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Identification of extracellular 
vesicles from their Raman spectra 
via self‑supervised learning
Mathias N. Jensen 1, Eduarda M. Guerreiro 2, Agustin Enciso‑Martinez 3,4,5, Sergei G. Kruglik 6, 
Cees Otto 7, Omri Snir 2,8, Benjamin Ricaud 1 & Olav Gaute Hellesø 1*

Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and 
diseases. The detection and characterization of EVs is challenging due to the lack of specialized 
methodologies. Raman spectroscopy, however, has been suggested as a novel approach for 
biochemical analysis of EVs. To extract information from the spectra, a novel deep learning 
architecture is explored as a versatile variant of autoencoders. The proposed architecture considers 
the frequency range separately from the intensity of the spectra. This enables the model to adapt to 
the frequency range, rather than requiring that all spectra be pre-processed to the same frequency 
range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra 
of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction 
accuracy is maintained despite large variances in frequency range and noise level. It is also shown that 
the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate 
them by their origin without pre-processing of the spectra or supervision during learning. The model 
performs label-free differentiation, including separating EVs from activated vs. non-activated 
blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The 
differentiation is evaluated by creating a neural network classifier that observes the features extracted 
by the model to classify the spectra according to their sample origin. The classification reveals a test 
sensitivity of 92.2% and selectivity of 92.3% over 769 measurements from two labs that have different 
measurement configurations.

Extracellular vesicles (EVs) are nanostructures confined by a lipid bilayer, produced by all types of cells, and 
released into the extracellular space. EVs play crucial roles in cell-to-cell communication and coagulation. Given 
their abundance in biological fluids and circulation, they have been identified as biomarkers for various inflam-
matory diseases and cancer1–4. This has increased the interest in EVs and the development in the field, as docu-
mented in recent reviews5,6. The biochemical composition of extracellular vesicles (EVs) is highly heterogeneous. 
The nanoscale size of EVs and other biological nanoparticles poses a significant challenge regarding analysis, and 
the field still lacks standardized analytical approaches. Currently, researchers employ several methods, including 
nanoparticle tracking analysis (NTA)7, transmission electron microscopy (TEM), flow cytometry8, and various 
chemical/biological techniques9. NTA measures the size distribution of EVs by tracking their Brownian motion. 
While it provides valuable size information, it does not offer insights into the biochemical properties of EVs, 
and size distribution alone is not sufficient to attribute EVs to their cellular origin. To use EVs as a biomarker 
for various diseases, suitable characterization and data analysis methods must be found.

Raman spectroscopy is a label-free methodology providing information about chemical composition. It is a 
viable alternative to established chemical analysis tools, such as magnetic resonance and mass spectrometry10,11. 
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By combining Raman spectroscopy with optical trapping, single particles down to nanoscopic sizes can be cap-
tured and measured independently12,13. This combination is very promising for characterization of EVs. However, 
it is a challenge to decode the Raman spectra into the corresponding chemical mixture. For simple materials, 
such as polymers, decomposing the Raman spectra is relatively easy due to the inherent sparsity of vibrational 
modes in such materials14,15. For more complex samples, notably biological materials, their features are both 
numerous and often overlapping16–18. As an example, the true proportion of each biomolecule in EVs is rarely 
available, and there is thus no benchmark for decoding the Raman spectra. Furthermore, as Raman scattering 
is very weak, the spectra contain various amounts of noise (on y-axis) and the wavelenth shift (along x-axis) 
can be stretched or shifted, depending on the optical spectrometer and its calibration. To further complicate the 
picture, different labs have different set-ups, giving Raman spectra with different range for the wavelength shift.

Our aim is to make a flexible model that can extract high-quality, chemically significant information from 
Raman spectra and use this information to classify EVs and other biological nanoparticles. The model should 
be able to handle noise and variations in wavelength calibration, which typically occur when using data from 
multiple sources. This complex challenge requires a flexible analysis method that can handle large variations in 
the input, but still extract information that reflects the chemical composition of the EVs and other nanoparticles.

Common approaches to analyse Raman spectra are signal processing and analysis methods that decompose 
the spectra into their more fundamental components, which can, in some cases, be associated with known chemi-
cals. Principal component analysis19 and k-means clustering20 are two common methods applied for this purpose. 
They are often complemented by a classification method, such as linear discriminant analysis21 or a support vector 
machine22. A method has also been proposed for relating Raman spectra to the biomolecular composition of the 
sample, called biomolecular component analysis23. Some of the data presented here (from Sorbonne University) 
has been analysed by biomolecular component analysis24. While these methods have demonstrated their useful-
ness, they are limited by their relatively simple function and thus their limited ability to consider complex pat-
terns and dependencies in data. Neural networks and deep learning are very efficient methods for analysing data. 
Their ability to model highly non-linear relationships allows them to perceive complex patterns in the data. This 
has made neural networks, and derivatives such as convolutional neural networks, prevalent in the field of data 
analysis and they have been successfully applied on spectral information1,25,26. Another significant advantage of 
neural networks is their adaptability to noise in the data and variations in the signal background1,27. However, 
these methods often require several thousand examples to learn from and these examples have to be rigorously 
curated to avoid biasing the model. The last requirement often implies that the setting of the data must be made 
uniform, with the same frequency range and resolution for all spectra. This puts strict restrictions on the data that 
can be used, and calibration drift is a common experimental problem which is not acceptable to such a model. 
For data from multiple sources with differences in range and resolution, the solution becomes pre-processing of 
the data by truncation, interpolation and normalization, in an attempt to emulate uniform settings.

We propose a neural network architecture specially tailored to handle Raman spectra from samples for which 
we only have a few labels. It is based on a self-supervised training approach. The architecture and training take 
care of the specificities of the spectra, of the noise properties from the measurements and on the variability of the 
recording from different instruments and labs. The general achitecture is based on a Variational AutoEncoder 28 
(VAE). However, since the data from multiple instruments can have different ranges, the autoencoder uses a novel 
formatting. It considers the signal (y-axis) and the frequency range (x-axis) separately in order to handle both 
noise (on y-axis) and changes in wavelength calibration (x-axis). This split is also taken advantage of to equalize 
the input data size by applying a resampling step with interpolation. The architecture further includes a suitably 
sized latent space and a loss function adapted to picking-up the significant spectral information.

We adopt the standard approach in self-supervised learning 29. First, we train the autoencoder in a self-
supervised manner, i.e. without labels. Training data are generated by adding Gaussian noise, wavelength shift 
and clipping of the original spectra. In addition, the training data contains spectra of both EVs and lipoproteins, 
and is augmented with pure noise spectra, emulating the case of no trapped particle. The task of the network is 
to recover the original spectra from the artificially corrupted ones. While training on this data, the network will 
identify which information in the input is important in order to recover the original spectra 30. The network will 
build an inner representation of the data in the latent space. Data encoded in the latent space should contain 
only the essential information to reconstruct the original spectra, without any noise, and this information will 
ideally approximate the biochemical information of the particles.

In the second stage of the learning process, we take advantage of the latent space and use it as the input of a 
second, deep neural network which will learn to associate the data to labels given by the origin of the EVs. It is 
an advantage to use the latent representation for classification as it should reflect the biochemical information 
of the particles and be free from noise. The classification task is thus made easier, allowing the use of a smaller 
network and a reduced need for labelled data. Further details are given in the next section.

Raman spectra from two laboratories, at University of Twente (Netherlands) and at Sorbonne University 
(France), are used to train and test the model. For simplicity, the two datasets are referred to as ‘Twente’ and 
‘Paris’. The Twente dataset was larger than the Paris dataset, which gives an imbalance when training the model. 
Variations in measurement method, notably excitation wavelength and acquired wavelength range, and in sample 
preparation can give features and distortions in the data that the model should learn to disregard, thus recogniz-
ing the particles more by their biochemical information rather than the conditions of the data. For one case, the 
two laboratories analysed EVs and lipoproteins derived from the same cell type: blood platelets. For this case, it 
is important to see if the model recognizes the origin of the particles or at which lab they were analysed.

The performance of the model regarding reconstruction of spectra, extraction of information-rich features, 
and classification is evaluated. The classification of EVs based on the information extracted by the model is used 
to verify the quality of the information and the viability of using Raman spectra of EVs as biomarkers for a range 
of conditions. The analysis methodology proposed in this article will be a valuable tool in that process, as it can 
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handle data from several laboratories with variations in measurement settings. These problems and differences 
between datasets can be found for many applications, including other types of spectroscopy and in general for 
one-dimensional datasets from different sources.

Methods
Samples
The samples considered in this work are EVs and lipoproteins from 13 biological origins, acquired with two dif-
ferent measurement systems in two different laboratories. Out of the 13 origins, three are commercially available 
cell line cultures, two are from bulk human blood, two are from platelets, two are derived from donor plasma 
, and the last four are pure lipoproteins. See supplementary information and Table S1 and S2 for an overview.

The three cell lines used are LNCaP, PC3 and THP-1. It is investigated if they are recognized as different from 
the human-derived samples and how they are grouped relative to each other. The two samples from bulk blood 
are EVs taken from blood plasma and red blood cells (hence RBC) to investigate how the model perceives their 
similarity and difference. The two samples from platelets are isolated from the other elements of blood and are 
presumed to be from pure cultures. These are included to investigate whether Raman spectra of their EVs and/
or lipoproteins can be used to differentiate resting platelets from activated platelets, which contribute to blood 
clotting31. The data from platelet-derived EVs/lipoproteins come from four sets: 

1.	 Control: platelet EVs from untreated platelets from donors prepared at the University of Tromsø and meas-
ured at the Sorbonne Université

2.	 Activated A23187: EVs from artificially activated platelets using Calcium Ionophore (A23187) prepared at 
the University of Tromsø and measured at the Sorbonne Université

3.	 Activated TRAP6: EVs from artificially activated platelets using a Thrombin-activator (TRAP6) prepared at 
the University of Tromsø and measured at the Sorbonne Université

4.	 Mixed: mix of EVs and lipoproteins derived from platelet concentrate prepared by and measured at the 
University of Twente

The two datasets from plasma-derived samples originate from five patients afflicted with prostate cancer and 
five from non-afflicted controls. These datasets are included to investigate if the model can determine if the EVs 
and/or lipoproteins originate from a healthy or an afflicted person and to see how these two are clustered rela-
tive to each other. Lastly, the four types of lipoproteins (CM, HDL, LDL and VLDL) are included to investigate 
how the model reacts to a mix of lipoproteins and EVs. This also poses a special challenge for the model as the 
number of spectra from lipoproteins is comparatively low and, due to their small size, also has a very low signal-
to-noise ratio. See supplementary information and Tables S1 for more information about the samples and sample 
preparation. Regarding the ‘Paris’ dataset, collection of clinical samples has been approved by the regional ethical 
committee for Medical and Health Research Ethics (REK80025). All participants were above the age of 18, did 
not suffer from illness, or use medication; all gave a written informed consent. Regarding the ‘Twente’ dataset, 
blood was obtained from non-fasting healthy donors and cancer patients (both N=5) after written informed 
consent in accordance with the Helsinki Declaration and approved by the medical-ethical assessment committee 
of the Academic Medical Center, University of Amsterdam (NL 64623.018.18).

Data acquisition
The Raman spectra of the various EVs and lipoproteins were collected with optical tweezers using two separate 
measurement systems12,32. In both systems, the trapping and excitation of the Raman scattering is performed by 
a single, high-power laser relayed by a high-NA objective. The same objective also collects the Raman scattered 
light in backpropagation mode.

In system 1, built by Dr. Sergei G. Kruglik at Sorbonne University, the laser source is a Ti:Sapphire laser 
(Model 3900S, Spectra Physics, USA), pumped by a DPSS laser (Millennia eV, Spectra Physics, USA) delivering 
approximately 180 mW at 780 nm to the sample volume via a water dipping objective (Olympus LUMFL, 60X, 
NA = 1.1). The backpropagated response is collected by the objective and passed to a 500mm focal length grat-
ing spectrograph with a liquid nitrogen cooled detector and a 50µm slit aperture, acquiring the spectra over a 
range of 309–2035 cm−1 . The sample particles are suspended in a solution of PBS which is in direct contact with 
the objective lens. The high numerical aperture and diluted concentration of particles in the suspension allows 
the system to trap single or few (<5) particles at a time. Spectra are then acquired from the trapped particles 
using an integration time of 3 seconds per frame and averaged over 30–50 frames to generate a spectrum of the 
trapped particle(s).

In system 2, built by Ing. Aufried Lenferink at University of Twente, the laser source is a Krypton-ion laser 
(Coherent, INNOVA 90-K) delivering 70 mW at 647 nm to the sample volume via a non-immersion objec-
tive (Olympus, 40x, NA = 0.95). The backpropagated response is collected by the objective and passed to a 
prism-based spectrometer built in-house with a Peltier-cooled detector, acquiring the spectra over a range of 
301–3655 cm−1 . The sample particles are suspended in PBS in an enclosed volume using a coverslip to prevent 
interaction with the environment. Using an objective with relatively high numerical aperture and monitoring of 
the Rayleigh scattering intensity of the spectra, single particles are trapped and measured32. Each spectrum in 
the Twente set thus corresponds to a single particle, measured with an integration time of 38 ms per frame and 
typically averaged over 256 frames to generate the spectrum of the single trapped particle.
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Datasets
The data used in this work consists of 2684 spectra from 13 origins as described previously and listed in Table S2. 
One of the challenges is that the wavenumber range and center varies from spectrum to spectrum, especially 
since the ‘Paris’ dataset originates from a system with a much shorter wavenumber range than the ‘Twente’ 
dataset. The difference in the wavenumber range is shown in Fig. 1a,b, and the figure also shows the difference 
in the signal-to-noise ratio between the two datasets. There is also a significant variation in the preparation of 
the samples, particularly the isolation of the particles, as the protocols and concentrations vary between the 
two labs. Figure 1c illustrates the number of spectra from each biological sample. The mean Raman spectra 
for each or the origins are shown in the supplementary material (Fig. S1) with chemically significant spectral 
bands highlighted. The expression of these features for each of the biological origins is also shown, with mean 
and standard deviation (Fig. S2). There is a difference between the spectra from each biological origin but also 
a significant standard deviation, making classification based solely on these spectral features challenging. Other 
works characterizing some of the particles in the Twente dataset using select bands and PCA have also shown 
interesting differences between the spectra33.

Code availability
The code for the developed autoencoder architecture (see next section) is available at: github.com/MJE059/
Raman-convolutional-autoencoder.

Machine learning methodology
The desired output from the self-supervised, deep neural network is chemically relevant information extracted 
from the Raman spectra, with sufficient quality to reliably group particles according to their biochemical nature. 
To achieve this, we apply an autoencoder28,34 to the Raman spectra, as shown in Figs. 2 and 3. The goal of the 

Figure 1.   The spectra making up the entire dataset used in this work. The spectra from Paris, shown in (a), 
have a wavenumber range of 307–2041 cm−1 , while the spectra from Twente, shown in (b), have a wavenumber 
range of 300–3674 cm−1 . The distribution of spectra to each biological origin is shown in (c), with 2403 spectra 
from Twente and 281 spectra from Paris.

Figure 2.   Schematic of the autoencoder. The encoder takes the vector of noisy and/or clipped Raman spectra as 
input and compresses it into the latent space, which contains the extracted features. The decoder takes the latent 
space as input and attempts to reconstruct the original Raman spectra. Learning occurs by computing a loss 
between the original Raman spectra and the reconstructed spectra and passing the gradient to the encoder and 
decoder.
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encoder is to learn to extract the most valuable information from the spectra and pass this on to the latent space. 
The quality of this information is verified by the decoder, whose purpose is to reconstruct the original spectra 
using only the information available in the latent space. If the quality and completeness of this information is 
high, the decoder can reconstruct the spectra with high accuracy.

In order to extract the important information, spectra are first clipped at random positions, removing the 
beginning and/or end. This forces the network to be robust to inputs with different spectral ranges. Second, noise 
of different amplitude is added to the clipped spectra. The loop for the self-supervised phase 1 learning is closed 
by computing a loss, which quantifies the amount of information lost between the original (possibly clipped) 
spectra and the reconstructions produced by the decoder. During this phase, the autoencoder learns to reject 
noise and becomes robust to clipping; whatever spectra is passed to the encoder should produce an approximately 
equivalent representation in the latent space, containing high quality information that reflects the biochemistry 
of the sample. Phase 2 learning commences by interfacing the classifier with the latent space of the autoencoder 
and passing the training data through the encoder such that a training set is generated in the latent space. The 
classifier relies on this training set and labels with the known origins of the EVs for its learning.

Variational autoencoder
The Raman spectra are naturally continuous along the frequency axis, and therefore we base our autoencoder 
architecture on convolutional layers. To facilitate better learning of a deep model, we also implement skip con-
nections across the convolutional layers, akin to those introduced in the ResNet architecture35. This allows the 
gradient to bypass the layers during learning. We also implement Gaussian re-sampling as is used in variational 
autoencoders36 to encourage the learning of uncorrelated features in the latent space.

The autoencoder should learn features in the Raman spectra that correspond to biochemical aspects in the 
sample, making it preferable for one such biochemical aspect to be represented in a single dimension of the 
latent space. By using a variational autoencoder, which attempts to learn the latent features as uncorrelated 
gaussian variables, the model is motivated to express the features as independently as possible. Our hypothesis 
is that this motivates the network to express patterns that correlate strongly, such as the CH2 peaks and lipid 
complexes, in one latent space dimension and other spectral signatures that correlate weakly, such as the amino 
and carotenoid complexes, into separate dimensions. Thus, the learned representations of a single biochemical 
should be expressed in a single latent dimension instead of being spread out over multiple dimensions. That way, 
we hypothesise that the latent space will form a more realistic, and thus more valuable, map of the biochemical 
features in the sample, making separation of the different classes of EVs more easy.

Adaptive frequency range
A variational autoencoder based on convolution can process spectra expressed as intensities only, but this would 
deprieve the model of essential information about the frequency range. When interpreting the Raman spectra of 
a sample, be it by a human or by a machine, identifying both the peak intensity and its position in the spectrum is 
crucial. Conventionally, this information is passed to the model implicitly by pre-processing the dataset such that 
each index of the spectrum vector corresponds to the same wavenumber shift. The model thus learns to associate 

Figure 3.   Schematic of the encoder (a) and decoder (b) of the autoencoder architecture. The encoder splits the 
input into an intensity vector I[n] and a wavenumber vector ν̃[n] , which follows two paths. The two paths with 
frequency (x) and intensity (y) only meet in the main feed forward network and in the latent space. Similarly for 
the decoder in (b), the latent space data is split to follow two paths. The frequency vector is reconstructed using 
a polynomial whose parameters are given by feed forward layers and the intensity vector is reconstructed by 
convolutional filters.
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a peak with an underlying component (i.e. a chemical) by where the peak appears in the vector rather than its 
wavenumber shift. In our context, this is not possible as the spectra have different ranges. Instead, we propose 
making information regarding the frequency range available to the model such that it can be considered explicitly. 
This is implemented in the encoder as shown in Fig. 3a by passing the intensity and the frequency vectors to the 
model on two separate channels, and allowing them to follow two information pipelines through the model. 
The intensity vector passes through convolutional filters that extract the spectral features, while a fourth degree 
polynomial is fitted to the frequency vector. The fitted parameters are first pre-processed by a feed forward block, 
before being concatenated with the spectral feature information. Frequency and feature information are processed 
together in the main feed-forward block of the encoder. Similarly, as shown in Fig. 3b, the decoder extracts the 
frequency related information from the last ten dimensions of the latent space, processes it through two feed 
forward blocks to find the polynomial parameters, and reconstructs the frequency range using the parameters and 
a fourth degree polynomial. The intensity vector is reconstructed by passing the frequency and intensity related 
information from the latent space to a feed forward block whose output goes through a series of up-sampling 
convolution filters. The reconstructed frequency and intensity vectors are finally concatenated to produce an 
output of the same format as the input. The final architecture has a total depth of 36 layers including the adaptive 
frequency neurons, making the model quite deep. Further details on the architecture are available in Table S3.

Loss function
During training, the autoencoder should learn to reconstruct the data as accurately as possible. Phase 1 learning 
must use a loss function whose metrics reflect this and motivates the learning to extract biochemical informa-
tion from the spectra. For this, it was found advantageous to add Fourier loss to the more standard spatial and 
Kullback-Leibler losses. The spatial loss function describes the difference between the clipped original spectra 
and the reconstruction in the most direct manner and serves as the most fundamental loss function for the 
autoencoder during phase 1 learning. The metric of this loss is the root mean square error between the original 
and the reconstruction. The Kullback-Leibler loss function describes the difference between the discrete distribu-
tions in the latent space and a gaussian distribution. The need for this loss arises from the gaussian re-sampling 
in the last layer of the encoder and is described by the Kullback-Leibler divergence between the output of the 
last feed forward layer in the encoder, which produces the means µ and variances σ 2 for the re-sampling, and 
a a gaussian distribution with a mean of zero and a variance of 1. Thus, the more the latent representations 
approximate uncorrelated gaussian distributed variables, the lower the KL loss will become. The Fourier loss 
function describes the difference between the original and the reconstruction in Fourier space. The metric of 
this loss function is the sum of the mean square difference of the frequency and phase between the input and the 
reconstruction. This loss is included to counter unwanted effects of the simple spatial loss function. The spatial 
loss is most sensitive to low-frequency features 37 such as large, smooth slopes. This encourages the autoencoder 
to consider the low-frequency elements more strongly, thus implicitly learning to low-pass filter the input 38. 
By adding a Fourier loss, the autoencoder is forced to consider the higher frequency elements as well and, by 
adding a mask that attenuates intermediate frequencies, it is encouraged to preserve high-frequency elements 
of the spectra, such as sharp peaks.

The total loss function is a composite loss formed by these losses:

where LRMS,I is the RMS difference between the original and reconstructed intensity vectors, LRMS,ν̃ is the RMS 
difference between the original and reconstructed frequency vectors, LKL is the Kullback-Leibler loss, and LFourier 
is the Fourier loss. The balancing parameters α , β and γ are used to moderate the relative strength of the losses. 
The parameter α balances the ratio of the Fourier loss relative to the other losses, and it is set to 0.3 during 
training to make the spatial and KL losses slightly dominant over the Fourier loss. The parameter β determines 
the strength of the KL loss and is set to 5 to ensure the KL loss is significant during learning, but not clearly 
dominant. The parameter γ balances the loss of the frequency reconstruction versus the intensity reconstruc-
tion to compensate for the different magnitudes of the two vectors. In training, the γ parameter is set to 102 to 
compensate for the frequency vector having a magnitude in the lower range of 103 while the intensity vector can 
have magnitudes approaching 105.

Classifier head
The classifier head, shown in Fig. 4, is separated from the autoencoder and only passively interacts with it through 
observing the latent space. It performs classification of the spectra through a conventional feed forward-approach 
where the latent space is passed to a series of feed forward networks with dropout, batch normalization, and 
skip connections. Due to the high level of pre-processing by the encoder, this network can be made relatively 
small, consisting of five layers of 128 neurons only. The output of this processing is passed to a classification head 
consisting of a feed forward layer with a softmax activation, which produces a one-hot encoded class prediction.

Training scheme
Artificial noise in training
As shown in Fig. 1, the available spectra forms two distinct datasets, one from Paris and one from Twente. The 
most distinct differences between these two datasets are in signal-to-noise ratio, in frequency range, and in cali-
bration drift. The autoencoder must be trained to be robust against these differences. To achieve this, the training 
set was augmented with three types of noise : noise in the intensity to emulate variations in the signal-to-noise 
ratio, clipping of the frequency range to emulate different acquisition ranges, and distortions in the frequency 
axis to emulate calibration drift. The intensity noise is implemented as additative Gaussian noise in the intensity 

L� = (1− α) · (LRMS,I + γ LRMS,ν̃ + βLKL)+ αLFourier ,
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of the spectra. In training, the variance is set to −5 dB of the RMS of the intensity before noise, calculated on 
a per-spectrum basis to make the significance of the noise similar between the spectra. The range clipping is 
implemented by selecting a random start and stop for the range and removing the parts of the spectrum that is 
outside this range. The start is kept below a prescribed maximum, set to 800 cm−1 , and the stop is kapt above 
a minimum, set to 1500 cm−1 . This is decided such that the fingerprint-region (800–1500 cm−1 ) is always kept 
while parts of the spectra outside this is randomly removed. This results in up to 79 % of the spectrum being 
clipped. The frequency noise is implemented as a distortion in the frequency vector. As previously described, a 
fourth degree polynomial is fitted to the frequency vector: P4[I , ;β] = β4I

4 + β3I
3 + β2I

2 + β1I + β0 ≈ ν̃[I] . 
The parameters βn emulates the parameters determined when calibrating the spectrometer, poor calibration is 
emulated by adding distortion to each of the parameters βn . The amount of distortion β̂n is set to 2 % of βn , giv-
ing a distorting polynomial P̂[I , β̂] . This distorting polynomial is added to the frequency vector to emulate poor 
calibration of the spectrometer: ν̃N [I] = ν̃[I] + P̂[I , β̂].

A last addendum to the training set is a set of randomly selected spectra whose intensities are purely Gaussian 
noise. These are included to force the model to recognize a zero-signal condition, and thus discourage it from 
considering the spectra as variations on a “mean” spectrum. The intention is to encourage the model to consider 
the spectra as intrinsically unique, and also express them as unique in the latent space. Experiments have shown 
that this is beneficial (not reported here).

Training phases
The raw spectra are first separated into the training set (70% , 1898 spectra) and the testing set (30% , 769 spectra) 
which are kept isolated from each other in the data structure. During phase 1 training, a new noisy set is gener-
ated from the raw training set for each epoch of training to encourage the model to be robust against noise. These 
training sets are generated by adding together one copy of the raw training set, three copies with the described 
noise types, and one copy of noise-only signals. The generated training set is then randomly shuffled before being 
passed to the model for training. The model is then built with the architecture illustrated in Fig. 3 and described 
in Table S3 in the supplementary information. The built model is allowed to train on the generated training sets 
for 100 epochs with a learning rate of 10−4 before concluding phase 1 of the learning. Once trained, the encoder 
of the model is used to generate latent representations of the training data which is then used to train the classi-
fier. The classifier is fed the latent training set and tasked with classifying the data into 13 classes corresponding 
to the known particle origins which are used as labels. To compensate for the variation in the number of spectra 
of each class, as shown in Fig. 1c, a soft balancing scheme is used to weight the loss of the classification during 
training. The class weighting is calculated from the distribution of the classes in the dataset and takes the form 
of a sigmoid function. As the representation of a given class in the set approaches 100% of the number of spectra 
in the set, the weight of the class approaches 0.1. Conversely, if the representation of a class approaches 0 % of 
the number of spectra in the set, the weight of the class approaches 1.

Figure 4.   Schematic of the classifier head. The latent space representations of the spectra are passed to five 
blocks of fully connected feed forward layers with dropout and optional skip connections. The output of the last 
block is passed to a final feed forward layer with softmax activation which yields the predicted particle class.
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Results
Reconstruction performance
The first measure of the quality of the model is the accuracy of the reconstructions it produces. The trained net-
work is provided with unaltered spectra from the test set and asked to reconstruct them, producing the results 
shown in Fig. 5. Note the significant reduction in noise in both cases and the preservation of sharp features, 
such as the phenylalanin peak at 1003.6 cm−1 . Figure 5b shows that the reconstruction of the frequency vector 
is not perfect, producing an elongation or compression of the spectra. However, the reconstruction is adapting 
to changes in the range, approximates it well, and, most importantly, the shapes of the features are preserved. By 
comparison, truncating and interpolating the data removes a significant part of the spectra, see Fig. S3 in the 
supplementary material.

The most notable difference between the original spectra and the reconstructions is the significant noise 
reduction, especially for high wavenumbers (> 3000 cm−1 ). The autoencoder is trained on data with artificial 
noise and has learned to remove this noise. Therefore, when presented with spectra from the test set that only 
have natural noise, it will attempt to remove the natural noise in the same way. This process can be evaluated by 
investigating the difference between the original and the reconstructed spectra. The distribution of this residual 
is shown in Fig. 5c. In the case of perfect noise removal, the residual should consist of noise, which is presumed 
to have a Gaussian distribution. The Kullback–Leibler divergence between the distribution of the residual and a 
Gaussian distribution reveals a normalized divergence 3.3 times lower than for the original spectra, indicating 
that the residual is largely Gaussian and thus mostly noise.

Feature extraction capabilities
The high reconstruction accuracy of the model indicates that the information preserved in the latent space is 
of high quality and that noise is not preserved. The next step is to evaluate the relevance and significance of the 
information as a means to characterize the sample. This is done by passing the test data through the encoder of 
the network and extracting the predicted means of the latent space distributions such that the “perception” of 
the encoder can be investigated.

By using t-distributed stochastic neighbour embedding (t-SNE) 39, we project the 100 dimensional data in 
the latent space down to two dimensions and use the known origins of the data as labels to illustrate the latent 
space representations as shown in Fig. 6. The t-SNE projection is useful to show groupings in the latent space, 
but because of the compression from 100 dimensions to two dimensions, the projection will not be a true rep-
resentation of the latent space. The principle of t-SNE is to reduce the dimensionality while keeping points that 
are close in the high dimensional space close in the low dimensional one. Points in a t-SNE plot do not reflect 
where they are in the latent space, but their proximity to other points reflects their proximity in the latent space. 
Note that points in the t-SNE plot may appear more clustered than they are in reality 40. Hence the clusters in 
the next figures indicate that points are located close to each other in the latent space but they may not be well 
isolated from the others.

The plot in Fig. 6 shows six clusters, indicating that the model sees varying degrees of similarity and dissimi-
larity between the particles. A similar plot, using PCA, is shown in Fig. S4. Due to the large number of datapoints 
and labels, it is difficult to discern them in Fig. 6. For better clarity, a few labels have been selected and plotted 
in Fig. 7. Some more selections can be found in Fig. S5. Analysis of platelet-derived particles shows that these 
form three distinct groups, as shown in Fig. 7a. The TRAP6-activated platelets form cluster 3 with the platelet 
particles from Twente, indicating that the model sees them as similar despite the fact that they were generated at 
two different labs. Cluster 3 also overlaps with the plasma-derived particles, indicating a similarity between them. 
The control platelets from Paris form cluster 1, separated from the activated platelets, indicating that the model 
sees a difference between them. Cluster 1 also overlaps with the platelet particles from Twente. The A23187-acti-
vated platelet-derived EVs in cluster 2 has only minor overlap with the TRAP6-activated platelet-derived EVs, 

Figure 5.   Reconstruction performance of the model, showing the input in blue and the reconstruction in red. 
The model is tasked with reconstructing the same data, but only the intensity vector in (a) and both frequency 
and intensity vectors in (b). The histograms in (c) show the statistical distribution of the original spectra, of the 
reconstructed spectra, and of their residual difference.
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indicating that the model sees a difference in the particles depending on both the activation state of the platelets 
and the method of activation. Furthermore, the model demonstrates that it sees a distinct difference between 
the cancer patients and controls, as shown by the clustering in Fig. 7b. The cancer patient-derived particles, 
shown in Fig. 7c, shows that the model sees patients 3 and 4 as similar by them forming a common group while 
the remaining patients form distinct groups. For the cancer controls, shown in Fig. 7d, it is shown that controls 
1–4 form a common group, indicating that the model sees them as similar despite the particles originating from 
different donors. However, the particles from control 5 form a distinct cluster, indicating that the model sees 
something different about them that more closely resemble what it sees in cancer patients 3 and 4.

Classification accuracy
After the classifier has been trained on the latent representation of the training set produced by the encoder, 
the test set is passed through the encoder and to the classifier. The classifier is trained to recognize the same 
origins as shown by the labels in Fig. 6 except for the merging of the platelet particles from Twente and plate-
let control particles from Paris into one label. The resulting confusion matrix of the classifications are shown 
in Fig. 8, with supplementary matrices with percentages and for ICA in Figs. S4–S6. As an example from the 
matrix, it shows that the cancer patients can be perfectly differentiated from non-cancer controls by the model. 
This agrees with the differentiation shown in Fig. 7b. Note that the classifier observes all 100 dimensions of the 
data instead of the compressed 2D t-SNE representation shown in Fig. 7b, thus the classifier can differentiate 
the points in dimensions that cannot be illustrated here. In cases of EVs from bulk blood, the model is also able 
to differentiate particles from blood plasma and red blood cells with a high degree of accuracy, producing no 
misclassification between the two. Over a total of 769 spectra in the test set 709 are correctly classified, yielding 
a true positive rate (sensitivity) of 92.2% and true negative rate (selectivity) of 92.3% . Note that the highest rate 
of mutual misclassification is between the control platelet- and plasma-derived particles, which agrees with the 
differentiation shown in Fig. 7a. The noise robustness of the classifier is also tested by introducing the same 
clipping to the test data as for the training data, resulting in a sensitivity of 84.7% and a selectivity of 86.2% 
for clipped data. Further degradation of the data by noise or frequency distortions similar to the training case 
resulted in the classifier maintaining a sensitivity of 81.5% and a selectivity of 83.8% or higher. The resulting 
confusion matrices are shown in Fig. S4.

Discussion
In this work we have constructed a novel machine learning model that is able to reconstruct the Raman spectra 
of EVs with a high degree of accuracy and with strong de-noising. The model is shown to be very flexible, as 
it can reconstruct well data from different origins, with differences in frequency range and in noise level. The 
extracted features are of high quality, enabling to classify and cluster EVs and lipoproteins based on their cellular 
origin and activation state, as well as an overall condition (health/disease). This is verified by the classifier, which 
attains more than 90 % accuracy in classifying the biological nanoparticles to their correct origins.

Figure 6.   Two-dimensional t-SNE projection of the latent representations of spectra from the test set, giving 
a general overview of the latent space. Six clusters can be seen, showing that the network is able to “see” 
similarities in the data. Cluster 1 contains the control platelets from Paris with some from Twente, the red blood 
cells, the VLDL lipoproteins and some of the cancer control particles. Cluster 2 contains some of the particles 
derived from cancer patients with slight overlap with those derived from cancer controls. Cluster 3 contains 
particles from both the cancer and cancer control particles, as well as the LDL lipoproteins, Chylomicrons, and 
some of the HDL lipoproteins. Cluster 4 contains the bulk of the cancer control particles and all of the A23187-
activated platelets (A23). It also contains the remaining HDL lipoproteins, the LNCaP-derived particles and 
the cluster overlaps with the plasma particles. Cluster 5 contains almost solely cancer patient derived particles. 
Cluster 6 is a mixed cluster containing the PC3- and THP-derived particles, the TRAP6-activated platelets 
(Trap), and the bulk of the plasma and platelet particles from Twente.
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In the reconstructions shown in Fig. 5, we see that the autoencoder perceives all of the significant features 
and reconstructs them well; both the low-frequency slopes and complexes, as well as the high-frequency peaks. 
From the frequency range reconstructions shown in Fig. 5b we see that the frequency vectors are reconstructed 
well, despite some degree of error. This error can readily be attributed to the weighting of the learning process, 
where the intensity vector, containing the actual Raman features, is given more importance in reconstruction. 
Nevertheless, the adaptive behavior of the reconstructed frequency vector clearly shows that the model actively 
considers it in its determination of the features in the spectrum and that the model can adapt to data with very 
different frequency ranges from different labs.

Figures 6 and 7 show that the extracted features form natural clusters that correspond well with the samples 
that produced the spectra. The most notable of these results is shown in Fig. 7a. For the dataset from Paris, EVs 
from non-activated control platelets (Plate Ctrl., cluster 1 in Fig. 7a) are well differentiated from the EVs from 
activated platelets. The model further recognizes the difference between activation with TRAP6 (Plate Act. 
Trap, cluster 3 in Fig. 7a) or A23187 (Plate Act. A23, cluster 2 in Fig. 7a). For the dataset from Twente, platelet 
particles overlap with both the controls from Paris and the Paris particles derived from platelets activated with 
TRAP6. The overlap in the platelet particles from Twente and Paris, despite very different noise levels and fre-
quency ranges, illustrates the achieved strength and flexibility of the model for variations in the measurement 
method. The separate clusters for EVs from platelets activated with TRAP6 (Trap) and with A23187 (A23), both 
Paris, further emphasizes the model’s ability to differentiate EVs. The proximity of the platelets from Twente 
to the plasma particles also indicates that the model sees them as similar. This can be due to the preparation of 
the particles. The EVs analysed in the Paris lab were isolated from washed platelets isolated from fresh blood. 
In contrast, the Twente platelet particles were prepared from platelets recovered from platelet concentrates33, 
which has been reported to have higher levels of activated platelets. Regarding Fig. 7d, four of the (non-cancer) 
controls are clustered together, indicating that the model can see them as similar despite originating from differ-
ent controls. But one control forms a tight, separate cluster, indicating that the model sees a difference relative to 
controls 1-4. As the medical record and possible medication of the controls is not known, this difference cannot 
be further investigated.

Figure 7.   Two-dimensional t-SNE projection of latent space EVs and particles derived from (a) platelets and 
plasma, (b) prostate cancer patients and controls, (c) prostate cancer patients, and (d) non-cancer controls. The 
platelet versus plasma particles in (a) shows that The TRAP6-activated platelets form a common group (cluster 
3) with some platelet and plasma particles from Twente. Some of the platelet particles from Twente also overlap 
with the control EVs from Paris (cluster 1). The A23187-activated platelet EVs form a distinct group with minor 
overlap with the TRAP6-activated platelet EVs (cluster 2). The cancer vs. control shown in (b) demonstrates 
that the cancer controls form a large cluster with the cancer patients forming distinct clusters surrounding it. 
The individual cancer patients in (c) show that patients three and four form a common group, but the remaining 
patients form distinct groups. The individual controls shown in (d) show that all but control 5 form a common 
group, with control 5 forming a distinct outlier group.
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Previous studies have shown that EVs from different cell lines and primary cells carry different biochemi-
cal features, as analyzed by Raman spectroscopy and PCA19,41. Such analysis, however, did not generate a clear 
distinction, as shown in Fig. S4. It also could not blindly associate features extracted from Raman spectra of EVs 
with their cells of origin. The features extracted from the Raman spectra of EVs by the autoencoder enable clas-
sification according to the cellular origin, as well as between cancer patients and subjects who do not have cancer. 
Such classification opens new frontiers and possible uses of EVs for the diagnosis and prediction of disease. Of 
particular note is the specific identification of EVs and lipoproteins from activated platelets, which were clearly 
separated from those isolated from resting platelets and red blood cells. This indicates that the model can see a 
clear difference between particles from active platelets and resting platelets or non-platelets. Platelet activation 
and subsequent release of EVs is thought to play a role in various thrombotic conditions, such as venous throm-
boembolism (VTE)31. Therefore, it would be of interest to investigate whether our autoencoder and classifier 
can detect elevated levels of EVs from activated platelets in the plasma of VTE patients and whether this could 
facilitate future prediction or diagnoses of the disease. The exclusivity of the features of EVs/lipoproteins from 
platelets was further demonstrated by the model grouping similar nanoparticles from platelets generated in two 
independent labs, each using different instruments and operators. Our results also warrant further investigation 
in the field of cancer, where patients exhibit a distinct EV profile.

The quality of the information extracted from the spectra by the model is demonstrated by the achieved 
accuracy of the classifier, as shown in Fig. 7. By taking the extracted features given by the latent space of the 
autoencoder, the classifier achieves both a sensitivity and selectivity of over 90% across the test set. Most notable 
is the fact that there is no misclassification between the cancer- and control-derived particles, meaning that 
the model is capable of detecting prostate cancer with perfect sensitivity and selectivity. This indicates that the 
model perceives a significant difference between the EVs from cancer compared to non-cancer. The classifier 
also gives an 82.3% accuracy in classifying platelet-derived EVs as activated or resting, with a sensitivity of 76.1% 
and selectivity of 93.3% for detection of activated platelets. The lower sensitivity of this test indicates that the 
model sees a relatively small difference between the activated and un-activated platelet-derived EVs, which can 
be expected given their intrinsic similarity as they have a common origin. This is also illustrated in Fig. 7a by the 
partial overlap between the platelet particles from Twente and non-activated platelets from Paris, as discussed 
above. There is also a significant overlap between the platelets from Twente and the plasma-derived particles, 
resulting in a sensitivity of only 65.1% for detecting control platelets from plasma.

Conclusion
We have demonstrated that a self-supervised deep learning model with a carefully taylored structure and loss 
function can learn to reconstruct a wide variety of Raman spectra with a highly variable signal-to-noise ratio 
and with a variable frequency range. The ability to consider spectra from separate measurement systems, while 
maintaining high reconstruction accuracy, underscores the versatility of the model. The de-noising performance 
of the model is also shown to be promising, leaving a residual difference between the spectra and reconstructions 

Figure 8.   Confusion matrix for the classifier trained on the latent space representations of the spectra. The 
colors indicate the percentage correct predictions, with yellow for 1 % to 25% correct, orange for 25% to 50% 
correct, and green for more than 75% correct prediction. The numbers show the number of analysed spectra for 
each case.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6791  | https://doi.org/10.1038/s41598-024-56788-7

www.nature.com/scientificreports/

that follows a Gaussian distribution, indicating that the residual is largely random noise that is filtered out by the 
model. The model is also shown to be capable of extracting valuable, biochemically significant information from 
the spectra, which allows it to perform label-free clustering of particles by their similarity despite the significant 
differences in the measurement methods.

It is shown that the model can recognize EVs from resting platelets and activated platelets as two distinct 
phenomena, and that it can recognize particles as belonging to either of these two phenomena regardless if they 
come from the lab in Paris or in Twente. It is also shown capable of recognizing that EVs from platelets activated 
by Calcium Ionophore (A23187) and platelets activated by Thrombin (TRAP6) are distinct. This demonstrates 
both the viability of using Raman spectroscopy as a means of detecting platelet activation and the viability of 
using the demonstrated model to reliably extract valuable information from those spectra. For EVs derived 
from prostate cancer patients, individual patients are mostly separated, while the EVs from controls are mostly 
clustered together. The reason for this cannot be further investigated without more data and knowing the medical 
conditions of the patients and the controls. The model readily differentiates the cancer patients from the non-
cancer controls, with a perfect sensitivity and selectivity, demonstrating the efficient and promising combina-
tion of Raman spectroscopy and machine learning for this task. In cases of bulk blood, the model is also able to 
differentiate blood plasma and red blood cells with a high degree of accuracy, producing no misclassification 
between the two.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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