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The relentless pursuit of miniaturization and performance enhancement in electronic devices has led 
to a fundamental challenge in the field of circuit design and simulation-how to accurately account 
for the inherent stochastic nature of certain devices. While conventional deterministic models have 
served as indispensable tools for circuit designers, they fall short when it comes to capturing the 
subtle yet critical variability exhibited by many electronic components. In this paper, we present an 
innovative approach that transcends the limitations of traditional modeling techniques by harnessing 
the power of machine learning, specifically Mixture Density Networks (MDNs), to faithfully represent 
and simulate the stochastic behavior of electronic devices. We demonstrate our approach to model 
heater cryotrons, where the model is able to capture the stochastic switching dynamics observed in 
the experiment. Our model shows 0.82% mean absolute error for switching probability. This paper 
marks a significant step forward in the quest for accurate and versatile compact models, poised to 
drive innovation in the realm of electronic circuits.

In the ever-evolving landscape of electronic devices, the pursuit of smaller, faster, and more efficient technology 
has led to groundbreaking innovations, unlocking new possibilities for various applications across industries1. 
However, as devices continue to shrink and push the boundaries of Moore’s law2, the inherent stochastic nature 
of certain electronic components has become increasingly significant3. These stochastic electronic devices exhibit 
inherent variability in their behavior, posing a formidable challenge for conventional deterministic modeling 
approaches4.

In the pursuit of greater accuracy and ease of implementation in electronic circuit simulations, a significant 
leap has been taken by incorporating machine learning methodologies into compact modeling5–10. While various 
machine learning-based compact models have emerged, these models, thus far, have failed to address the impli-
cations of stochastic behavior in electronic devices. And while traditional physics-based compact models have 
been created with stochastic properties11,12, these models lack the benefits of machine learning-based methods 
such as decreased turnaround time and little required device knowledge. The dynamics of electronic devices, 
traditionally considered deterministic, are increasingly proving to be intrinsically stochastic at the nanoscale. 
Consequently, conventional compact models that ignore these inherent stochastic processes fail to capture the 
true behavior of the devices, leading to inaccuracies in circuit simulation.

This paper presents a new approach that addresses this gap in the realm of compact modeling. We introduce 
the use of Mixture Density Networks (MDNs)13 to capture the stochastic nature of electronic devices accurately. 
In addition to this neural network approach, we introduce a novel sampling methodology that uses inverse 
transform sampling14 to make our model more accurate to the stochastic nature of devices. By doing these, we 
create compact models that account for the inherent stochasticity of certain devices, allowing the development of 
new circuits that are both reliable and innovative. Our approach represents a paradigm shift in electronic device 
modeling, as it for the first time encompasses the full spectrum of electronic device behavior, from deterministic 
to stochastic.

To demonstrate the effectiveness and versatility of our approach, we focus on the modeling of heater 
cryotron15, a three-terminal device that shows gate-current controlled switching between superconducting and 
resistive states. Heater cryotrons, with their stochastic switching behavior, are a particularly compelling case 
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study. Our methodology accurately captures the nuances of this stochasticity, providing a foundation for the 
development of novel circuits and the optimization of existing designs. It is worth noting that beyond digital 
devices, the flexibility of MDNs allows this approach to be used in a variety of applications where stochastic 
device models could be beneficial, such as analog or mixed-signal electronics.

The contributions of this paper are threefold:

•	 Mixture Density Networks: By employing MDNs, we equip our modeling framework with the capacity to 
capture complex probability distributions, thereby enabling a more faithful representation of device vari-
ability. This empowers designers to explore device behavior beyond traditional deterministic bounds.

•	 Inverse Transform Sampling: By leveraging inverse transform sampling, we can use our MDN to its full poten-
tial. This approach allows the model to provide smooth outputs in transient simulations while maintaining 
stochasticity. This in turn makes our model more realistic to device-to-device or cycle-to-cycle variations.

•	 Demonstration with Heater Cryotrons: To showcase the effectiveness of our approach, we focus on modeling 
heater cryotrons-a class of devices known for their stochastic switching behavior. Through this demonstra-
tion, we illustrate the practical applicability of our methodology in real-world electronic systems.

As we delve into the details of our approach, we will elucidate the intricacies of MDN-based modeling for sto-
chastic electronic devices, providing a comprehensive understanding of the benefits it offers to circuit simulation 
and electronic design.

Results
The following section will describe our neural network architecture, sampling methodology, and the results of 
our approach using experimentally derived heater cryotron data.

Mixture density network
Mixture density networks provide the perfect approach for modeling stochastic devices. Mixture density networks 
work similarly to standard multilayer perceptions (MLP)16, but with three output layers connected to the last 
hidden layer instead of just one. Each output layer has the same number of neurons N, and we label the output 
layers as µ , σ , and α . In our model, we use 2 hidden layers with 512 neurons each using the ReLU activation func-
tion, and we set N = 20 . The output of these layers is used as the parameters of a Gaussian mixture distribution 
probability density function (PDF) as defined in Eq. (1).

Using this approach allows the model to learn the unique output distribution for any given input. The PDF 
is a combination of N different Gaussian distributions, which are multiplied by a scaling factor α . In order to 
maintain a valid probability distribution, we need to ensure that the sum of α is always equal to 1. To do that, we 
apply a softmax function to the output of the α layer, as defined in Eq. (2).

Additionally, we need to ensure that the output of the σ layer needs to be positive and non-zero since they 
represent the standard deviation of the Gaussian distributions in the mixture density PDF. In order to do this, 
we use the exponential linear unit (ELU) activation function plus 1 plus ǫ , where ǫ is the smallest value before 
loss of precision in floating point calculations. The activation function can be seen in Eq. (3).

Finally, we allow µ to be any value, so there is no need to use an activation function to restrict its output. 
For the hidden layers, we choose to use the rectified linear unit activation function, which is defined in Eq. (4).

In order to train the model, we need an appropriate loss function to measure the performance of the model. 
We choose to use Gaussian Negative Log-Likelihood (GNLL), since it effectively captures the performance with 
respect to probability. The GNLL for a single data point x is the negative logarithm of this PDF:

The goal during training is to minimize the GNLL across all training data points. Therefore, the overall GNLL 
loss is the average GNLL over all data points:
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During the training process, the network undergoes parameter adjustments aimed at minimizing the GNLL 
loss. To achieve this, we employ the backpropagation algorithm coupled with the AdamW optimizer, as intro-
duced by Loshchilov and Hutter in 201917. This optimization technique facilitates the iterative refinement of the 
network’s weights and biases. The gradients of GNLL with respect to key parameters, namely µ , σ , and α , are 
computed using the depicted framework in Fig. 1.

Model sampling methodology

Input:
K - Number of Gaussian components
{µ1,µ2, . . . ,µK} - Means of the Gaussians
{σ1,σ2, . . . ,σK} - Stand deviation of the Gaussians
{α1,α2, . . . ,αK} - Mixing coefficients,∑K

i=1π i = 1
Output:

Sample x from the mixture distribution
Sample Function:

sum = 0
Sample q from a uniform distribution [0, 1]
for k ∈ {1, K} do
sum = sum +α k

if sum ≥ q then
break

end
Sample x from the Gaussian distribution N (µk,σk)

Return:
x - Sample from the Gaussian mixture density

Algorithm 1.   Standard sampling from a Gaussian mixture density distribution.
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Figure 1.   Overview of the machine learning-powered modeling approach for the stochastic behavior of heater 
cryotron. After training the mixture density network with the device characteristics obtained from experiments, 
the weights are extracted which are eventually used to create the Verilog-A-based compact model for circuit/
system-level simulations.
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In order to properly utilize our model, it is critical that we use an appropriate sampling methodology for the 
output distributions. The obvious approach for this would be to randomly sample from the distribution, how-
ever, this approach presents several issues. In order to sample in this way, we can use the approach outlined in 
Algorithm 1, where we randomly select a distribution k for the mixture density distribution and sample from 
a standard normal distribution N (µk , σk) . This approach allows us to utilize uniform and standard Gaussian 
sampling, which is built into most modeling languages including Verilog-A. The issue with this approach is that 
it results in sporadic currents in transient simulations since the current will jump around the distribution every 
time step. In addition, this approach will cause multi-state devices to switch sporadically between states near the 
critical value if the switching of the device is stochastic. While this approach may be valuable for some devices, 
for most devices we will need another sampling methodology that more accurately reflects the variation we see 
in devices. We propose using inverse transform sampling14 to accomplish this.

Inverse transform sampling involves obtaining the cumulative distribution function (CDF) of the target dis-
tribution and finding its inverse. The CDF represents the probability that a random variable is less than or equal 
to a specific value. In this method, a uniform random number between 0 and 1 serves as the input, representing 
a quantile of the distribution. The inverse CDF maps this input to the corresponding value in the distribution.

As the distribution evolves over time, the CDF is updated to reflect these changes. Inverse transform sampling 
allows for the generation of samples that consistently align with a predetermined quantile (q) for each sweep of 
the device. This ensures that the model accurately captures the device’s behavior at specific points in the distri-
bution, providing a constant sampling point across different timesteps of the same sweep. This approach allows 
the model to provide a smooth curve while still demonstrating the stochasticity that we are trying to model and 
offering a coherent representation of the device’s performance under dynamic conditions. To initiate this process, 
we can begin by examining the probability density function in Eq. (7).

Our CDF will be equal to the integral from −∞ to x as shown in Eq. (8).

While this is the CDF, it would be beneficial for us to manipulate this into a more calculable form. By bringing 
the integral inside the summation and leaving the scaling factor α outside the integral, we are left with Eq. (9).

This leaves us with the weighted sum of the CDF of a standard normal distribution, which can be defined in 
terms of the error function as shown in equation (10).

Defining this in terms of the error function makes calculation much easier since the error function is well-defined 
and easy to calculate numerically. The error function is defined in Eq. (11).

The issue is that there is no closed-form solution to the inverse of this CDF. As such, we use a numerical root 
finder to find what value of x leads to F(x)− q = 0 where q is the percentile we sample at. We choose to use 
Brent’s method18, however, most numerical root finders should work here. For derivative-based root finders, the 
derivative of the CDF is equal to the PDF.

Now that we have established a way to perform inverse transform sampling, we can take full advantage of its 
properties to improve our model. To solve our issue with transient simulations, we can keep the same value of q 
for the entirety of a sweep. This will result in a continuous output that is more in line with the device’s proper-
ties of cycle-to-cycle variation than traditional sampling. In this case, we can generate a new q every time the 
derivative of an input with respect to time crosses 0, which can easily be done in Verilog-A. Another benefit of 
this sampling approach is the ability to clip the probability distribution. For example, we could generate q only 
between 0.05 and 0.95 so that the model doesn’t predict values more than 2 standard deviations away (or in any 
range). Another use could be modeling device-to-device variation by weighting the distribution when sampling 
for q, though this work doesn’t explore this option.

Device characteristics of heater cryotron
The heater cryotron is a superconducting device designed to exploit the unique properties of superconducting 
nanowires15. This device consists of two superconducting nanowires separated by a dielectric, forming the gate 
and the channel of the device. Figure 2a shows a false-colored scanning electron microscope (SEM) image of the 
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fabricated heater cryotron device, with a channel width of 1 µm and a gate width of 450 nm. The gate and chan-
nel nanowires are separated by a SiO2 dielectric spacer of 25 nm thickness. Initially, for a given channel current 
( IB ), both nanowires (gate and channel), when maintained at cryogenic temperatures, remain superconducting 
exhibiting zero resistance, and remain so until the gate nanowire becomes resistive (Fig. 2b). However, when 
a sufficient amount of current ( IG ) is passed through the gate nanowire to make it resistive, it starts generating 
thermal phonons which transport to the channel nanowire with the help of the spacer. These thermal phonons 
suppress the superconductivity and reduce the critical current of the channel nanowire ( ICCh ). Eventually, when 
the increase of gate current reduces the channel critical current below the applied channel current, the channel 
transitions from its superconducting state to a resistive state as shown in Fig. 2c. Conversely, removing the current 
from the heater enables the channel nanowire to revert to its superconducting state. The specific current levels 
at which superconducting to resistive and resistive to superconducting transitions occur are referred to as the 
critical current and retrapping current, respectively. The gate current-controlled switching of heater cryotrons 
has been used in a multitude of applications, including designing logic circuits15,19–21, memory systems22–26, 
and neuromorphic systems27–31 for cryogenic environment, and in interfacing superconducting circuits with 
semiconducting technology32.

Notably, the point at which the device switches between its superconducting and resistive states is character-
ized by stochastic behavior, which introduces an inherent element of randomness into its operation. This stochas-
ticity makes this device ideal for testing our MDN-based compact modeling approach. The critical current value 
is not a fixed constant but instead depends on the applied channel current. For example, a higher bias current 
leads to a lower critical current for the gate, thus influencing the switching behavior of the device. Conversely, 
a higher bias current leads to a lower retrapping current. Additionally, a much lower bias current is required to 
switch from a resistive to a superconducting state since the nanowire produces its own heat when resistive among 
other factors. Understanding this dependence on the channel current is pivotal in characterizing and modeling 
the behavior of the heater cryotron.

To sample the characteristics of the device, we sweep the gate at different bias currents. By performing each of 
the sweeps multiple times and recording the resulting current-voltage characteristics of the device, we can have 
enough data for the MDN to learn the stochastic switching behavior of the device. This experimental approach 
allows us to explore the device’s response under varying conditions and analyze the interplay between the gate 
and channel currents.

Heater cryotron model
For our first iteration of the model, we choose to use our MDN to model the critical gate current for a given bias 
current. This approach allows the use of a simpler neural network structure for our MDN when compared to 
learning the I-V characteristics directly. To accomplish this, we use bias current and current state of the device 
as input with the MDN trained to predict gate critical current (if the heater cryotron is in its superconducting 
state) and retrapping current if the heater cryotron is in its resistive state. The results of this model can be seen 
in Fig. 2d and e, where we show the experimental data as well as our model’s output distribution at the mean 
( µ ), and with a variation of twice the standard deviation ( σ ) in either side ( µ− 2σ and µ+ 2σ ) of the mean. 
We can see that the model is able to capture the critical and retrapping current at different bias currents as well 
as the variance in these switching points. Another benefit to this approach is that in addition to reduced model 
complexity, we do not have to run the model every time step as long as the bias current is constant, making the 
model even more efficient in certain applications.

Figure 2.   Prediction of Switching characteristics of heater cryotron. (a) A false-colored scanning electron 
microscope (SEM) image of heater cryotron device consisting two superconducting nanowires of tungsten 
silicide (WSi) and a dielectric spacer of SiO2 . (b,c) Illustration of the gate-current-controlled switching 
mechanism. An enough gate current ( IG ) switches the gate nanowire to its resistive state and generates thermal 
phonos which eventually causes the switching of the channel from its superconducting to resistive state. (d) 
Switching model for critical current evaluated at the mean ( µ ) and plus or minus 2 standard deviations ( σ ) of 
the resultant distribution and (e) retrapping current of heater cryotron switching model evaluated at the same 
points.
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While the switching model could work well for some devices, it comes with some major drawbacks. Most 
notably, it requires separate models for the I-V characteristics of the device in its different states in addition to the 
switching model. This means that this approach is unable to capture the variance in the device’s I-V characteristics 
outside of switching. Going forward, we are going to use the MDN to directly learn the I-V characteristics of the 
heater cryotron. This means that we will be using IG , IB , and state as input to the model, and directly predict-
ing the voltages drop across the load resistor (VL ) as the output.

One challenge with MDNs is that there is no good way to provide easily interpretable numerical metrics for 
performance. Log-likelihood can be used to compare different models, but it is not a useful metric on its own. 
Since there are not any existing approaches to compare against, this metric will not be useful for us. Because of 
this, we will need to rely on graphical comparisons between the model and the experimental data. First, we can 
look at a comparison between the distribution from the model vs a histogram of the experimental data for dif-
ferent values of IG and IB . This is shown in Fig. 3, where we are using IB of 23.5µA and values of IG from 1.35µA 
to 1.6µA . Using this range of IG allows us to see how the switching probability distributions change around the 
critical current. Figure 3 shows that our probability distributions closely match the distributions obtained from 
the experiment.

Next, we can compare the switching probability of the model. To do this, we use a sweep of IG from 0 µA to 
3 µA for IB values of 14 µA , 16.5 µA , 23.5 µA , 28 µA , and 33 µA . To evaluate the switching probability of the 
model, we can use the CDF evaluated at the voltage midway between the load voltage when the heater cryotron 
is in superconducting and resistive states. Figure 4 (left) shows the results of switching probability observed in 
the experimental data compared to the MDN model. Framing the model in this way allows us to use traditional 
regression performance metrics, which can be seen in Table 1. On the entire dataset, our model achieves a mean 
absolute error (MAE) of 0.82% for switching probability with an R2 of 0.9891. Here, the R2 value represents the 
percentage of variance in the switching probability explained by the model. We can compare this to a determin-
istic neural network such as a multiplayer perception (MLP), which has been proposed for compact modeling by 
several pervious works6,7,10. To do this, we can train the model to predict the threshold gate current for a given 
bias voltage ( IB ). Since this model isn’t stochastic, we consider the switching probability to be 0% for any value 
below the threshold current and 100% above. After testing in this way, the model’s MAE is 2.61%, a significant 
drop in performance compared to our probabilistic approach.

Finally, we can evaluate the performance of the model in transient simulation. So that we can match the output 
of the model with experimental results, we mirror IG and IB from the experimental data as shown in Fig. 4 (right). 
We use the inverse transform sampling technique as described in section II to achieve the smooth, continuous 
curves as seen in Fig. 4 (right). To show the distribution of the model in the transient simulation, we report µ , 
µ− 2σ , and µ+ 2σ conditions. We can do this by setting the quantile value (q) to 0.5 for the mean and 0.05 
and 0.95 for the inverse transform sampling. Figure 4 (right) shows that our MDN model accurately captures 
the variance in the I-V characteristics of the devices, including the switching dynamics.

Discussion
Our approach utilizing mixture density networks has demonstrated its remarkable ability to accurately model 
the variance of I-V characteristics and stochastic switching behavior of heater cryotrons. With a 0.82% mean 
absolute error in the switching probability and an R2 value of 0.9891, our method has proven its efficacy in 

Figure 3.   Model validation for load voltage ( VL ) against the experiment. The predicted vs experimental 
distributions of VL (dropped across a 1 k� load resistor) at a bias current of 23.5 µA and gate current of (a) 1.35 
µA , (b) 1.4 µA , (c) 1.45 µA , (d) 1.5 µA , (e) 1.55 µA , and (f) 1.6 µA.
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Figure 4.   Switching probabilities at varying bias currents and transient simulation results. The predicted vs 
experimental switching probability for gate current ( IG ) between 0 µA and 3 µA at a bias current ( IB ) of (a) 
14 µA , (b) 16.5 µA , (c) 23.5 µA , (d) 28 µA , and (e) 33 µA . The increase in IB leads to a reduction in the gate 
switching current. Transient dynamics of (f) bias current and (g) gate current which cause switching of the 
channel after exceeding the corresponding thresholds. (h) Switching is shown and validated with the experiment 
by the time dynamics of the load voltage ( VL ) at mean ( µ ) and plus or minus 2 standard deviations ( σ ). (i) A 
zoomed-in view of VL shown in (h).

Table 1.   MDN and MLP performance of switching probability mean absolute error (MAE) and R2. Significant 
values are in bold.

IB(µA)

MDN (Ours) MLP

MAE (%) R
2 MAE (%) R

2

14 1.149 0.9941 2.793 0.9611

16.5 0.534 0.9986 2.876 0.9334

23.5 1.344 0.9572 2.874 0.9340

28 0.611 0.9986 2.054 0.9734

33 0.662 0.9971 2.457 0.9538
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capturing the true variance of device behavior. While we’ve only shown the model using heater cryotrons, 
the generalizing power of neural networks means this approach will be easily adaptable to other devices. This 
achievement marks a significant stride towards more precise and reliable electronic circuit simulations, offering 
unprecedented opportunities for the development of cutting-edge technologies in an era where stochasticity 
plays an increasingly pivotal role.

Methods
Heater cryotron fabrication
The fabrication process began with the deposition of a 4 nm layer of superconducting tungsten silicide (WSi) 
onto a silicon wafer through magnetron sputtering. Following this, contact pads consisting of 5 nm Ti and 30 nm 
Au were applied using optical lithography and a liftoff procedure. Subsequently, electron beam lithography was 
employed to define and etch the WSi layer in an RIE process with SF6 chemistry to create the device’s channel. 
A 25 nm layer of SiO2 was then sputter-deposited across the entire wafer to serve as the dielectric spacer sepa-
rating the heater from the channel. Another 4 nm layer of WSi was subsequently sputter-deposited, patterned, 
and etched to form the heater input gate, with contact pads added to this upper layer through the same liftoff 
process as the initial layer. Finally, openings were etched through the SiO2 dielectric layer using an RIE process 
with CHF3:O2 chemistry to establish electrical contact with the underlying channel layer.

Heater cryotron characterization
The measurements in this study employed an arbitrary waveform generator (AWG) equipped with two channels 
and incorporated 10 k� resistors in series with each channel. In the data acquisition process, one channel of 
the AWG was configured to maintain a constant voltage, thereby delivering a fixed bias current, while the other 
channel was programmed to incrementally ramp up from zero current to 3 µA . Simultaneously, the voltage of the 
device channel was meticulously recorded on an oscilloscope. The experimental conditions covered six distinct 
bias current levels, spanning from 14 µA to 33 µA . Following the ramp-up of gate current, a subsequent phase 
involved the concurrent reduction of gate and bias currents to get a larger breadth of data. This entire procedure 
was repeated 1000 times for each bias current setting, ensuring the capture of the stochastic nature of the device.

Model creation
We use Python with TensorFlow to create the mixture density network. We train the model using the data derived 
in the previous section. We implement a custom loss function to optimize the model for minimizing Gaussian 
negative log-likelihood. In addition, we implement a custom activation function for exponential linear unit 
plus 1 plus epsilon as described in equation (3). To integrate this model into circuit simulation, we translate the 
neural network architecture and the inverse transform sampling methodology into Verilog-A. Subsequently, the 
trained model weights are extracted using a Python script and seamlessly integrated into the Verilog-A model. 
This finalized Verilog-A model is compatible with various circuit simulators that support Verilog-A models, such 
as HSPICE or Spectre. This process is derived from Hutchins et al.10.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.

Received: 8 December 2023; Accepted: 11 March 2024

References
	 1.	 Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).
	 2.	 Lundstrom, M. Moore’s law forever?. Science 299, 210–211 (2003).
	 3.	 Alawad, M. & Lin, M. Survey of stochastic-based computation paradigms. IEEE Trans. Emerg. Top. Comput. 7, 98–114 (2016).
	 4.	 Hamilton, T. J., Afshar, S., van Schaik, A. & Tapson, J. Stochastic electronics: A neuro-inspired design paradigm for integrated 

circuits. Proc. IEEE 102, 843–859 (2014).
	 5.	 Li, M., Irsoy, O., Cardie, C. & Xing, H. G. Physics-inspired neural networks for efficient device compact modeling. IEEE J. Explorat. 

Solid-State Computat. Devices Circuits 2, 44–49. https://​doi.​org/​10.​1109/​JXCDC.​2016.​26361​61 (2016).
	 6.	 Zhang, L. & Chan, M. Artificial neural network design for compact modeling of generic transistors. J. Comput. Electron. 16, 

825–832. https://​doi.​org/​10.​1007/​s10825-​017-​0984-9 (2017).
	 7.	 Wang, J. et al. Artificial neural network-based compact modeling methodology for advanced transistors. IEEE Trans. Electron 

Devices 68, 1318–1325. https://​doi.​org/​10.​1109/​TED.​2020.​30489​18 (2021).
	 8.	 Abouelyazid, M. S., Hammouda, S. & Ismail, Y. Fast and accurate machine learning compact models for interconnect parasitic 

capacitances considering systematic process variations. IEEE Access 10, 7533–7553. https://​doi.​org/​10.​1109/​ACCESS.​2022.​31423​
30 (2022).

	 9.	 Lin, A. S. et al. Rram compact modeling using physics and machine learning hybridization. IEEE Trans. Electron Devices 69, 
1835–1841. https://​doi.​org/​10.​1109/​TED.​2022.​31529​78 (2022).

	10.	 Hutchins, J. et al. A generalized workflow for creating machine learning-powered compact models for multi-state devices. IEEE 
Accesshttps://​doi.​org/​10.​1109/​ACCESS.​2022.​32183​33 (2022).

	11.	 Wang, Y. et al. Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. 
Microelectron. Reliab. 54, 1774–1778. https://​doi.​org/​10.​1016/j.​micro​rel.​2014.​07.​019 (2014).

	12.	 Becle, E., Talatchian, P., Prenat, G., Anghel, L. & Prejbeanu, I.-L. Fast behavioral veriloga compact model for stochastic mtj. 259–262, 
https://​doi.​org/​10.​1109/​ESSDE​RC534​40.​2021.​96318​29 (IEEE, 2021).

	13.	 Bishop, C. Mixture density networks (Aston University, 1994).
	14.	 Devroye, L. Non-Uniform Random Variate Generation (Springer, 1986).

https://doi.org/10.1109/JXCDC.2016.2636161
https://doi.org/10.1007/s10825-017-0984-9
https://doi.org/10.1109/TED.2020.3048918
https://doi.org/10.1109/ACCESS.2022.3142330
https://doi.org/10.1109/ACCESS.2022.3142330
https://doi.org/10.1109/TED.2022.3152978
https://doi.org/10.1109/ACCESS.2022.3218333
https://doi.org/10.1016/j.microrel.2014.07.019
https://doi.org/10.1109/ESSDERC53440.2021.9631829


9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6383  | https://doi.org/10.1038/s41598-024-56779-8

www.nature.com/scientificreports/

	15.	 McCaughan, A. N. & Berggren, K. K. A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14, 5748–5753 
(2014).

	16.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366. 
https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8 (1989).

	17.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization arXiv:​1711.​05101 (2019).
	18.	 Brent, R. P. Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function (Prentice-Hall, 1973).
	19.	 Alam, S., Hossain, M. S., Ni, K., Narayanan, V. & Aziz, A. Voltage-controlled cryogenic boolean logic family based on ferroelectric 

squid. Preprint at arXiv:​2212.​08202 (2022).
	20.	 Alam, S., Rampini, D. S., Oripov, B. G., McCaughan, A. N. & Aziz, A. Cryogenic reconfigurable logic with superconducting heater 

cryotron: Enhancing area efficiency and enabling camouflaged processors. Appl. Phys. Lett.123 (2023).
	21.	 Alam, S., McCaughan, A. N. & Aziz, A. Reconfigurable superconducting logic using multi-gate switching of a nano-cryotron. In 

2023 Device Research Conference (DRC) (ed. Alam, S.) 1–2 (IEEE, 2023).
	22.	 Alam, S., Hossain, M. S., Srinivasa, S. R. & Aziz, A. Cryogenic memory technologies. Nat. Electron. 6, 185–198 (2023).
	23.	 Alam, S., Hossain, M. S. & Aziz, A. A cryogenic memory array based on superconducting memristors. Appl. Phys. Lett.119 (2021).
	24.	 Alam, S. et al. Cryogenic memory array based on ferroelectric squid and heater cryotron. In 2022 Device Research Conference 

(DRC) (ed. Alam, S.) 1–2 (IEEE, 2022).
	25.	 Alam, S., Islam, M. M., Hossain, M. S. & Aziz, A. Superconducting josephson junction fet-based cryogenic voltage sense amplifier. 

In 2022 Device Research Conference (DRC) (ed. Alam, S.) 1–2 (IEEE, 2022).
	26.	 Alam, S. et al. Cryogenic in-memory matrix-vector multiplication using ferroelectric superconducting quantum interference 

device (fe-squid). In 2023 60th ACM/IEEE Design Automation Conference (DAC) (ed. Alam, S.) 1–6 (IEEE, 2023).
	27.	 Islam, M. M., Alam, S., Hossain, M. S., Roy, K. & Aziz, A. A review of cryogenic neuromorphic hardware. Journal of Applied Phys-

ics133 (2023).
	28.	 Islam, M. M., Alam, S., Hossain, M. S. & Aziz, A. Dynamically reconfigurable cryogenic spiking neuron based on superconducting 

memristor. In 2022 IEEE 22nd International Conference on Nanotechnology (NANO) (ed. Islam, M. M.) 307–310 (IEEE, 2022).
	29.	 Islam, M. M., Alam, S., Schuman, C. D., Hossain, M. S. & Aziz, A. A deep dive into the design space of a dynamically reconfigur-

able cryogenic spiking neuron. IEEE Transactions on Nanotechnology (2023).
	30.	 Islam, M. M., Alam, S., Shukla, N. & Aziz, A. Design space analysis of superconducting nanowire-based cryogenic oscillators. In 

2022 Device Research Conference (DRC) (ed. Islam, M. M.) 1–2 (IEEE, 2022).
	31.	 Islam, M. M., Alam, S., Udoy, M. R. I., Hossain, M. S. & Aziz, A. A cryogenic artificial synapse based on superconducting memris-

tor. Proc. Great Lakes Sympos. VLSI 2023, 143–148 (2023).
	32.	 McCaughan, A. N. et al. A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semi-

conductors. Nat. Electron. 2, 451–456 (2019).

Acknowledgements
This research was funded by the University of Tennessee Knoxville (https://ror.org/020f3ap87) and NIST (https://
ror.org/05xpvk416). The U.S. Government is authorized to reproduce and distribute reprints for governmental 
purposes notwithstanding any copyright annotation thereon.

S. A. was supported with funds provided by the Science Alliance, a Tennessee Higher Education Commission 
center of excellence administered by The University of Tennessee-Oak Ridge Innovation Institute on behalf of 
The University of Tennessee, Knoxville.

This research was supported in part by seed funding from the AI Tennessee Initiative at the University of 
Tennessee, Knoxville.

Author contributions
J.H. conceived the idea and developed the modeling framework. J. H. and S.A. created the figures. D.S.R and 
B.G.O. fabricated and characterized the heater cryotron device. A.M. and A.A. supervised the project. All authors 
analyzed the results and contributed to writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2212.08202
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning-powered compact modeling of stochastic electronic devices using mixture density networks
	Results
	Mixture density network
	Model sampling methodology
	Device characteristics of heater cryotron
	Heater cryotron model

	Discussion
	Methods
	Heater cryotron fabrication
	Heater cryotron characterization
	Model creation

	References
	Acknowledgements


