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A new method for deep learning 
detection of defects in X‑ray 
images of pressure vessel welds
Xue Wang 1, Feng He 1,2* & Xu Huang 1,2

Given that defect detection in weld X‑ray images is a critical aspect of pressure vessel manufacturing 
and inspection, accurate differentiation of the type, distribution, number, and area of defects in the 
images serves as the foundation for judging weld quality, and the segmentation method of defects in 
digital X‑ray images is the core technology for differentiating defects. Based on the publicly available 
weld seam dataset GDX‑ray, this paper proposes a complete technique for fault segmentation in 
X‑ray pictures of pressure vessel welds. The key works are as follows: (1) To address the problem 
of a lack of defect samples and imbalanced distribution inside GDX‑ray, a DA‑DCGAN based on a 
two‑channel attention mechanism is devised to increase sample data. (2) A convolutional block 
attention mechanism is incorporated into the coding layer to boost the accuracy of small‑scale defect 
identification. The proposed MAU‑Net defect semantic segmentation network uses multi‑scale even 
convolution to enhance large‑scale features. The proposed method can mask electrostatic interference 
and non‑defect‑class parts in the actual weld X‑ray images, achieve an average segmentation accuracy 
of 84.75% for the GDX‑ray dataset, segment and accurately rate the valid defects with a correct rating 
rate of 95%, and thus realize practical value in engineering.
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X-ray images of pressure vessel welds are critical for finding interior weld faults and are required for pressure 
vessel manufacture, final inspection, and rework. Because digital X-ray image technology is becoming more 
common, defect detection technology based on picture segmentation has recently attracted greater attention. 
The nature, size, and the amount of faults can determine the weld’s present grade, providing a crucial basis for 
the pressure vessel’s safe operation. The problematic part can be successfully stripped using fault segmentation.

The methods for defect segmentation by X-ray images of weld seams can be divided into methods based on 
image processing and methods based on deep learning.

In image processing, related research has been conducted early. In 2012, Shao et al.1 suggested a tracking 
technique to track the weld information to complete defect identification after thresholding was used to partition 
the weld region in X-ray pictures. In 2016, Chu et al.2 accurately measured the specific size of the weld seam by 
extracting contour features from the X-ray image at the weld joint.

In recent years, Defect algorithms based on image processing have recently been the subject of more investi-
gation. In 2021, Amir Movafeghi et al.3 used three algorithms based on non-local regularization to improve the 
detection of weld defects by implementing image enhancement on GDX-ray weld images to improve detection 
accuracy. In 2022, Doaa Radi et al.4 designed an image preprocessing, convolution, horizontal filter, and vertical 
filter series of image processing methods to segment defects and backgrounds with high method efficiency; etc.

Weld defect segmentation using image processing has the benefit of requiring fewer samples, but in actual 
applications, CPU time is consumed, end-to-end processes cannot be achieved, segmentation models are less 
adaptable, detection accuracy is unstable, and detection efficiency is low. The emphasis of recent research, how-
ever, has shifted to deep learning-based weld defect segmentation, which has an end-to-end procedure, improved 
model generality, easier deployment, and high detection efficiency.

In 2020, Ajmi et al.5 proposed the classification of weld images in GD-Xay images based on improved AlexNet 
and migration learning in the study of classification with some effect.

In 2021, Fan et al.6 who addressed the problem of insufficient samples of laser welding defects, proposed an 
ACGAN to generate dummy data like the distribution of real defect features. The model proposed in the paper 
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achieves excellent classification results in defect classification. Yang et al.7 used improved U-Net for image seg-
mentation of augmented training samples and finally achieved satisfactory accuracy on the GD-Xay dataset.

In 2022, Yang et al.8 designed a feature fusion module embedded in U-Net, and designed the proposed hybrid 
loss function of binary cross entropy (BCE) and Dice. Ai Jiangsha et al.9 proposed an additional supervised 
method based on CycleGAN-ES to generate synthetic defect images using a small number of extracted defect 
images and manually drawn labels, where ES is used to ensure the learning of bi-directional mappings corre-
sponding to labels and defects. Hu et al.10 proposed an improved pooling method based on grey scale adaptive 
can increase the extraction range of welding defect features.

In a related study in 2023, Wang et al.11 proposed a comprehensive method for X-Ray weld defect detection 
by nonlinearly enhancing the image with a sinusoidal function, and then using a clustering algorithm in the 
region of interest (ROI) to segment the defects in the SDR. Xie et al.12 carried out a study on defect detection 
of weld Xray images in the private dataset Camera-Welds, applying Convolutional Neural Networks (CNN) for 
feature extraction and prototype generation of the embedding module to have low computational cost and high 
generalization of the images, and using Prototype Networks (PNs) of the prototyping module to reduce the effect 
of the domain drifts induced by different materials or measurements. Li et al.13 proposed a defect lightweight 
detection model based on hybrid expansion convolution and cross-layer feature fusion of high-resolution X-ray 
welding images to achieve defect detection in radiographs of solid rocket motors.

Weld defect detection using GDX-ray is a widespread method, however, the weld defects inside this dataset 
have the following problems: the number of samples is small, the number of publicly available samples of pressure 
vessel weld defects is scarce in practice, and the current models based on small samples are all suffering from 
problems such as insufficient training, model underfitting, and difficulty in training; the distribution of defect 
classes is unbalanced, and the frequency of weld defects of different types is not balanced. This may be due to 
various factors such as welding operations, material quality, equipment condition, etc. This imbalance may lead 
to quality, productivity inefficiencies and safety hazards, making defect segmentation based on this dataset very 
difficult. Although the sample expansion by GAN and the defect segmentation by more advanced techniques like 
U-Net have yielded some promising results, the following issues still exist: The quality and quantity of sample 
creation are unpredictable in the sample expansion since there is still a lack of an effective evaluation model 
for generating samples; the sample expansion model also needs development. There is still a need for image 
segmentation. To accurately describe the type, quantity, and area of defects and thus accomplish practical work 
such as weld quality rating, a framework with a better segmentation effect is required. This framework must not 
only have a good segmentation effect on the GDX-ray dataset but also have good segmentation capability on 
X-ray images of weld seams in actual engineering.

The general provisions are as follows, according to the Chinese industry standard NB-T 47013.2-2015 for 
pressure vessel weld fault rating:

(1) Only round defects are allowed in Class I welded joints.
(2) Class II and Class III welded joints are allowed to have only round defects and strip defects.
(3) Round defects and strip defects exist in the round defect assessment area at the same time, a comprehensive 

rating is required.
(4) The quality level of defects in welded joints rated more than level is always set as level.

The  literature14,15 has more material that is more comprehensive. The key to the X-ray rating of pressure vessel 
welds, in accordance with the practical requirements of inspection, is to distinguish between round, strip, and 
other faults and to acquire precise information about their area size and distribution characteristics. As a result, 
automatic intelligent rating is possible.

In this paper, we propose a research idea: using GAN network to expand the existing samples of weld defects 
and using semantic segmentation model to accurately segment the weld defects for the purpose of rating. The 
main contributions and innovations of this paper are as follows:

(1) In this paper, a DA-DCGAN pressure vessel weld defect sample generation model is designed, in which a 
self-attentive generator and a two-channel discriminator are proposed to solve the problems of small size 
of the existing pressure vessel weld defects, lack of sample quantity, and uneven distribution of samples, 
resulting in the generation of results that lose the structure and are not real and of poor quality.

(2) To solve the problem of complex edges and poor segmentation effect of pressure vessel weld defects. A weld 
defect segmentation network based on multi-scale even-convolution attention U-Net network is proposed. 
A 2 × 2 even convolution is used instead of the commonly used 3 × 3 convolution, and a 4 × 4 convolution 
branch is added to extract feature information within a larger scale; in addition, CBAM is embedded in 
the coding layer to improve the segmentation accuracy.

Materials and methods
The techniques for sample enlargement often rely on GAN (Generative Adversarial Networks)15, VAE (Vari-
ational Autoencoder)16, and Autoregressive Models (AM)17, among other models. GAN is a generative model 
trained by a game of generators and discriminators. The disadvantage of VAE training is that it is unstable and 
difficult to interpret; nonetheless, the effect and variety of the generated samples are worse than those of GAN; 
similarly, AM production speed is slow, and its diversity is poorer than that of the previous two approaches. If a 
GAN structure with good improvement is created, it is possible to generate weld images that meet the diversity 
and complexity of weld faults.
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GAN‑based baseline model selection and evaluation of generated images
Generate evaluation criteria based on FID, LPPS, and MS‑SSIM weighted fusion images
To evaluate the quality, diversity and stability of image generation in the environment of this paper, a weighted 
fusion judgment index based on FID-LPPSMS-SSIM is designed. The judgment is mainly performed in terms 
of the diversity and perceptual similarity of the generated images.

The FID (Fréchet Inception Distance)18,19 metric calculates the Fréchet distance of the Gaussian distribution 
of two distributions, which reflects the difference between the two distributions, and this metric is mainly used 
to generate a diversity discrimination of image quality. This can be expressed by the following calculation: 
Formula (1)

In Formula (1): x denotes the real original image and g denotes the generated image, µx and �x denote the 
mean and covariance matrices of the high-dimensional features extracted from the real image, respectively.µg 
and �g denote the mean and covariance matrices of the high-dimensional features extracted from the generated 
images, respectively. Tr denotes the trace of the matrix. FID can reflect the diversity of the generated images.

To reflect the image perceptibility, the image perceptual similarity is utilized.  LPSIPS20,21 (Learned Perceptual 
Image Patch Similarity) can be expressed by the following calculation, Formula (2):

The wl ∈ R
cl is a scaled vector. LPIPS has a high accuracy and reliability in detecting subtle differences in the 

images generated by GAN.
MS-SSIM22 (Multi-Scale Structural Similarity Index) is a metric for evaluating image quality, which is an 

extension of the Structural Similarity Index (SSIM) on multiple scales.MS-SSIM introduces multiple scales on 
top of SSIM to better capture the detailed information in images. It can be expressed by the following calculation, 
Formula (3):

The α, β, γ is used to adjust the weights of each component.
The designed weighted fusion determination index is Ftotal , taking into account the influence factor of FID − Ff, 

the influence factor of LPSIPS − Fl and the influence factor of MS-SSIM − FM. To maintain consistency with the 
other two factors, the data calculated by Eq. (1) are normalized to (0–1) and subtracted by 1, all three indicators 
show that the closer to 1 (0–1), the worse the generation effect. The designed fusion determination indicators 
can be expressed by the following calculation, Formula (4):

There are three groups of defects, including bar-shaped defects, circular defects, and other forms of defects, 
that make up the network input. The score acquired from the formula to be trained (3) is the calculated value, 
the loss function is the difference value between the two, and the average score of the two experts is used as the 
standard value for each created image (Table 1). The following calculation can be used to express the ultimate 
best value expression in Formula (5):

Quantitative comparison and analysis of different generative models
In this section, GAN, DCGAN, WGAN and LSGAN are trained and tested using the same dataset and 
experimental environment. The specific results are shown in Table 2.
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(4)Ftotal = αFf + (1− α)[βFl + (1− β)FM ]

(5)F = 0.43Ff + 0.57(0.55Fl + 0.45FM)

Table 1.  Independent expert scoring table.

Score Defect form Defect size Background Intuitive feeling

95–100 Match Normal Match Real

90–94 Match More normal Match More real

85–89 Better match More normal Match Basically true

80–84 Better match More normal Better match Basically true

75–79 Basically match Basically normal Basically match Not very true

70–74 Basically match Problems Problems Not very true

60–69 Problems Problems Problems Not very true

60 False False False Unreal
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From the experimental results, DCGAN, WGAN-GP and LASGAN, as improved models of GAN, have 
significant improvement in FID, LPIPS and MS-SSIM metrics compared to the original GAN.

By changing the network structure, DCGAN has no pooling layer and up-sampling layer in the whole 
network, and adopts step convolution instead of up-sampling to increase the stability of training, DCGAN 
has a very good performance in the three evaluation indexes, especially the FID value of the image evaluation 
indexes has been greatly improved, which indicates that the quality effect of the image generated by DCGAN is 
better than that of the other generation models. However, in pressure vessel weld defect expansion applications, 
the performance of DCGAN still needs to be improved, and the structural information and texture content 
information of the generated images need to be further enhanced. Therefore, the ability of DCGAN to extract 
structural and content features needs to be enhanced to improve the generated results.

DA‑DCGAN‑based defect generation model
Unrealistic defect morphology, distribution, and background are still concerns in the defect images produced by 
the base DCGAN  model23. To address these issues, we provide a Double Attention based DCGAN (DA-DCGAN) 
model in this research. This model includes an attention mechanism and builds a Self-Attention Generator (SAG) 
and a Double Attention Discriminator (DAD).

The architecture of DA‑DCGAN network
The designed of DA-DCGAN network structure is displayed in Fig. 1. The DA-DCGAN developed in this study 
has a two-channel discriminator, DaD, and a generator, SAG, based on the self-attention mechanism. The atten-
tion module is used in DaD to learn significant regions and features in images to better distinguish between 
real and generated images and to more thoroughly evaluate the quality of the generated images. The design idea 
for SAG is to consider generating more realistic images, reducing overfitting, and appropriately increasing the 
training speed.

Generator of self‑attentive mechanisms
The structure of the self-attention generator is displayed in Fig. 2:

The convolutional network generator uses a whole structure, including a head, main body, self-attention 
module, and tail. To convert the number of input picture channels to C, the head portion of the generator 
developed in this study consists of a convolutional layer, a batch norm layer, and many LeakyReLU activation 
functions. The body portion has numerous convolutional layers, a BatchNorm layer, and LeakyReLU activation 
functions, and it is identical to the head in appearance. The convolutional layer and Tanh activation function 
make up the tail portion, which maps the output values to the (− 1, 1) range. Utilizing a fully convolutional 
network structure, the generator can produce images of any shape or size. The flexibility and usefulness of 
the generator are significantly increased by the structure’s ability to produce images of varied sizes and scales 
adaptively in response to the input noise size.

Dual‑channel based discriminator
Based on the two-channel attention discriminator  structure24, as shown in Fig. 3, the dual-channel attention 
discriminator structure mainly consists of two parts, which are Spatial Attention Layout Discriminator (SALD) 

Table 2.  Comparative results of generated models.

Models FID LPIPS MS-SSIM

GAN 296.4 0.475 0.704

DCGAN 283.7 0.428 0.689

WGAN-GP 284.2 0.419 0.674

LSGAN 285.5 0.421 0.678

Figure 1.  DA-DCGAN network structure.
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Figure 2.  Structure of SAG.

Figure 3.  Structure of the two-channel attention discriminator.
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and Channel Attention Content Discriminator (CACD). To increase the generator’s capacity to produce high 
quality photos, these two sections concentrate on the content fidelity and texture layout distribution fidelity of the 
created images, respectively. The generator has a shallow network topology with a head and main body that are 
used by the two-channel discriminator. The body is built using several parameter-specific convolutional blocks 
and the LeakyReLU activation function, whereas the head is made up of a single layer of parameter-specific 
convolutional layers.

The channel attention module in CBAM is used as the feature extraction component of the content 
discriminator  CACD25, and the spatial attention module in CBAM is used as the feature extraction part of the 
layout discriminator SALD. The features that pass the adjustment are obtained using the hybrid attention method 
by multiplying the channel attention map by the initial input features. A change like this can enhance the image’s 
ability to extract important textural characteristics and semantic information, assisting the discriminator in 
more precisely determining how realistic the created image is. A chunking discriminator is used to score the 
layout of the input image for the layout discriminator SALD. To determine a layout score for the entire image, 
the image is divided into several blocks, with each block subject to a layout judgment. Finally, there are only 1 
feature channels output using a convolutional layer, and the value at each point represents the likelihood that 
the layout decision will be accurate for that region.

Generating defective image analysis based on DA‑DCGAN
Typical defects generated based on DA-DCGAN are displayed in Fig. 4: red boxes are typical defects generated. 
Evaluation metrics for the generated images are shown in Table 3.

The quantitative evaluation of the DA-DCGAN model proposed in this paper was carried out using the FID 
metric as the evaluation index. As shown in Table 2, compared with the baseline model DCGAN, the FID values 
of the SAG model with the introduction of self-attention mechanism, the SALD model with spatial attention 
mechanism and the CACD model with channel attention have decreased, which shows that all the three modules 
are effective in improving the sample generation capability in terms of the quality assessment metrics of image 
generation. In addition, the diversity of generated samples was also evaluated, and it was found that the three 
models improved a certain image diversity accordingly, indicating that the proposed modules can improve the 
diversity of generated images to a certain extent.

The defects created using the method described in this paper have a high degree of confidence in their defect 
morphology and genuine defect kinds, with no grid interference in the background and a suitable distribution, 
according to the aforementioned analysis.

MAU‑Net based defective semantic segmentation algorithm
Multi‑scale convolutional coupling architecture
Currently, the main body of the U-Net network still uses 3 × 3 convolutional kernels for feature extraction. To 
reduce the computational effort without losing accuracy, this paper adopts a smaller size of even convolutional 
kernel to extract image information instead of the original 3 × 3 convolutional.

Multiscale Even Convolution Module is displayed in Fig. 5.
A 2 × 2 even convolution kernel is used to extract image  information26,27. Meanwhile, to solve the pixel shift 

problem brought about by the even number of convolutional kernels, a symmetric filling method is used to 
expand the perceptual field. In addition, to avoid excessive parameters and complexity introduced by multi-scale 

Figure 4.  Generated typical defect map (a) Generated round defects; (b) Generated bar defects.

Table 3.  Comparison results of generated models.

Models FID LPIPS MS-SSIM F

DCGAN 283.7 0.428 0.689 0.632

 + SAG 279.1 0.406 0.677 0.624

 + SALD 280.2 0.397 0.674 0.620

 + CACD 279.3 0.413 0.668 0.625

Ours 277.6 0.391 0.658 0.614
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feature fusion, this study adds a new layer of 4 × 4 even convolutional coding network outside the main part of the 
segmentation network for extracting image information separately. In each layer, a larger-scale 4 × 4 even convo-
lutional kernel is used to extract the image information, and the feature maps to be segmented are symmetrically 
filled to avoid the pixel shift problems. Finally, the acquired information is passed to the subject network for 
the next pooling step by stitching. This approach can acquire image information more comprehensively while 
avoiding the parameter explosion problem introduced by multi-scale feature fusion.

Finally, the acquired information is passed to the subject network for the next pooling step by stitching. This 
approach can acquire image information more comprehensively while avoiding the parameter explosion problem 
introduced by multi-scale feature fusion.

The design of MAU‑Net network
The designed of MAU-Net network structure is displayed in Fig. 6.

The MAU-Net network employs several optimization methods to improve the extraction of weld defect 
feature information. First, an even convolutional kernel of size 2 × 2 is used in the main part of the network, 
and a 4 × 4 even convolutional path parallel to the 2 × 2 even convolution is also created at the coding end to 
fuse feature information within different perceptual fields, while eliminating the pixel shift problem caused by 
the even convolutional kernel. A residual module is incorporated to create a deep residual network to further 
improve the extraction and representation of weld defect feature information. A CBAM attention module is 
embedded after the 2 × 2 even convolution module to effectively segment the target regions in the weld samples. 
The overall de-sign effect is to achieve more accurate segmentation without significantly increasing the additional 
arithmetic overhead.

Ethical approval
This study did not involve any human participants and thus did not require ethical approval.

Figure 5.  Multiscale even convolution module.

Figure 6.  The structure of MAU-Net.
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Experiments
Experimental software and hardware configuration
The deep learning framework PyTorch was used to implement the model and the experiments. The hardware 
and software configurations are shown in Table 4.

Datasets
One of the most popular publicly accessible datasets of X-ray images, the GDX-ray  dataset28, provides more 
conclusive results for confirming the detection effect. The dataset contains 19,407 X-ray pictures altogether. Five 
categories of X-ray images are present in the database: castings, welds, luggage, natural objects, and setups. The 
sample of weld flaws includes 88 of them, which are grouped into three series. The W0001 series, which has 20 
complete weld samples, is used in this paper as the dataset for training the weld defect sample expansion model.

Experiments
The data used for the experiments in this paper is an expanded pressure vessel weld defect X-ray data set of 1500 
weld defect samples, including 500 each for circular defects, strip defects, and other defects. In the algorithm 
model used in this experiment, the number of batches is set to 4, the maximum learning rate is set to 1e−2, the 
number of training iterations is 300, the number of channels is 4, the decay rate of weights is 1e−4, and the model 
is trained using the SGD optimizer.

Ablation study
To compare the segmentation effect of MAU-Net on defects in this paper, mIOU, mPa, mPrecision, and mRecall 
are used as evaluation metrics for the experiments. Where mIOU denotes the average of the intersection and 
concurrency ratios for each class, mPa denotes the category average pixel accuracy, mPrecision denotes the value 
obtained by averaging the precision rates for each class, and mRecall is the value obtained by averaging the recall 
rates for each class. The formulas are shown below:

(6)mPrecision =
1

k + 1

k
∑

k+1

TP

TP + FP

(7)mRecall =
1

k + 1

k
∑

k+1

TP

TP + FN

(8)mIOU =
1

k + 1

k
∑

k+1

TP

TP + FN + FP

Table 4.  The hardware and software configurations.

Parameters Specifications

CPU Intel Core i5-9600KF@ 3.70 GHz

GPU Nvidia GeForce RTX 3060

RAM 16 GB × 2

OS Windows 10

Deep learning tutorial Keras

Table 5.  Comparative results of ablation study (%).

Methods mIou mPa mPrecision mRecall

1. U-Net 66.72 72.34 75.97 74.34

2. Deeplabv3 73.54 76.23 79.52 78.36

3. PspNet 71.23 75.38 78.75 77.11

4. U-Net + CBMA 71.12 75.32 78.43 77.33

5. U-Net + Conv2 × 2 68.26 73.11 76.24 76.29

6. MAU-Net 77.36 79.63 84.75 83.45
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A total of six models are compared in Table 4, namely the standard U-Net, the standard Deeplabv3, the 
standard PspNet, the standard U-Net with CBMA added to the coded convolution only, the standard U-Net 
with 3 × 3 convolution replaced by 2 × 2 even convolution, and the method in this paper. The results are shown 
in Table 5.

As shown in Table 4, the mIou, mPA and mPrecision of segmented images in model 5 in-creased to 68.26%, 
73.11% and 76.24%, respectively; the mIou, mPA, and mPrecision of seg-mented images in model 4 showed a 
more significant improvement compared to model 4. Models 4 and 5 showed significant improvement over the 
standard U-Net model. mAU-Net had much better metrics for each parameter than all the other models. This 
proves the effectiveness of the algorithm.

Comparative experiment
The segmentation of circular and bar-shaped defect images within the dataset is performed using the MAU-Net 
in comparison to several models of U-Net, Deeplabv3, and PspNet. The green color on the segmentation graph 
denotes circular flaws. Other faults are shown in yellow. Bar-shaped flaws are indicated in red. Among them, 
Fig. 7 shows the circular defect segmentation maps; Fig. 8 shows other defect segmentation maps; and Fig. 9 
shows the bar defect segmentation maps.

The comparison experiments were carried out for a total of fault types—round, bar, and other types—identi-
fied by Chinese industry standards for rating. The original figure has a total of three flaws of various proportions. 
Only this paper’s method provides correct identification for the common medium-sized defect on the right; 
for the bar-shaped defect, there is little difference between all methods; for other defects, some methods have 

(9)mPa =
1

k + 1

1
∑

k+1

TP + TN

TP + TN + FP + FN

Figure 7.  There are comparisons between different models for the segmentation of circular defects inside the 
dataset. (a) Original image of circular defect; (b) U-Net, (c) PspNet, (d) DeeplabV3, (e) MAU-Net.

Figure 8.  There are comparisons between different models for the segmentation of other defects inside the 
dataset. (a) Original image of other defect; (b) U-Net, (c) PspNet, (d) DeeplabV3, (e) MAU-Net.

Figure 9.  There are comparisons between different models for the segmentation of bar defects inside the 
dataset. (a) Original image of bar defect; (b) U-Net result, (c) PspNet result, (d) DeeplabV3 result, (e) MAU-Net.
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incorrect type determination, and some methods produce large size errors, but this paper’s method maintains 
accuracy for the very small size defect on the far left.

Tables 6 and 7 present a comparison of IOU and Pa for the defects in the dataset.

Testing of X‑ray defect pictures under real working conditions
The X-ray images are properly cropped to eliminate numerous sample identifying characters before being added 
to the model described in this paper for semantic segmentation, which extracts bars, circles, and other flaws. The 
photos were obtained in the field under real-world working conditions. As can be seen from the actual images, 
the contrast of the X-ray images of the actual welds is not as strong as it was in the training dataset. Additionally, 
the photos are subject to contrast variations, smear pseudo-defects, electrostatic interference images, and other 
factors because of field operations, instrument quality, etc.

The detection in the field picture is shown in Figure 10.
After semantic segmentation, information on the type and number of defects and the number of pixels 

contained in the defect can be obtained. After semantic segmentation, information on the type and number of 
defects and the number of pixels contained in each defect can be obtained. The actual faults may be precisely 
determined based on the calibration of the actual size and imaging size, and the automatic grading of defects is 
carried out in accordance with Table 1. In the actual rating work, a total of 100 rating tests were carried out, and 

Table 6.  IOU results of different models.

Methods Others Round defects Bar defects Average

U-Net 0.34 0.52 0.79 0.55

Deeplabv3 0.40 0.56 0.96 0.64

PspNet 0.40 0.53 0.90 0.61

MAU-Net 0.57 0.66 0.85 0.69

Table 7.  Pa results of different models.

Methods Others Round defects Bar defects Average

U-Net 0.50 0.50 0.90 0.63

Deeplabv3 0.52 0.61 0.92 0.68

PspNet 0.53 0.52 0.92 0.66

MAU-Net 0.60 0.65 0.91 0.72

Figure 10.  There are results of on-site X-ray image inspection. (a, b): The original picture of the circular defect 
found in the T-joint of the pressure vessel and the segmentation effect; (c, d): Other defects (pinch bead defects) 
of the original and segmentation effect; (e, f): The original picture of slight bar and segmentation effect; (g, 
h): Electrostatic interference and taint interference, correctly treated as background in identification, are not 
counted in the defect rating.
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Table 8 displays the rating comparison. The pressure vessel weld rating results achieved by the method suggested 
in this research were quite similar to the expert rating results.

In this paper, 100 actual weld samples were rated and the rating results were compared with expert ratings. In 
this rating, 73% of the ratings were correct, 82% of the defects were correctly identified, and the time to evaluate 
the samples was 15 s. Of the 11 ratings listed, 8 had the same results as the experts’ ratings, and 1 had similar 
results to the experts’ ratings. In addition, in 9 of these samples, the defect type was the same as the expert’s 
identification, including the successful rating of the ionization pseudo defect sample. The bead-clamping defect 
on sample No. 1 was successfully segmented as a circular defect, which is highly susceptible to being determined 
as a bar defect in manual grading.

Conclusions
The primary technology for intelligently rating pressure vessel weld faults is examined in this paper. The results 
of this investigation are illustrated as follows:

The proposed DA-DCGAN uses an attention mechanism primarily on the generator and discriminator, and 
the generated weld defect images can be judged to conform to the morphology of the weld itself by the evaluation 
model. This is in response to the current situation of a small number of publicly available datasets and a scarcity 
of on-site weld defect images.

Based on even convolution, a U-Net semantic segmentation network is created. The enhanced approach 
widens the perceptual field, stays away from multi-scale feature fusion, which adds excessive complexity and 
parameters, and solves the pixel shift issue.

Circular and strip-shaped defects can be accurately recognized in the actual defect detection of T-weld 
diagrams and ring weld diagrams of pressure vessels, and image components that are not defects themselves, 
like ionization lines and stains, can be shielded. By simultaneously considering the defect type, number of faults, 
and defect area in the real rating, it has been done to a practical extent.

Data availability
All research procedures and data collection activities described in this paper comply with applicable ethical 
principles and regulations. Individuals participating in this study were fully informed of the research’s purpose, 
processes, and potential risks, and they voluntarily consented to participate in this research project on an 
informed basis. We will share the raw data, either by making it available in a supplemental document or by 
storing it in a public repository. This study utilized X-ray images from the GDXray database for nondestructive 
testing. The database was created by the team led by Professor Gonzalo R. Arce and is described in the paper 
"GDXray: The database of X-ray images for nondestructive testing"1. The dataset can be accessed and downloaded 
from the following link: http:// dmery. ing. puc. cl/ index. php/ mater ial/ gdxray.
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welcome any inquiries regarding our code repository.
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