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Multi‑scene application 
of intelligent inspection robot 
based on computer vision in power 
plant
Lulu Lin *, Jianxian Guo  & Lincheng Liu 

As industries develop, the automation and intelligence level of power plants is constantly improving, 
and the application of patrol robots is also increasingly widespread. This research combines computer 
vision technology and particle swarm optimization algorithm to build an obstacle recognition model 
and obstacle avoidance model of an intelligent patrol robot in a power plant respectively. Firstly, the 
traditional convolutional recurrent neural network is optimized, and the obstacle recognition model 
of an intelligent patrol robot is built by combining the connection timing classification algorithm. 
Then, the artificial potential field method optimizes the traditional particle swarm optimization 
algorithm, and an obstacle avoidance model of an intelligent patrol robot is built. The performance 
of the two models was tested, and it was found that the highest precision, recall, and F1 values of 
the identification model were 0.978, 0.974, and 0.975. The highest precision, recall, and F1 values of 
the obstacle avoidance model were 0.97, 0.96, and 0.96 respectively. The two optimization models 
designed in this research have better performance. In conclusion, the two models in this study are 
superior to the traditional methods in recognition effect and obstacle avoidance efficiency, providing 
an effective technical scheme for intelligent patrol inspection of power plants.
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As industrial technology continues to progress, the application of patrol robots in power plants is becoming 
increasingly valuable, especially their ability to identify and avoid  obstacles1. Effective obstacle identification 
and intelligent obstacle avoidance are essential for patrol robots to perform their tasks safely and  effectively2,3. 
Traditional obstacle identification and avoidance methods often rely on pre-determined rules and paths, which 
lack flexibility and adaptability, making them difficult to use in the complex and changeable environment of a 
power  plant4,5. To address these challenges, this research combines computer vision technology with a particle 
swarm optimization algorithm to develop an obstacle recognition model and path optimization obstacle avoid-
ance model for patrol robots. The upgraded convolutional recurrent neural network can successfully process 
time and space data, enabling it to accurately identify obstacles in complex environments. As a global optimiza-
tion algorithm, Particle Swarm Optimization (PSO) can productively search for the optimal obstacle avoidance 
route for robots moving in complex environments. By integrating these two technologies, we can guarantee that 
the intelligent patrol robot can efficiently and safely perform patrol tasks in the multifaceted environment of the 
power plant. This research consists of five main parts: the introduction, related research, model construction, 
model performance analysis, and future work. The introduction provides an overview of the research, while 
the related research section summarizes the achievements of others in related fields. The model construction 
section describes the development of the recognition model and obstacle avoidance model, while the model 
performance analysis section evaluates the performance of these models. The future work section discusses 
potential directions for future research.

Related works
Nowadays, as a kind of swarm intelligence algorithm, PSO has become a new important branch of evolution-
ary algorithm and is widely used in many neighborhoods, such as machine learning, image processing, data 
mining, etc. Only using one strategy makes it impossible to guarantee the diversity and convergence of algo-
rithms when solving multiple objectives. Based on this, Yu et al. proposed to improve efficiency by using PSO to 
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adopt a dynamic clustering strategy. The results showed that compared with general algorithms, PSO had better 
 convergence6. Zhang et al. proposed a neural network model combining expert weight and PSO for low accu-
racy of existing artificial neural networks in predicting yarn strength. Results showed that the model used PSO 
to optimize expert weights so that the prediction accuracy was enhanced and the prediction results were more 
 accurate7. In the field of laser-induced breakdown spectroscopy, the Wan X team proposed an elastic particle 
swarm optimization algorithm to achieve airborne spectral calibration under such harsh conditions, aiming at 
the problem of spectral offset of multiple pixels easily caused by high-temperature operating range. It has been 
proved by experiments that the issues of spectral offset and quantity mismatch can be resolved gradually by 
utilizing PSO and establishing distinct sets of wavelengths throughout its evolution  process8. Zhao et al., based 
on more and more low Earth orbit satellites at present, caused problems with computing performance, capacity, 
and receiving channel limitations. A simple binary particle swarm optimization algorithm was proposed, which 
improved the continuity and accuracy of positioning by aggregating the concept of “speed” and updating the 
probability of calculating particle position values in real-time9.

Accurate obstacle avoidance in robots is a new important problem in the robot industry, and also a key point 
in the development of robot technology. At present, many experts have carried out a series of studies on it. Chen 
et al. proposed a new variant of a bionic planning algorithm in the research field of collision-free path planning 
for robots. Through a topologically organized network, there were connections between adjacent neurons, and 
without coupling effects, nerve pulses were propagated to form waves to eliminate faults. Experiments showed 
that the signal conduction in the network was highly feasible, which enabled the robot to remove obstacles in 
the obstacle area in time through a simulation planning algorithm. However, the effectiveness of the algorithm 
still needs to be studied under more complex environmental  conditions10. Xu’s team proposed a transition curve 
based on the path planning of the research robot to ensure high-order smoothness of the mobile robot’s motion 
path. Meanwhile, considering the robot’s optimal solution when the path planning encountered obstacles, an 
adaptive weighted delay speed algorithm was proposed. With the addition of this algorithm, the path realization 
of the robot  stabilizes11. To optimize path planning and improve the obstacle avoidance function of the robot, 
Wang L et al. took the shortest path to the destination as the starting point and found that applying the improved 
ant colony algorithm function would get some excellent performance results. For example, an adaptive heuristic 
function was set between two places to diversify computing paths and avoid roadblocks. Results showed that 
the improved algorithm greatly improved the path planning performance of the robot, and can achieve a high 
degree of obstacle avoidance  effect12.

Inspection robots play a critical role in various industries, including manufacturing, construction, and power 
utilities, for performing tasks such as inspecting pipelines, assessing structural integrity, and detecting defects. 
Obstacle avoidance and computer vision are two essential components of inspection robots, enabling them to 
navigate complex environments, identify and track objects of interest, and make informed decisions about their 
actions.

Obstacle avoidance techniques
Obstacle avoidance algorithms are crucial for ensuring the safety and reliability of inspection robots. Traditional 
obstacle avoidance methods, such as wall following and potential field methods, have limitations in terms of 
flexibility and adaptability to dynamic environments. Recent advances in artificial intelligence (AI) and machine 
learning have led to the development of more sophisticated obstacle avoidance techniques.

Deep reinforcement learning (DRL) has emerged as a powerful approach for obstacle avoidance in inspection 
robots. DRL algorithms allow the robot to learn optimal avoidance strategies through trial and error interac-
tions with the environment. For instance, Wang et al. developed a DRL-based obstacle avoidance algorithm for 
a mobile robot in unknown environments, achieving efficient and safe  navigation13.

Convolutional neural networks (CNNs) are another effective tool for obstacle avoidance. CNNs can be used to 
identify obstacles from sensor data, enabling the robot to make informed decisions about its path. Ibrahim et al. 
proposed a novel obstacle avoidance method for autonomous mobile robots based on a deep CNN, achieving 
robust obstacle detection and avoidance in real-time14.

Particle swarm optimization (PSO) is a metaheuristic algorithm that has been successfully applied to obsta-
cle avoidance for inspection robots. PSO can efficiently search for optimal paths while considering factors 
such as obstacle avoidance, efficiency, and energy consumption. Ajeil et al. developed an optimized path plan-
ning algorithm for a mobile robot based on PSO and collision avoidance, demonstrating improved navigation 
 performance15.

Computer vision techniques for inspection robots
Computer vision plays a crucial role in enabling inspection robots to perceive their surroundings, identify objects 
of interest, and make informed decisions. Object detection and segmentation are two fundamental computer 
vision tasks used in inspection robots.

Object detection methods aim to identify and classify objects in images or videos. Improved YOLOv5 (You 
Only Look Once v5) has emerged as a powerful object detection framework for inspection robots. Gallage pro-
posed an object-oriented obstacle avoidance method for mobile robots based on improved YOLOv5 and PSO 
algorithm, achieving efficient and accurate obstacle  detection16.

Image segmentation methods divide an image into distinct regions based on their characteristics. U-Net is a 
widely used convolutional neural network architecture for image segmentation. Hao et al. developed a new image 
segmentation algorithm based on improved U-Net and deep supervision for industrial inspection, achieving 
accurate segmentation of defects and features in industrial  components17.
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Limitations and challenges
Despite the advancements in obstacle avoidance and computer vision algorithms, several limitations remain. One 
challenge is the accuracy and robustness of object recognition and segmentation in challenging lighting condi-
tions or with complex backgrounds. Yang proposed an improved YOLOv5-based object detection algorithm for 
drone-based inspection systems, addressing the issue of object detection in aerial  imagery18.

Another challenge is the adaptability of obstacle avoidance algorithms to dynamic environments with sud-
den changes in obstacles or unexpected events. Liu developed a path planning algorithm for an indoor mobile 
robot based on improved A* algorithm and improved collision avoidance, demonstrating improved adaptability 
to dynamic  environments19.

Computational efficiency is also a critical consideration for inspection robots, especially those operating with 
limited computational resources. Dai et al. proposed an optimized path planning algorithm for a mobile robot 
based on improved A* and ant colony optimization, achieving efficient path planning while ensuring obstacle 
 avoidance20.

To sum up, many scholars have studied the application of optimization techniques in spectral calibration, 
satellite positioning, and path planning. However, relevant research still lacks obstacle recognition and obstacle 
avoidance of power plant inspection robots. Based on this background, this research combines particle swarm 
optimization and computer vision technology, builds an obstacle recognition model, and uses PSO to optimize 
obstacle avoidance, aiming to provide more reference value for the application of patrol robots in power plants.

Obstacle recognition and obstacle avoidance of power plant patrol robot based 
on deep learning and particle swarm optimization
In today’s industrial production environment, automation and intelligence have become an inevitable trend. As 
an important base for energy production, power plant operation efficiency and security affect the whole society’s 
stability and development. However, due to the complexity and potential danger of power plants, manual inspec-
tion has many limitations and risks. Therefore, the use of robots for patrol inspection of power plants can not 
only improve efficiency but also prevent personnel from being exposed to potentially dangerous environments. 
This research will combine the neural network and particle swarm algorithm in computer vision technology to 
research obstacle recognition and obstacle avoidance ability of patrol robots.

Obstacle recognition of patrol robot using improved convolutional recurrent neural network
In the industrial environment, patrol inspection is critical to ensure normal equipment operation and mainte-
nance safety. However, due to the high cost, low efficiency, and security risks of manual inspection, automatic 
inspection by robots is increasingly favored. In the field of obstacle recognition for patrol robots, deep learning 
has become a popular technology, among which, Convolutional Neural Networks (CNN) is widely concerned 
because of its outstanding performance in image and video  analysis21. However, the traditional convolutional 
neural network mainly focuses on the spatial characteristics, and in the dynamic environment, considering time 
information is also important. Recurrent Neural Network (RNN) is also a deep learning model, which is espe-
cially suitable for processing sequence data, such as time series, text, voice, etc. The feature of RNN is that there 
are cycles in the network and information can be transferred between different time steps. This feature makes 
RNN very suitable for processing information with time  changes22. The research first combines CNN and RNN 
and proposes an improved convolutional recurrent neural network (CRNN) obstacle recognition method for 
patrol robots. The traditional CRNN model structure is shown in Fig. 1.

In Fig. 1, the CRNN model mainly includes the convolution layer, recursive layer, and transcriptional layer. 
The convolution layer extracts features from the input image, which is composed of multiple convolution fea-
ture maps. The recursive layer mainly includes bidirectional Long Short Term Memory (Bi-LSTM) and feature 
sequence pairs. Bi-LSTM is a special RNN structure, and its main function in CRNN is to conduct in-depth 
learning analysis on feature sequences and preliminary prediction on sequence results. The prediction results 
obtained from the recursive layer are analyzed in depth through the transcriptional layer to obtain the final 
prediction sequence.

When training recurrent neural networks, the output of feature sequences and sequence samples are usually 
required to correspond one by one. However, it is difficult to achieve complete correspondence between the 
output and the sample. Therefore, the research will transform the prediction results of the cyclic neural network 
output into corresponding tags through the Connectionist Temporal Classification (CTC) algorithm, to solve 
the problem that they cannot be matched one by one and improve the model recognition accuracy. During 
CTC operation, the probability expression P
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CTC algorithm can calculate the loss function and further find the characters corresponding to the highest 
confidence score area. Training the model minimizes loss function Q. Loss function Q expression is shown in 
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Running the CTC algorithm can solve the problem that the length of obstacles is not uniform in the recogni-
tion process. Even if the length of obstacle characters and tag sequences is constantly changing, they can also 
be trained, thus improving the model recognition accuracy. The CTC algorithm is applied to the traditional 
CRNN, and an improved CRNN recognition model is obtained. Figure 2 shows the final recognition flow chart 
of the CTC-CRNN model.

Figure 2 shows the recognition flow chart of the CTC-CRNN obstacle recognition model. After the obsta-
cle image is input, the affine correction will be carried out in the space transformation network first to reduce 
the interference to correct recognition due to the tilt of the obstacle image. Then, the feature sequence of the 
corrected image is extracted using the optimization dense network, and the extracted feature sequence joins 
the deep circular neural network, and the obstacle image feature sequence is predicted. Finally, the redundant 
image characters are deleted and the results are output. Because there is no need to perform a single character 
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segmentation operation in the running model, and the image rectification preprocessing is added, the output 
results are more accurate than the original CRNN model.

The proposed obstacle recognition model, CTC-CRNN, consists of three main components: a convolution 
layer, a Bi-LSTM layer, and a transcriptional layer.

1. Convolution layer: The convolution layer is responsible for extracting features from the input image. It con-
sists of multiple convolutional layers, each of which applies a filter to the image to extract specific features. 
These features are then organized into feature maps, which capture the spatial and temporal information of 
the image.

2. Bidirectional LSTM layer: The Bi-LSTM layer is a type of RNN that is specifically designed to handle sequen-
tial data. Unlike traditional LSTMs, which only consider past states, Bi-LSTMs can also incorporate future 
states into their predictions. This allows them to capture a more comprehensive understanding of the tem-
poral context of the input data. In our model, the Bi-LSTM layer is used to analyze the feature sequences 
extracted by the convolution layer and make preliminary predictions about the obstacle present in the image.

3. Transcriptional layer: The transcriptional layer is responsible for converting the predictions from the Bi-LSTM 
layer into the final recognition sequence. It does this by employing the CTC algorithm, which effectively 
deals with the problem of one-to-many mappings between input and output sequences.

The use of Bi-LSTM in our CTC-CRNN model offers several advantages for obstacle recognition in inspec-
tion robots:

• Improved temporal modeling: By considering both past and future states, Bi-LSTM can capture more complex 
temporal dependencies in the image data. This allows it to better understand the context of the obstacle and 
make more accurate predictions.

• Enhanced path planning: In the context of path planning for inspection robots, Bi-LSTM can provide valuable 
information about the obstacle’s trajectory and potential movements, enabling the robot to make informed 
decisions about its navigation.

• Robustness to variations: The Bi-LSTM layer’s ability to capture long-range dependencies makes it more 
robust to variations in lighting conditions, object sizes, and image quality, which are common challenges in 
industrial environments.

• Reduced computational complexity: Compared to traditional approaches that require separate models for 
obstacle segmentation and recognition, our CTC-CRNN model integrates both tasks into a single unified 
framework, reducing computational complexity and enhancing overall efficiency.

In summary, the use of bidirectional LSTM in our CTC-CRNN model significantly improves both the accu-
racy and robustness of obstacle recognition for inspection robots. By effectively capturing long-range tempo-
ral dependencies and incorporating both past and future states, Bi-LSTM enables the model to make more 
informed decisions about obstacle avoidance and path planning, contributing to safer and more efficient inspec-
tion operations.

Feature extraction
The convolution layer of our CTC-CRNN model utilizes a combination of convolutional filters with different 
kernel sizes and activation functions to extract features from the input image. These features capture the spatial 
and temporal information of the image, providing the Bi-LSTM layer with a rich representation of the obstacle’s 
characteristics.

Specifically, we employ a CNN architecture with two main stages: the feature extraction stage and the clas-
sification stage. In the feature extraction stage, multiple convolutional layers with varying filter sizes are applied 
to the input image, generating a sequence of feature maps. These feature maps capture the low-level features (e.g., 
edges, corners) in the first few layers and progressively extract higher-level features (e.g., shapes, objects) in the 
deeper layers. The classification stage consists of a fully connected layer that transforms the feature maps into a 
vector representation of the obstacle. This vector is then used by the CTC decoder to predict the corresponding 
obstacle class.

Loss function
To evaluate the performance of our obstacle recognition model, we employ a CTC loss function, which is specifi-
cally designed for sequence modeling tasks. The CTC loss function calculates the difference between the predicted 
sequence and the ground truth sequence, considering the insertion, deletion, and substitution errors. Minimizing 
the CTC loss function encourages the model to produce predictions that are closer to the actual obstacle class.

Hyperparameters
Our CTC-CRNN model utilizes several hyperparameters that can be adjusted to influence its performance. 
These hyperparameters include:

• Learning rate: The learning rate controls the step size of the gradient descent optimizer during training. A 
higher learning rate may lead to faster convergence but may also overshoot the optimal solution. A lower 
learning rate may converge more slowly but may be more stable. In CTC-CRNN the initial learning rate was 
considered as 0.001.
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• Batch size: The batch size determines the number of training samples processed simultaneously. A larger 
batch size may reduce training time but may also require more memory and may increase the risk of overfit-
ting. A smaller batch size may require more training iterations but may be less susceptible to overfitting. In 
CTC-CRNN, the batch size was considered as 32.

• Number of epochs: The number of epochs represents the number of times the entire training data is presented 
to the model. A higher number of epochs may lead to better generalization performance but may also require 
more computational resources. CTC-CRNN was rained within 60 epochs.

• Dropout rate: Dropout is a regularization technique that randomly drops out a certain percentage of units 
during training, preventing the model from overfitting the training data. A higher dropout rate may reduce 
overfitting but may also decrease model performance. In CTC-CRNN, the value of 0.4 was considered for 
this parameter.

Obstacle avoidance method design for inspection robot using improved PSO
In addition to using computer vision technology to identify obstacles, it is also necessary to further research 
obstacle avoidance of patrol robots in power plants. Patrol robots can automatically patrol factories, ware-
houses, or other scenes to monitor the state of the environment, detect potential problems, or perform routine 
 maintenance23,24. PSO is a population intelligence algorithm developed from the simulation of the bird feeding 
process, which optimizes  problems25. In traditional particle swarm optimization, the particle position update 
method is shown in Fig. 3.

Figure 3, Xt
id is the i current position, Vt

id is velocity, Ptid and Ptgd are optimal values of individual particle i and 
population particles. Under Xt

idV
t
idP

t
id joint action, the particles will move from position Xt

id to position XT+1
id  . It 

can be seen from Fig. 1 that particles update their speed and position mainly through the joint influence of their 
current speed, their optimal value, and the optimal value of particle swarm (global extreme value). The running 
process of the traditional particle swarm optimization algorithm is shown in Fig. 4. 

Figure 4 shows the running flow chart of the traditional PSO. The whole algorithm process includes initializa-
tion, evaluating the position of each particle, updating individual and global optima, updating speed and position, 
checking whether the termination conditions are met, outputting the optimal results, and other steps. Although 
PSO is an intelligent algorithm with good versatility and can be widely used in a variety of optimization prob-
lems, it easily gets into trouble with local optimal solutions, and cannot ensure the accuracy of the algorithm in 
a short time because of its few parameters. Thus, the Artificial Potential Field Method (APFM) is introduced to 
optimize the traditional PSO in obstacle avoidance. This method regards the targets and obstacles in the robot 
environment as objects generating a potential field, and the robot is a particle moving in this potential  field26. 
Suppose that the mobile robot is regarded as a point, XG = [XG , yG]

T is robot space coordinate, and target 
point coordinate is XG = [XG , yG]

T . The farther the target point is, the more attractive it is. On the contrary, 
the smaller it is. Formula (4) shows the gravitational PFM. 

In formula (4), KAtt is a positive position gain coefficient. The negative gradient is defined as gravity FAtt(X) , 
and its expression is shown in Formula (5). 

In Formula (5), when the robot moves to the target point, the gravity decreases to 0. The expression of the 
repulsion potential field Urep(X) is shown in Formula (6).
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Figure 3.  Schematic diagram of particle position update mode.
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In formula (6), Krep is the position gain coefficient, ρ is the shortest length between the position X and the 
obstacle. ρ0 is a constant and represents the obstacle influence range. The repulsive force potential field Urep(X) is 
nonnegative. The repulsion force Frep(X) applied to the mobile robot is shown in formula (7)27. 

The force applied to the mobile robot is the combined force of the repulsive and gravitational force, and the 
expression is shown in Formula (8).

In this study, APFM is used for navigation. When there is vibration or local minimum, the preference-
based PSO is added to the path planning process, so that the robot can avoid obstacles or escape from the local 
minimum. Because the search strategy of obstacle avoidance preference is added, particles can escape from the 
obstacle boundary more effectively. Figure 5 shows the operation flow chart of APFM-PSO.

Figure 5 shows the APFM-PSO algorithm operation flow chart. When implementing the algorithm, the 
path planning problem for the inspection robot is treated as a dynamic optimization process. In the process 
of optimization, there are three types of discrimination. The first scenario involves the robot being outside the 
range of influence of the obstacle, meaning that the mobile robot is far away from the obstacle. In this case, an 
artificial potential field is employed for searching, so that the mobile robot can move along the direction of the 
fastest gradient descent to reach the target point, and its expression is shown in Formula (9).

Formula (9), ∇Pi indicates the gradient direction of the position of the mobile robot. The second is to judge 
whether the mobile robot has entered the local extreme value point when the mobile robot falls into the local 
minimum value. The distance judgment formula is shown in Formula (10). 

The third is that when the mobile robot moves into the obstacle influence range, whether a mobile robot will 
enter the influence range in the next step can be determined according to the position of the previous step Pi−1 , 
the position of the mobile robot, Pi and the change of potential field value calculated at next step Pi+1 position. 
When it has not moved to the next position, its potential field value U(Pi+1) can be roughly estimated according 
to some information currently available. The potential field value expression is shown in Formula (11). 
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In formula (11), U0 and m0 are small positive numbers. Formula (11) indicates that the next step will be to 
enter the influence range of obstacles, and then add the preferred particle swarm optimization algorithm to 
continue searching to complete the purpose of bypassing obstacles.

Obstacle recognition and obstacle avoidance effect analysis of power plant 
inspection robot based on deep learning and particle swarm optimization algorithm
To further verify better performance and application effect of the recognition model and obstacle avoidance 
model, the results analysis part verifies the performance of the above recognition model and obstacle avoidance 
model from the aspects of precision, recall, F1 value, model running time, etc. Compared with other recognition 
models and obstacle avoidance models, the final results show that the recognition model and obstacle avoidance 
model built in this research have good performance.

Obstacle recognition results analysis of patrol robot
To test CTC-CRNN obstacle recognition model performance, the research set up the experimental environ-
ment shown in Table 1 and completed the model performance test using the self-made obstacle image dataset. 
The self-made obstacle image data set includes a training and verification set (9:1), and various recognition 
algorithms are tested.
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Figure 5.  Flow chart of hybrid path planning based on preferred particle swarm optimization and improved 
artificial potential field.

Table 1.  Experimental environment.

Experimental configuration Parameters

CPU Intel Xeon E5

RAM 16 GB

GPU NVIDIA Tesla P100

Software framework TensorFlow

Memory ITB SSD



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10657  | https://doi.org/10.1038/s41598-024-56795-8

www.nature.com/scientificreports/

Table 1 shows the experimental environment settings. To verify the recognition effect of the CTC-CRNN 
recognition model, the study first compared loss curves of CTC-CRNN and CRNN under the validation data 
set, as shown in Fig. 6.

Figure 6 shows the loss curve change of different recognition algorithms. Figure 6a,b show loss curve changes 
of CTC-CRNN and CRNN respectively. By comparing the loss curves of the two recognition algorithms, it can 
be found that the training curve of CRNN has a poor fit with the actual loss curve, while the training loss curve 
of CTC-CRNN can well coincide with the actual loss curve. In addition, compared with the CRNN algorithm, 
the CTC-CRNN algorithm can reach a stable state after 23 iterations. Accuracy, recall, and F1-score metrics were 
used to evaluate the performance of obstacle avoidance and computer vision algorithms for inspection robots.

Accuracy is the proportion of correct predictions made by the algorithm. It is calculated by dividing the 
number of correct predictions by the total number of predictions made. Recall is the proportion of actual posi-
tives that were correctly identified by the algorithm. It is calculated by dividing the number of correctly identified 
positives by the total number of actual positives.

F1-score is a weighted harmonic mean of precision and recall. It is calculated by averaging the harmonic 
mean of these measures. The harmonic mean is a more sensitive measure of performance than the arithmetic 
mean, especially when there are a large number of true negatives. For example, if an algorithm is used to detect 
anomalies in sensor data, and it correctly identifies 90 out of 100 anomalies, but it also generates 10 false posi-
tives, then its F1-score would be lower than its accuracy, reflecting the fact that the algorithm is generating a 
significant number of false alarms.

Figure 7a,b show the recognition accuracy of two recognition algorithms in the training dataset and the 
verification dataset respectively. In Fig. 7a, as samples increase, the recognition accuracy of two recognition 
algorithms in the training dataset has changed. Among them, the highest recognition accuracy of CTC-CRNN 
in the training data set is 0.962, and the highest recognition accuracy of CRNN in the training data set is only 
0.873. In Fig. 7b, as samples increase, the recognition accuracy of two recognition algorithms in the verification 
dataset has increased compared with the training dataset. Among them, the highest recognition accuracy of 
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CTC-CRNN in the validation data set is 0.978, and the highest recognition accuracy of CRNN in the validation 
data set is only 0.907.

Figure 8 shows the recognition recall rates of the two recognition algorithms in the training dataset and 
verification dataset respectively. In Fig. 8a, the highest recognition recall rate of CTC-CRNN in the training data 
set is 0.957, and the highest recognition accuracy of CRNN in the training data set is only 0.869. In Fig. 8b, the 
highest recognition recall rate of CTC-CRNN under the validation data set is 0.974, and the highest recognition 
recall rate of CRNN under the validation data set is only 0.924.

Figure 9a,b show the recognition F1 values of the two recognition algorithms in the training data set and the 
verification data set respectively. It can be seen from Fig. 9a that the highest recognition F1 value of CTC-CRNN 
under the training data set is 0.955, and the highest recognition F1 value of CRNN under the training data set is 
only 0.871. It can be seen from Fig. 9b that the highest recognition F1 value of CTC-CRNN under the validation 
data set is 0.975, and the highest recognition F1 value of CRNN under the validation data set is only 0.921. To 
sum up, compared with the un-optimized CRNN, the performance of the CTC-CRNN in the data set is better 
than that of the CRNN, which can show that the CTC-CRNN has a better recognition effect and can accurately 
identify obstacles in the power plant.

Obstacle avoidance results analysis of patrol robot
To further verify the optimization algorithms’ avoidance effect, Python 3.6 was used for coding, simulation 
experiments were implemented on MATLAB, and then three different particle swarm optimization algorithms 
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were compared in the path planning of patrol robots. First, the iteration of different obstacle avoidance algorithms 
is tested, and the error iteration of each particle swarm algorithm is shown in Fig. 10.

Figure 10 shows the iteration of different obstacle avoidance algorithms. Among them, algorithms 1, 2, and 3 
are respectively traditional PSO, the genetic algorithm PSO (GA-PSO), and the APFM-PSO. The error values of 
PSO, GA-PSO, and APFM-PSO obstacle avoidance systems decrease with the increase of iteration times. When 
iteration is 40, the APFM-PSO algorithm reaches a stable state, and the system operating error is 0.22. When 
iteration is 73, the GA-PSO algorithm reaches a stable state, and the system operating error is 0.29. When itera-
tion is 84, the PSO algorithm reaches a stable state, and the operating error of the system is 0.35.

Figure 11 shows the accuracy, recall, and F1 values of different obstacle avoidance algorithms. Figure 11a 
shows the accuracy values of PSO, GA-PSO, and APFM-PSO obstacle avoidance algorithms. A total of five dif-
ferent obstacle avoidance environments are set up. The highest accuracy of PSO in the five obstacle avoidance 
environments is 0.83, the highest accuracy of GA-PSO in the five obstacle avoidance environments is 0.89, and the 
highest accuracy of APFM-PSO in the five obstacle avoidance environments is 0.97. Figure 11b shows the recall 
rate values of three obstacle avoidance algorithms. The maximum recall rate of PSO in five obstacle avoidance 
environments is 0.82, GA-PSO is 0.87, and APFM-PSO is 0.96. Figure 11c shows the F1 values of three obstacle 
avoidance algorithms. The highest F1 value of PSO in five obstacle avoidance environments is 0.84, GA-PSO is 
0.88, and APFM-PSO is 0.96.

Figure 12 shows the application effects of different patrol robots in multiple scenarios of power plants. Four 
common power plant scenarios are selected as the detection indicators. Scenarios 1, 2, 3, and 4 in Fig. 12 rep-
resent the substation, generator set, power equipment, and transmission line in the power plant respectively. 
The combination of the CTC-CRNN obstacle recognition model and APFM-PSO obstacle avoidance model is 
applied to the optimized patrol robot, and the patrol accuracy of the robot in four application scenarios is tested. 
In Fig. 12, the patrol accuracy of the optimized patrol robot in the four patrol scenarios is 0.904, 0.935, 0.972, 
and 0.964 respectively. The inspection accuracy of traditional inspection robots in four application scenarios is 
0.873, 0.864, 0.921, and 0.908 respectively.

Discussions
In this paper, we proposed a novel obstacle recognition and avoidance system for inspection robots in power 
plants. The system utilizes a CTC-CRNN model for obstacle recognition and an APFM-PSO algorithm for path 
planning and obstacle avoidance. Our experimental results demonstrate that the proposed system significantly 
outperforms the traditional CRNN model and PSO algorithm in terms of both obstacle recognition accuracy 
and path planning efficiency.

Improved obstacle recognition accuracy
The CTC-CRNN model achieved substantial improvements over the traditional CRNN model in obstacle rec-
ognition accuracy. The highest recognition accuracy in the training dataset increased from 0.873 to 0.962, and 
the validation accuracy reached 0.978, significantly outperforming the CRNN model’s 0.907 accuracy. This 
enhanced performance can be attributed to the CTC-CRNN model’s ability to capture long-range temporal 
dependencies and incorporate both past and future states, enabling it to make more informed predictions about 
the obstacle’s appearance.

Efficient path planning and obstacle avoidance
The APFM-PSO algorithm demonstrated superior path planning efficiency compared to the traditional PSO and 
GA-PSO algorithms. APFM-PSO reached a stable state in 40 iterations with an operation error of 0.22, while 
the traditional PSO and GA-PSO algorithms required 84 and 73 iterations, respectively, with operation errors of 
0.35 and 0.29. This improvement can be attributed to APFM-PSO’s adaptive particle swarm optimization strat-
egy, which dynamically adjusts the particle acceleration coefficients based on the current search environment.
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Multi‑scene inspection performance
The inspection robot equipped with the CTC-CRNN and APFM-PSO system exhibited consistent high accuracy 
in multi-scene inspection, achieving an overall inspection accuracy of more than 0.9. This demonstrates the 
robustness and adaptability of the proposed system to various obstacle scenarios encountered in power plant 
environments.

Limitations and future directions
While the proposed system demonstrates promising results, there are certain limitations that warrant further 
investigation. The system’s performance may be affected by complex and dynamic environments with varying 
lighting conditions and object occlusions. Additionally, the generalization ability of the models to real-world 
power plant environments requires further validation.

Future research directions include exploring more robust obstacle recognition models that can handle chal-
lenging environments, incorporating real-time obstacle detection and tracking capabilities, and developing adap-
tive path planning algorithms that can dynamically adjust to changing obstacle configurations.

Table 2, compares the performance of the proposed method with previous works.
As can be seen from the table, the proposed method outperforms the related work in terms of obstacle recog-

nition accuracy, path planning efficiency, and multi-scene inspection performance. This is due to the use of the 
CTC-CRNN model for obstacle recognition and the APFM-PSO algorithm for path planning, which are both 
more advanced and efficient techniques than the methods used in the related work.

In conclusion, the proposed obstacle recognition and avoidance system for inspection robots in power plants 
offers significant advantages in terms of accuracy, efficiency, and adaptability. The CTC-CRNN model provides 
accurate obstacle identification, while the APFM-PSO algorithm enables efficient path planning and obstacle 
avoidance. Further development of the system is expected to enhance its performance and versatility, contribut-
ing to the automation and intelligence of power plant patrol inspection.

Conclusion
To make the inspection robot have a better obstacle recognition effect and obstacle avoidance ability, this research 
uses CTC-CRNN and APFM-PSO to build an obstacle recognition model and obstacle avoidance model respec-
tively. The research results showed that in the aspect of obstacle recognition, the CTC-CRNN model exhibited 
notable improvements compared to the basic CRNN model. The highest recognition accuracy in the training 
dataset increased from 0.873 to 0.962, the recall rate rose from 0.869 to 0.957, and the F1 value increased from 
0.871 to 0.955. In the validation data set, the highest recognition accuracy of CTC-CRNN was 0.978, while the 
highest recognition accuracy of the CRNN model was only 0.907. In terms of path planning and obstacle avoid-
ance, APFM-PSO reached a stable state in 40 iterations, at which time the system operation error was 0.22, while 
the traditional PSO algorithm and GA-PSO algorithm reached a stable state in 84 and 73 iterations, respectively, 
with operation errors of 0.35 and 0.29. In five different obstacle avoidance environments, the highest precision 
value of the APFM-PSO algorithm was 0.97, the recall rate was 0.96, F1 value was 0.96, while the corresponding 
values of the PSO algorithm were 0.83, 0.82, and 0.84, and the corresponding values of GA-PSO algorithm were 
0.89, 0.87 and 0.88. The inspection robot combining CTC-CRNN and APFM-PSO has an inspection accuracy 
of more than 0.9 in multi-scene inspection. In general, the identification model and obstacle avoidance model 
can give efficient and accurate solutions for automation and intelligence of power plant patrol inspection and 
are expected to improve power plants’ operation efficiency and safety. In the actual power plant environment, 
more complex and changeable situations may be encountered, so model generalization ability needs to be further 
verified.
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