 
no gold standard ‘truth’ to empirically determine which is best. The epidemiological literature tends to focus 
on closed-population models23 because of short study time periods over which populations can assumed to 

Figure 3.   Venn diagram. Illustration of overlap of individuals across the four captures: for instance, 318 HRPs 
were captured both in the baseline and intervention surveys but not in RACD or endline surveys.

Table 3.   Capture-recapture PSE results. Model estimates have been adjusted to include the upweighting factor. 
BI, IR and BR respectively stand for interaction terms between baseline/intervention, intervention/RACD and 
baseline/RACD data sources.

Ohangwena Cattle herders Zambezi Cattle herders Zambezi Agricultural workers

Total workers captured in intervention areas 594 404 923

Upweighting factor 1.8 1.8 2.2

Closed population

PSE [95% CI] 2225 [1706; 2745] 1908 [1211; 2605] 4316 [3472; 5159]

AIC 85.5 75.1 98.7

Model [Interaction terms] Mth [BI, IR] Mth [BI, BR] Mth [BI, BR]

Open population

PSE [95% CI] 2552 [860; 4244] 931 [657; 1204] 2807 [2387; 3230]

AIC 126.1 85.9 132.5

Baseline-Intervention turnover [95% CI] 0.13 [0.05; 0.21] 0.2 [0.1; 0.29] 0.15 [0.09; 0.2]
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be constant. Most prior literature on size estimates in high-risk populations derives from studies in the HIV 
context6–12 where surveys and other data captures are planned to span a brief time frame of about 3–5 months, 
precisely to limit the risk of change in the population over the course of the study. When aiming to ascertain 
the total risk population over the course of a several-month malaria season, such a strategy becomes infeasible 
for highly mobile populations and determining whether the population is truly open or closed over the period 
is a challenge24. The open-population models naturally accommodate the phenomenon of individuals entering 
and exiting the risk group over time, but even the so-called “closed” model can do so by introducing interaction 
terms that model temporal variation in the ascertainment probabilities of survey instruments, as was done here. 
When one has the data available (i.e., at least three data sources) to apply the log-linear18,25,26 regression model 
approach, comparing model fit under each scenario provides a way to assess the open versus closed assumptions.

A second methodological strength of this study that is new to PSE analyses was to vary record linkage sce-
narios, evaluate them and assess their impact on population size estimates. Capture-recapture methodology relies 
on the assumption that individuals can be tracked over different capture occasions. When it is not possible to 
collect a unique identifier, an object such as a study card27 can be given or, more commonly, a combination of 
identifying variables (names, gender, places of birth, places of residence, etc.…) are used to uniquely identify 
individuals across capture occasions. Yet, the selection of these variables, their standardization and the matching 
algorithms used can vary a lot and subjective decisions are often made on based on face validity. Here, identify-
ing variables (names, birth place and birth order) as well as the matching algorithm (perfect, excellent and good 
matches) were selected subjectively but we varied standardization parameters to cover 24 different record-linkage 
scenarios. Comparing them highlighted quite some variability in terms of sensibility and specificity although, and 
importantly, any of these scenarios would have met face validity. This sensitivity analysis enabled us to choose 
an appropriate standardization scenario and assess how picking a scenario affects the population size estimates. 
Figure 4 showed that these scenarios would have not resulted in statistically significantly different estimates in 
Zambezi but would have led to different results in Ohangwena. These findings highlight the need for thorough 
assessment and transparent reporting of the quality of any record linkage algorithm used for population size 
estimates.

A first limitation of our analysis is that eligibility criteria across survey sources (Table 1) are not identical and 
may have ascertained different segments of the high-risk populations. In particular, eligibility criteria in the base-
line and endline surveys pertain to narrow windows of time around the date of interview. Yet, these surveys were 
conducted over multiple weeks which means that, even within one survey, the criteria captured individuals from 
slightly different populations. Second, unique identifiers were based on self-reported variables which could lead 
to mismatches, further exacerbated by possible variations in how questions were elicited by different interview-
ers or answered by participants. To mitigate these limitations, we looked for and picked the best record linkage 
scenarios for our context, but sensitivity (81%) and specificity (96%) were not perfect. Because some matches 
were potentially missed, our estimates, if anything, could be viewed as upper boundaries of population sizes. 

Figure 4.   Impacts of standardization scenarios on PSEs. Assessment of how PSEs are impacted by 
standardization scenarios, with varying clustering parameters in OpenRefine: n in the n-gram fingerprint 
method; radius and block chars in the Levenshtein nearest-neighbor method. The dashed vertical black line 
represents the null where the PSE equals the PSE from the strictest scenario.
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Finally, the mapping exercise revealed some fluctuation in the number of worksites open between baseline and 
endline. In particular, the coronavirus crisis erupted in March 2020 and may have affected the overall population 
size for that particular year, limiting the transportability of our results to other more “normal” malaria seasons.

In conclusion, this study estimated the population size of high-risk populations for malaria in two regions of 
Northern Namibia. The significance of our work is threefold. First, the numerical population size estimates of 
key high-risk populations for malaria transmission in northern Namibia are important for national programs 
to target their resources and plan the delivery of their control interventions accordingly. Second, our study 
showcases how population size estimation methods can be leveraged in malaria research and discusses major 
methodological considerations for applying capture-recapture PSE to malaria’s high-risk populations. Last, our 
analysis used data routinely collected by national malaria control programs and proofreads the feasibility of 
integrating regular population size estimations into their surveillance activities.

Data availability
The datasets used in the multiplier method are available and published along the submission as supplementary 
materials. The datasets for the capture recapture method are not publicly available and cannot be de-identified 
since the record linkage algorithm relies on identifying variables (names, age, birth place). We still publish along 
the submission the datasets post-record-linkage (24 different scenarios form sensitivity analyses) and our for 
maximum transparency.
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