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Existence of reservoir 
with finite‑dimensional output 
for universal reservoir computing
Shuhei Sugiura 1, Ryo Ariizumi 2*, Toru Asai 1 & Shun‑ichi Azuma 3

In this paper, we prove the existence of a reservoir that has a finite‑dimensional output and makes 
the reservoir computing model universal. Reservoir computing is a method for dynamical system 
approximation that trains the static part of a model but fixes the dynamical part called the reservoir. 
Hence, reservoir computing has the advantage of training models with a low computational cost. 
Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted 
attention in terms of computation speed and energy consumption. The universality of a reservoir 
computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two 
sufficient reservoir conditions to make the model universal have been proposed. The first is the 
combination of fading memory and the separation property. The second is the neighborhood 
separation property, which we proposed recently. To date, it has been unknown whether a reservoir 
with a finite‑dimensional output can satisfy these conditions. In this study, we prove that no reservoir 
with a finite‑dimensional output satisfies the former condition. By contrast, we propose a single 
output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir 
making the model universal exists with the output of that specified dimension. These results clarify 
the practical importance of our proposed conditions.
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Reservoir computing (RC) is a machine learning method for dynamical system approximation. An RC model 
consists of a dynamical system called a reservoir and a static function called a readout. First, the input signal to 
the RC model is processed in the reservoir. Next, the signal from the reservoir is processed using the readout, 
and the model output is obtained. The concept of RC is that only the static part of the model is trained, that is, the 
readout, to make the model behave as  desired1–5. RC was proposed initially to simplify the training of recurrent 
neural networks (RNNs)6,7 and is superior in terms of computational cost for training. Generally, a randomly 
generated RNN is used as the reservoir. However, because the reservoir is fixed, a physical system that is difficult 
to adjust can also be used as the reservoir. Recently, physical RC, which uses a physical system as the reservoir, 
has received considerable  attention8–12. Physical reservoirs are expected to be superior to an RNN implemented 
on a general-purpose computer in terms of processing speed and energy  consumption8,13.

We say that an RC model is universal if it can approximate an arbitrary system with arbitrary accuracy by 
training only the readout. Several studies have been performed on the approximation ability of RC models. Grigo-
ryeva et al.14 studied an echo state network (ESN)1, which is a typical RC model composed of an RNN reservoir 
and linear readout. Gonon et al.15 studied the three classes of RC models for stochastic inputs: one composed of 
a linear reservoir and polynomial readout, one composed of a state-affine reservoir and linear readout, and an 
ESN. They showed that each model can approximate any system with any accuracy. However, their results differ 
from the universality that we deal with in this paper. This is because, for each target system to be approximated, 
they must train both the readout and the reservoir. Fixing the reservoir regardless of the targets is the concept of 
RC, and by violating it, advantages such as the hardware implementation of the reservoir and reduction of the 
computational cost of training are lost.

We say that a reservoir is universal if it makes the RC model universal. To the best of our knowledge, it is 
unknown whether a universal reservoir with a finite-dimensional output exists. This is an important problem 
because a reservoir’s output is finite in practice. The keys to solving this problem are the study of Maass et al.2 
and our recent  study16. In each of these studies on continuous-time RC, a sufficient condition for a reservoir to 
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be universal was proposed. They use a polynomial readout, evaluate the approximation error using the uniform 
norm, and assume that the target has fading memory. Fading memory means that if two inputs were close to 
each other in the recent past, the present outputs are also close.  In2,16, an m-output reservoir is represented as 
a set of m operators, which are maps between input functions and scalar-valued output functions. Therefore, 
we call a reservoir with a finite-dimensional output a finite reservoir.  In2, input and output functions of the 
operators are defined on the bi-infinite-time (BIT) interval R . Hence, we call these operators BIT operators. 
Maass et al.2 showed that a reservoir is universal if it has the separation property and operators in it have fading 
memory.  In16, input and output functions of the operators are defined on the right-infinite-time (RIT) interval 
R+ = [0,∞) . Hence, we call these operators RIT operators.  In16, we showed that a reservoir is universal if it has 
the neighborhood separation property (NSP) and the operators in it are bounded. However, it remains an open 
question whether there exists any finite reservoir satisfying those  conditions2,16.

In this paper, we provide two results. First, we show that no finite reservoir satisfies the condition  in2. We 
derive a contradiction from the assumption that an m-output reservoir satisfies the condition  in2: the separation 
property and fading memory. BIT operators have a one-to-one correspondence between functionals, which are 
maps from input signals to R . Using the functionals, we construct a map from the compact space of input signals 
to Rm . The separation property and fading memory mean that the constructed map is injective and continuous, 
respectively. This leads to the contradiction that the space of input signals and a subset of Rm are homeomorphic, 
although they have different dimensions. As the second result, we show that there is a reservoir that has a single 
output and the NSP, which is the condition  in16. RIT operators also have a one-to-one correspondence between 
functionals. We show that a single output reservoir with the NSP exists if a functional with a continuous left 
inverse exists. To obtain such a functional, we use the Hahn–Mazurkiewicz theorem, which provides continu-
ous surjection from [0, 1] to the space of functional inputs. Assuming the axiom of choice, we can take the right 
inverse of the surjection, which is the functional that we seek.

Our contribution in this study is to show that there is no finite reservoir satisfying the condition  in2 but there 
is one satisfying the condition  in16. Through the discussion, we provide an example of a universal reservoir with 
a single output. The mathematical meaning of our example is that an operator, which is a map between func-
tions, can be approximated by training only the readout, which is a continuous map from [0, 1] to R . This is a 
counter-intuitive and interesting result. The practical meaning of our example is that a reservoir has the possibility 
of being universal, regardless of the dimension of the output. This is particularly important for using physical 
reservoirs because they are difficult to adjust.

The structure of this paper is as follows: first, we show that there is no finite reservoir that satisfies the condi-
tion  in2. Second, we show that a universal reservoir with a single output exists that satisfies the condition  in16. 
Finally, we conclude the paper.

Reservoir computing represented by bi‑infinite‑time operators
In the study by Maass et al.2, which is one of the earliest on RC, they proposed a condition for the reservoir to 
be universal. We first consider this condition to prove the existence of a universal finite reservoir. Eventually, we 
conclude that no finite reservoir can satisfy the condition  in2. In the first subsection, we briefly  review2, and in 
the second subsection, we describe one of the two main results of the present study.

Condition for universality
RC is a method to approximate a dynamical system, a map between functions of time. Let A ⊂ R

n be a compact 
set of input values and K > 0 be the limit of the speed of input change. We define a set UB of BIT inputs as follows:

Let YB be a set of output functions from R to R . We call operators from UB to YB “BIT operators” because they 
are maps between signals defined on the BIT interval R . For operator F and input signal u, we write the output 
signal and its value at time t as Fu and Fu(t) , respectively. Maass et al.2 defined the reservoir, that is, the dynamical 
part of a RC model, as a set F of BIT operators. If the cardinal number m = |F| is finite, F represents a dynamical 
system that returns m output signals F1u, . . . , Fmu ∈ YB for an input signal u ∈ UB . Hence, we call m the output 
dimension of F and call F an m-output reservoir. Mathematically, F can even be an uncountable set: for example, 
the reservoir representing waves on a liquid  surface17 has the cardinality of continuum.

The RC model F̂ : UB → YB is defined as follows:

where i ∈ N and F1, . . . , Fi ∈ F . The function p : Ri → R is a polynomial called a readout. If m is finite, we can 
set i = m and {F1, . . . , Fi} = F . In this case, the RC model is trained only by turning the readout p. However, if 
m is infinite, we must also select a finite number of operators F1, . . . , Fi ∈ F . This operation effectively means 
the training of the reservoir as well as the readout. For instance,  in18, they considered a reservoir composed of 
all operators defined by a stable linear system. In practice, selecting the operators from such a reservoir means 
the turning of some parameters of a linear system. Therefore, a finite reservoir is required to achieve the low 
computational cost of training, which is the advantage of RC. In the remainder of this paper, we assume that m 
is finite unless otherwise specified.

The RC model and its reservoir are said to be universal if the model can approximate an arbitrary dynamical 
system with arbitrary accuracy. We formulate the universality of a reservoir represented by BIT operators as 
follows:

(1)UB = {u : R → A | ∀t1, t2 ∈ R, �u(t1)− u(t2)� ≤ K |t1 − t2| }.

(2)F̂u(t) = p(F1u(t), . . . , Fiu(t))
(

u ∈ UB, t ∈ R
)

,
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Definition 1 Let reservoir F be a set of BIT operators F1, . . . , Fm and let F∗ be another set of BIT operators. 
Reservoir F is said to be universal for uniform approximations in F∗ if, for any operator F∗ ∈ F

∗ and ε > 0 , a 
polynomial p : Rm → R exists that satisfies

Definition 1 means that, if the reservoir F is universal, a polynomial of operators F1, . . . , Fm can approximate 
any target in F∗ with any accuracy.

To guarantee the universality of RC, Maass et al.2 considered BIT operators that have two properties called 
time invariance and fading memory. An operator F : UB → YB is said to be time-invariant if the following holds:

The property time invariance means that a temporal shift of an input also shifts the output.
Fading memory is defined as follows:

Definition 2 A BIT operator F : UB → YB is said to have fading memory if the following holds:

Fading memory means that the output value strongly depends on the recent past input but weakly depends 
on the distant past. Fading memory also means independence from the future, which we define as causality 
later in the paper.

According to Maass et al.2, the following condition is essential for a reservoir to be universal.

Definition 3 Let reservoir F be a set of BIT operators. Reservoir F is said to have the separation property if F 
satisfies the following:

The separation property means that the reservoir provides different outputs to different inputs. Suppose that 
the reservoir does not have the separation property, that is, the reservoir returns the same output to two different 
inputs. Then, the RC model cannot approximate a target that returns different outputs to those inputs. Hence, 
the separation property is necessary to achieve universality. Note that Eqs. (5) and (6) are the conditions for the 
output at time 0 because time invariance is assumed. Under time invariance, the same holds at times other than 0.

The result  in2 is described as follows:

Theorem 1 (Maass and  Natschl2) Let F∗ be the set of time-invariant BIT operators with fading memory. Suppose 
that reservoir F ⊂ F

∗ has the separation property. Then, reservoir F is universal for uniform approximations in F∗.

To summarize the result  in2, a reservoir with the separation property that contains only time-invariant 
operators with fading memory is universal. If m can be infinite, a reservoir that satisfies the condition of Theo-
rem 1 exists. For example, the reservoir composed of linear  systems18, which we mentioned before, satisfies the 
condition.
No finite reservoir satisfies the condition of Theorem 1
We show that any finite reservoir does not satisfy the condition of Theorem 1. To achieve this, we define a func-
tional corresponding to a time-invariant and causal BIT operator, with which fading memory and the separation 
property are expressed more simply. The causality of a BIT operator is defined as follows:

Definition 4 BIT operator F : UB → YB is said to be causal if F satisfies

A BIT operator with fading memory is causal. With causality, the output value Fu(t) depends only on the 
input values of u on (−∞, t] . Moreover, with time invariance, this relation does not depend on t. Hence, a causal 
and time-invariant operator is considered as a relation between input signals on R− = (−∞, 0] and R . The cor-
responding functional is defined by such a relation. For the compact set A ⊂ R

n and K > 0 in Eq. (1), we define 
the domain V of functionals as follows:

The correspondence between a BIT operator and a functional is defined as follows:

Definition 5 A causal and time-invariant BIT operator F : UB → YB and a functional f : V → R are said to 
correspond to each other if the following holds:

(3)∀u ∈ UB, ∀t ∈ R,
∣

∣F∗u(t)− p(F1u(t), . . . , Fmu(t))
∣

∣ < ε.

(4)∀t ∈ R, ∀u1, u2 ∈ UB, [(∀τ ∈ R, u2(τ ) = u1(τ − t)) ⇒ (∀τ ∈ R, Fu2(τ ) = Fu1(τ − t))].

(5)

∀u1 ∈ UB, ∀ε > 0, ∃δ > 0, ∃T > 0,∀u2 ∈ UB,

[

max
τ∈[−T ,0]

�u1(τ )− u2(τ )� < δ ⇒ |Fu1(0)− Fu2(0)| < ε

]

.

(6)∀u1, u2 ∈ UB, ∃F ∈ F, [(∃τ ≤ 0, u1(τ ) �= u2(τ )) ⇒ Fu1(0) �= Fu2(0)].

(7)∀u1, u2 ∈ UB, ∀t ∈ R, [(∀τ ≤ t, u1(τ ) = u2(τ )) ⇒ Fu1(t) = Fu2(t)].

(8)V = {v : R− → A | ∀t1, t2 ≤ 0, �v(t1)− v(t2)� ≤ K |t1 − t2| }.

(9)∀u ∈ UB, ∀v ∈ V ,
[

(∀τ ≤ 0, u(τ ) = v(τ )) ⇒ Fu(0) = f (v)
]

.
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This correspondence is one-to-one18 and we can express the conditions of operators using their correspond-
ing functionals.

We define a norm on V and a metric derived from it. Let w : R+ → (0, 1] be a non-increasing function that 
satisfies limt→∞ w(t) = 0 . We define a weighted norm ‖v‖w of v ∈ V  as follows:

Using this norm, we define a metric d : V × V → R+ on V as follows:

Hereafter, we use d as a metric on V. Fading memory and the separation property are expressed by a functional 
as follows:

Proposition 1 A causal and time-invariant operator F : UB → YB has fading memory if and only if the functional 
f : V → R corresponding to F is continuous.

Proposition 2 Let F1, . . . , Fm : UB → YB be causal and time-invariant operators and functionals 
f1, . . . , fm : V → R correspond to F1, . . . , Fm , respectively. Then, reservoir F = {F1, . . . , Fm} has the separation 
property if and only if the following map 

(

f1, . . . , fm
)

: V → R
m is injective:

We provide the proofs in the supplementary material. Using Propositions 1 and 2, we obtain the following 
theorem, which provides the conclusion of this section.

Theorem 2 Suppose that the input range A ⊂ R
n in Eq. (1) includes distinct a1 and a2 that satisfy

Then, no natural number m and time-invariant operators F1, . . . , Fm : UB → YB with fading memory exist such 
that reservoir F = {F1, . . . , Fm} has the separation property.

Proof of Theorem 2 We prove the theorem by contradiction. Suppose that natural number m and time-invariant 
operators F1, . . . , Fm : UB → YB with fading memory exist such that reservoir F = {F1, . . . , Fm} has the separa-
tion property. Let functionals f1, . . . , fm : V → R correspond to F1, . . . , Fm , respectively. Then, from Propositions 
1 and 2, the map 

(

f1, . . . , fm
)

: V → R
m is a continuous injection. An injection can be considered as a bijection 

onto its image, and a continuous bijection from a compact domain to a Hausdorff space is a homeomorphism. 
Because the set V is  compact16, map 

(

f1, . . . , fm
)

 is a topological embedding, that is, a homeomorphism onto its 
image. We use the following lemma.   �

Lemma 1 A topological embedding g : [0, 1]m+1 → V  exists.

We provide the proof after the Proof of Theorem  2. From Lemma 1, the composi-
tion 

(

f1, . . . , fm
)

◦ g : [0, 1]m+1 → R
m is also a topological embedding, that is,  [0, 1]m+1 and 

(

f1, . . . , fm
)

◦ g
(

[0, 1]m+1
)

⊂ R
m are homeomorphic. We call the small inductive dimension simply a dimen-

sion. Dimensions have the following two properties (see pages 3–4 of  reference19): first, two homeomorphic 
topological spaces have the same dimension. Second, a topological space has a dimension equal to its subspace 
or larger. Therefore, we have

where ind(·) is the dimension. Eq. (14) is a contradiction, which proves Theorem 2.   �

As shown in Theorem 2, any finite reservoir does not satisfy the condition of Theorem 1. Therefore, Theorem 1 
cannot support the possibility that a universal finite reservoir exists. We prove Lemma 1 as follows:

Proof of Lemma 1 From the assumption, distinct a1 , a2 ∈ A exist that satisfy a1 + α(a2 − a1) ∈ A for any α ∈ [0, 1] . 
Let T = 1

K �a1 − a2� . For c ∈ [0, 1]m+1 , we define a continuous piecewise linear function αc : R− → [0, 1] as 
follows:

where i ∈ {0} ∪ N , (c1, . . . , cm+1) = c , and c0, cm+2, cm+3, . . . are zeros. The function αc satisfies αc(−iT) = ci . 
Because the Lipschitz constant of αc is K

�a1−a2�
 or less, we can define a continuous function g : [0, 1]m+1 → V  

as follows:

(10)�v�w = sup
τ≤0

�v(τ )�w(−τ).

(11)d(v1, v2) = �v1 − v2�w .

(12)
(

f1, . . . , fm
)

(v) =
(

f1(v), . . . , fm(v)
)

(v ∈ V).

(13)∀α ∈ [0, 1], a1 + α(a2 − a1) ∈ A.

(14)m+ 1 = ind [0, 1]m+1 = ind
(

f1, . . . , fm
)

◦ g
(

[0, 1]m+1
)

≤ ind R
m = m,

(15)αc(t) = ci +
1

T
(−iT − t)(ci+1 − ci) (−(i + 1)T < t ≤ −iT).

(16)g : c �→ v
(

c ∈ [0, 1]
m+1

)

, v(t) = a1 + αc(t)(a2 − a1) (t ≤ 0).
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Because v = g(c) sat isf ies  v(−iT) = a1 + ci(a2 − a1) for  any c = (c1, . . . , cm+1) ∈ [0, 1]m+1 and 
i ∈ {1, . . . ,m+ 1} , g is injective. Therefore, g is a continuous bijection from its compact domain [0, 1]m+1 to its 
image, that is, g is a topological embedding, which proves Lemma 1.   �

Reservoir computing represented by right‑infinite‑time operators
To obtain the output value of a BIT operator, we have to consider an input signal that continues from the infinite 
past. In our recent  study16, we avoided this impracticality by defining input and output signals for positive time 
and proposed another condition for the reservoir to be universal. Using this condition, we prove the existence 
of a universal finite reservoir. In the first subsection, we briefly explain our previous  results16. In the second 
subsection, we prove the main result of the present study.

Condition for universality
For compact set A ⊂ R

n and K > 0 in Eq. (1), we define a set UR of RIT inputs as follows:

Let YR be the set of output functions from R+ to R . We call operators from UR to YR “RIT operators” because 
they are maps between signals defined on the RIT interval R+ .  In16, the reservoir is defined as a set F of RIT 
operators. The RC model F̂ : UR → YR is defined as follows:

where {F1, . . . , Fm} = F . The polynomial p : Rm → R is the readout.
In the RIT operator case, universality is defined as follows:

Definition 6 Let reservoir F be a set of RIT operators F1, . . . , Fm and let F∗ be another set of RIT operators. 
Reservoir F is said to be universal for uniform approximations in F∗ if, for any operator F∗ ∈ F

∗ and ε > 0 , a 
polynomial p : Rm → R exists that satisfies

RIT operators also correspond to functionals, which are maps to real numbers. We require these correspond-
ing functionals to describe the result  in16. To correspond to a functional, an RIT operator must be causal as 
follows:

Definition 7 An RIT operator F : UR → YR is said to be causal if F satisfies

With causality, the output value Fu(t) depends only on the input values of u on [0, t] . Hence, a causal RIT 
operator is considered as a relation between input signals of various lengths and R . The corresponding func-
tional is defined by such a relation. For the set V in Eq. (8), we define the domain V res of functionals as follows:

where v[t] is the restriction of v to [−t, 0] . Let � : V res → R+ be a map defined by v[t]  → t . For example, �(v) = 1 
for v : [−1, 0] → A . The correspondence between an RIT operator and a functional is defined as follows:

Definition 8 A causal RIT operator F : UR → YR and a functional f : V res → R are said to correspond to each 
other if the following holds:

where t = �(v).

Similar to the BIT operator case, this correspondence is one-to-one16.
We need a metric on V res to explain the condition of reservoirs for universality proposed  in16. Using 

w : R+ → (0, 1] in Eq. (10), we define the weighted norm ‖v‖w of v : [−t, 0] → R
n as

Let θ : R+ → R+ be a strictly increasing, bounded, and continuous function. For w and θ , we define the distance 
d(v1, v2) between v1 , v2 ∈ V res as

(17)UR = {u : R+ → A | ∀t1, t2 ≥ 0, �u(t1)− u(t2)� ≤ K |t1 − t2| }.

(18)F̂u(t) = p(F1u(t), . . . , Fmu(t))
(

u ∈ UR , t ≥ 0
)

,

(19)∀u ∈ UR , ∀t ≥ 0,
∣

∣F∗u(t)− p(F1u(t), . . . , Fmu(t))
∣

∣ < ε.

(20)∀u1, u2 ∈ UR , ∀t ≥ 0, [(∀τ ∈ [0, t], u1(τ ) = u2(τ )) ⇒ Fu1(t) = Fu2(t)].

(21)V res =
{

v[t] | v ∈ V , t ≥ 0
}

,

(22)∀u ∈ UR , ∀v ∈ V res,
[

(∀τ ∈ [−t, 0], u(t + τ) = v(τ )) ⇒ Fu(t) = f (v)
]

,

(23)�v�w = sup
τ∈[−t,0]

�v(τ )�w(−τ).

(24)d(v1, v2) =
∥

∥

∥
v
[tmin]
1 − v

[tmin]
2

∥

∥

∥

w
+ |θ(t1)− θ(t2)|,
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where t1 = �(v1) , t2 = �(v2) , and tmin = min {t1, t2} . See Assumption 1  in16 for detailed conditions for the 
map d : V res × V res → R+ to be a metric. We extend d onto V res ∪ V  by defining �(v) = ∞ , v[∞] = v , and 
θ(∞) = limt→∞ θ(t) for any v ∈ V  . With this extension, the metrics in Eqs. (11) and (24) are equivalent on 
V. Hereafter, we use d as a metric on V res ∪ V  . Any v ∈ V  is an accumulation point of V res because v[t] ∈ V res 
converges to v as t → ∞ . As shown in Proposition 5  in16, V res ∪ V  is compact. Therefore, V res ∪ V = V res holds, 
where ·  means closure.  In16, the following condition is proposed for a reservoir to be universal.

Definition 9 Let F be a set of causal RIT operators F1, . . . , Fm and let f1, . . . , fm : V res → R correspond to each 
operator in F . The set F is said to have the neighborhood separation property (NSP) if the following holds for 
any distinct v1 , v2 ∈ V res:

where Nδ(v) is a δ-neighborhood of v ∈ V res defined as follows:

The NSP guarantees that the images of neighborhoods of distinct points are disjoint. Hence, we can say that 
the NSP is the “strong injectivity” of the map 

(

f1, . . . , fm
)

.
In16, target operator F∗ : UR → YR is assumed to correspond to a uniformly continuous functional. As shown 

in Proposition 8  in16, this assumption gives F∗ three properties. The first is the following:

Roughly speaking, this is a “continuity” of the output value with respect to past inputs. Hence, F∗ is also causal. 
The second property is the equicontinuity of output signals, that is,

The third property is fading memory of an RIT  operator16, which means that older inputs have less influence on 
the present output. At first glance, the uniform continuity of the target’s corresponding functional is a stricter 
condition than that  in2. However,  in2, continuity implies uniform continuity because the functional domain V 
is compact. Hence, no difference exists between the two.

The result  in16 is described as follows:

Theorem 3 (Sugiura et al.16) Let F∗ be the set of RIT operators corresponding to a uniformly continuous functional 
and let reservoir F be a set of bounded RIT operators. Suppose that F has the NSP. Then, reservoir F is universal 
for uniform approximations in F∗.

Operator F : UR → YR is said to be bounded if F
(

UR
)

 is uniformly bounded, that is,

To summarize the result  in16, a reservoir with the NSP that contains only bounded operators is universal.
Existence of universal finite reservoir
Using Theorem 3, we show that a universal reservoir F with a single output exists. If the reservoir F is universal, 
we can easily construct a universal reservoir with a higher dimensional output by adding arbitrary operators to 
F . Hence, the universality of F means that, for any dimension, a universal reservoir exists with the output of that 
specified dimension. Let operator F : UR → YR and functional f : V res → R correspond to each other. Then, 
the NSP of reservoir F = {F} is written as follows:

The following proposition provides a stronger but simpler condition than Eq. (30):

Proposition 3 Let f : V res → R . Suppose that there is a continuous left inverse g : f (V res) → V res of f, that is, a 
continuous map g that satisfies the following:

Then, f satisfies Eq. (30).

Proof of Proposition 3 We prove the contraposition. Suppose that there are distinct v1 , v2 ∈ V res that satisfy the 
following:

where V1 , V2 ⊂ V res are defined as follows:

(25)∃δ > 0,
(

f1, . . . , fm
)

(Nδ(v1) ∩ V res) ∩
(

f1, . . . , fm
)

(Nδ(v2) ∩ V res) = ∅,

(26)Nδ(v) =
{

v′ ∈ V res
∣

∣d
(

v′, v
)

< δ
}

.

(27)

∀ε > 0,∀u1 ∈ UR , ∀t ≥ 0, ∃δ > 0,∀u2 ∈ UR ,

[

max
τ∈[0,t]

�u1(τ )− u2(τ )� < δ ⇒
∣

∣F∗u1(t)− F∗u2(t)
∣

∣ < ε

]

.

(28)∀ε > 0,∀t ≥ 0, ∃δ > 0,∀y ∈ F∗(U), ∀t′ ≥ 0,
[∣

∣t − t ′
∣

∣ < δ ⇒
∣

∣y(t)− y
(

t ′
)∣

∣ < ε
]

.

(29)∃c ≥ 0,∀y ∈ F(U), ∀t ≥ 0,
∣

∣y(t)
∣

∣ ≤ c.

(30)∀v1, v2 ∈ V res,
[

v1 �= v2 ⇒
(

∃δ > 0, f (Nδ(v1) ∩ V res) ∩ f (Nδ(v2) ∩ V res) = ∅
)]

.

(31)g ◦ f = idVres .

(32)∀δ > 0, f (V1) ∩ f (V2) �= ∅,
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Because of v1  = v2 , we obtain V1 ∩ V2 = ∅ by setting δ = d(v1, v2)/3 . Let 
(

α1,i
)

i∈N
∈ f (V1) and 

(

α2,i
)

i∈N
∈ f (V2) 

be sequences that converge to α ∈ f (V1) ∩ f (V2) . Suppose that g : f (V res) → V res is a left inverse of f. Then, 
g
(

α1,i
)

 and g
(

α2,i
)

 are contained in V1 and V2 , respectively. Because of V1 ∩ V2 = ∅ , g
(

α1,i
)

 and g
(

α2,i
)

 do not 
converge to the same point as i → ∞ , even though α1,i and α2,i converge to α . Hence, g is not continuous at 
α ∈ f (V res) .   �

To prove that a functional f : V res → R with a continuous left inverse exists, we use the following theorem.

Theorem 4 (Hahn–Mazurkiewicz  theorem20) Let E be a connected, locally connected, and compact metric space. 
Then, a continuous surjection from [0, 1] to E exists.

Metric space V res = V res ∪ V  is  compact16. As we show later in this paper, V res is connected and locally con-
nected. Hence, from Theorem 4, a space-filling curve g : [0, 1] → V res exists, which is continuous and surjective. 
Using the axiom of choice, we obtain a functional f : V res → R with a continuous left inverse as a right inverse 
of g. Therefore, a reservoir that contains only one operator can have the NSP. To prove that V res is connected 
and locally connected, we assume that the set A ⊂ R

n in Eq. (8) is convex.

Proposition 4 The set V res is connected.

Proof of Proposition 4 We prove that V res is arcwise connected, which is a stronger condition than being con-
nected. Let v1 and v2 be arbitrary inputs in V res . The set V res is said to be arcwise connected if there is some 
continuous map P : [0, 1] → V res that satisfies P(0) = v1 and P(1) = v2 . Such a map P is called a path from v1 
to v2 . Let t1 = �(v1) and t2 = �(v2) . If a path exists from v1 to v2 , one exists from v2 to v1 . Hence, we can assume 
that t1 ≤ t2 without loss of generality. Let v3 = v

[t1]
2  , that is, v3 has the same domain as v1 and the same value as 

v2 . We form a path from v1 to v2 through v3.
First, we form a path from v1 to v3 . Because v1 and v3 has the same domain [−t1, 0] , we can define a map 

P1 : [0, 1] → V res as follows:

Map P1 satisfies P1(0) = v1 and P1(1) = v3 . Because the input range A ⊂ R
n is convex, the image of P1 is included 

in V res . Map P1 is continuous because, for any α1 , α2 ∈ [0, 1] , the distance between P1(α1) and P1(α2) is formu-
lated as follows:

Therefore, map P1 is a path from v1 to v3.
Second, we form a path from v3 to v2 . The function θ has inverse θ−1 because it is strictly increasing and 

continuous. Using θ−1 , we define map µ : [0, 1] → [t1, t2] as follows:

where θ(∞) = limt→∞ θ(t) and θ−1(θ(∞)) = ∞ . We define a map P2 : [0, 1] → V res as follows:

Map P2 satisfies P2(0) = v3 and P2(1) = v2 because µ(0) = t1 and µ(1) = t2 hold. From the definition (21) of V res , 
the image of P2 is included in V res . Map P2 is continuous because, for any α1 , α2 ∈ [0, 1] , the distance between 
P2(α1) and P2(α2) is formulated as follows:

Therefore, map P2 is a path from v3 to v2.
Using P1 and P2 , we define path P : [0, 1] → V res from v1 to v2 as follows:

Therefore, the set V res is arcwise connected.   �

To prove that the set V res is locally connected, we use the following proposition:

Proposition 5 For any v1 , v2 ∈ V res , path P : [0, 1] → V res from v1 to v2 exists that satisfies the following:

Equation (40) means that path P is “the shortest” between v1 and v2 , that is, equality holds in the triangle 
inequality between any point on the path and the two endpoints.

(33)V1 = Nδ(v1) ∩ V res, V2 = Nδ(v2) ∩ V res.

(34)P1(α) = (1− α)v1 + αv3 (α ∈ [0, 1]).

(35)d(P1(α1), P1(α2)) = |α1 − α2|�v1 − v3�w .

(36)µ(α) = θ−1((1− α)θ(t1)+ αθ(t2)) (α ∈ [0, 1]),

(37)P2(α) = v
[µ(α)]
2 (α ∈ [0, 1]).

(38)d(P2(α1), P2(α2)) = |θ(µ(α1))− θ(µ(α2))| = |α1 − α2||θ(t1)− θ(t2)|.

(39)P(α) =

{

P1(2α)
(

0 ≤ α ≤ 1
2

)

P2(2α − 1)
(

1
2 < α ≤ 1

) .

(40)∀α ∈ [0, 1], d(v1, v2) = d(v1, P(α))+ d(P(α), v2).
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Proof of Proposition 5 Let v1 and v2 be arbitrary inputs in V res . If path P from v1 to v2 exists that satisfies Eq. (40), 
a similar path from v2 to v1 exists. Hence, for t1 = �(v1) and t2 = �(v2) , we can assume that t1 ≤ t2 without loss 
of generality. We show that path P : [0, 1] → V res defined by (39) satisfies Eq. (40) using the following three 
lemmas:   �

Lemma 2 Path P1 : [0, 1] → V res defined by Eq. (34) satisfies the following:

Proof of Lemma 2 Using Eq. (35), distance d(v1, v3) is transformed as follows:

which proves Lemma 2.   �

Lemma 3 Path P2 : [0, 1] → V res defined by Eq. (37) satisfies the following:

Proof of Lemma 3 Using Eq. (38), distance d(v3, v2) is transformed as follows:

which proves Lemma 3.   �

Lemma 4 The input v3 = v
[t1]
2  satisfies the following:

Proof of Lemma 4 Distance d(v1, v2) is transformed as follows:

which proves Lemma 4.   �

Let α be an arbitrary number in [0, 1] . We show that the following holds:

If 0 ≤ α ≤ 1
2 , we obtain Eq. (47) as follows:

The inequality is a triangle inequality. The first equality is obtained from Lemma 2 because P(α) = P1(2α) holds. 
The second equality is obtained from Lemma 4. If 12 < α ≤ 1 , we obtain Eq. (47) as follows:

The inequality is a triangle inequality. The first equality is obtained from Lemma 3 because P(α) = P2(2α − 1) 
holds. The second equality is obtained from Lemma 4. From Eq. (47) and the triangle inequality 
d(v1, v2) ≤ d(v1, P(α))+ d(P(α), v2) , we obtain Eq. (40), which proves Proposition 5.   �

Using Proposition 5, we prove the following proposition:

Proposition 6 The set V res is locally connected.

Proof of Proposition 6 We prove that V res is locally arcwise connected, which is a stronger condition than being 
locally connected. Let v be an arbitrary input in V res . The set V res is said to be locally arcwise connected if, for 
any open set V1 ⊂ V res including v, an arcwise connected open set V2 ⊂ V1 exists that includes v. Therefore, it 
is sufficient for the Proof of Proposition 6 to show that a δ-neighborhood Nδ(v) ⊂ V res of v is arcwise connected 
for any δ > 0 . Let δ be an arbitrary positive number and v1 , v2 be arbitrary inputs in Nδ(v) . From Proposition 5 
and d(v, v1) < δ , path P1 : [0, 1] → V res from v1 to v exists that satisfies the following for any α ∈ [0, 1]:

(41)∀α ∈ [0, 1], d(v1, v3) = d(v1, P1(α))+ d(P1(α), v3).

(42)

d(v1, v3) =�v1 − v3�w

= |0− α|�v1 − v3�w + |α − 1|�v1 − v3�w

= d(P1(0), P1(α))+ d(P1(α), P1(1))

= d(v1, P1(α))+ d(P1(α), v3),

(43)∀α ∈ [0, 1], d(v3, v2) = d(v3, P2(α))+ d(P2(α), v2).

(44)

d(v3, v2) = |θ(t1)− θ(t2)|

= |0− α||θ(t1)− θ(t2)| + |α − 1||θ(t1)− θ(t2)|

= d(P2(0), P2(α))+ d(P2(α), P2(1))

= d(v3, P2(α))+ d(P2(α), v2),

(45)d(v1, v2) = d(v1, v3)+ d(v3, v2).

(46)
d(v1, v2) =

∥

∥

∥
v1 − v

[t1]
2

∥

∥

∥

w
+ |θ(t1)− θ(t2)|

= �v1 − v3�w + |θ(�(v3))− θ(t2)|

= d(v1, v3)+ d(v3, v2),

(47)d(v1, P(α))+ d(P(α), v2) ≤ d(v1, v2).

(48)
d(v1, P(α))+ d(P(α), v2) ≤ d(v1, P(α))+ d(P(α), v3)+ d(v3, v2) = d(v1, v3)+ d(v3, v2) = d(v1, v2).

(49)
d(v1, P(α))+ d(P(α), v2) ≤ d(v1, v3)+ d(v3, P(α))+ d(P(α), v2) = d(v1, v3)+ d(v3, v2) = d(v1, v2).
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Hence, P1([0, 1]) ⊂ Nδ(v) holds. Similarly, we obtain path P2 : [0, 1] → Nδ(v) from v to v2 . Therefore, path 
P : [0, 1] → Nδ(v) from v1 to v2 exists, which proves Proposition 6.   �

Using Theorem 3 and Propositions 3, 4, and 6, we show that a universal reservoir exists that has only one 
output.

Theorem 5 Let F∗ be the set of RIT operators corresponding to a uniformly continuous functional. Assume the 
axiom of choice and that the set A ⊂ R

n in Eq. (8) is convex. Then, reservoir F exists that is a set of only one RIT 
operator and F is universal for uniform approximations in F∗.

Proof of Theorem 5 Metric space V res = V res ∪ V  is  compact16. From Propositions 4 and 6, V res is connected 
and locally connected. Hence, from Theorem 4, a continuous surjection g : [0, 1] → V res exists. We define a 
set S ⊂ [0, 1] as follows:

Let g |S : S → V res be a restriction of g to S. Because g |S is a surjection to V res , the axiom of choice provides 
a right inverse f : V res → S of g |S , that is, f satisfies g |S ◦ f = idVres . Functional f and an another restriction 
g |S : S → V res of g also satisfy g |S ◦ f = idVres . Because the restriction g |S  is continuous, from Proposition 3, f 
satisfies Eq. (30). Hence, reservoir F = {F} has the NSP, where F : UR → YR is the corresponding operator of f. 
Because of S ⊂ [0, 1] , functional f and operator F are bounded. Therefore, reservoir F satisfies the condition of 
Theorem 3 and is universal for uniform approximations in F∗ .   �

Theorem 5 shows that a universal finite reservoir exists, which achieves the low computational cost of training. 
Moreover, a universal reservoir exists independent of the dimension of its output. The reservoir obtained from a 
right inverse of a space-filling curve proposed in the Proof of Theorem 5 is probably chaotic. This result suggests 
that chaos is key to the reservoir’s universality. In practice, chaotic reservoirs have already been considered in 
research and are known to be  useful21,22.

The difference between the results of Sections “Reservoir computing represented by bi-infinite-time operators” 
and “Reservoir computing represented by right-infinite-time operators” is not caused by the difference between 
the BIT and RIT operators but the difference between the conditions of functionals f1, . . . , fm corresponding to 
operators in the reservoir. Fading memory and the separation property, which are the conditions of Theorem 1, 
require the map 

(

f1, . . . , fm
)

 to be continuous and injective; however, this is impossible. By contrast, the NSP, 
which is the condition of Theorem 3, only requires the “strong injectivity” of 

(

f1, . . . , fm
)

 , which is possible as 
described thus far. The NSP is also defined for a reservoir represented by BIT operators as follows:

Definition 10 Let F be a set of causal BIT operators F1, . . . , Fm and let f1, . . . , fm : V → R correspond to each 
operator in F . The set F is said to have the NSP if the following holds for any distinct v1 , v2 ∈ V :

where Nδ(v) ⊂ V  is a δ-neighborhood of v ∈ V .

A finite reservoir with the NSP of Definition 10 can be obtained in the same manner as in the RIT operator 
case. Using Theorem 4  in16, that is, an extension of the Stone–Weierstrass theorem, we can derive the universal-
ity of Definition 1 from the NSP of Definition 10. Therefore, the NSP is the essence of proving the existence of 
a universal finite reservoir.

Conclusion
We discussed whether a universal finite reservoir exists under the assumption that the readout is a polynomial 
and the target operator has fading memory. In the discussion, we considered two sufficient conditions for the 
reservoir to be universal proposed by Maass et al.2 and  in16. First, we showed that no finite reservoir satisfies the 
condition  in2. Supposing that such a reservoir exists, we derived the contradiction that the input function space 
and a subset of finite-dimensional vector space are homeomorphic. Next, we proposed an example of a universal 
reservoir that has a single output and the NSP, which is the condition  in16. The functional corresponding to the 
operator representing the reservoir has a continuous left inverse. We showed that this is a stronger condition than 
the NSP. The functional is defined as a right inverse of the continuous surjection from [0, 1] to the input space of 
the functional. The surjection is given by the Hahn–Mazurkiewicz theorem. Our example means that, for any 
dimension, a universal reservoir exists that has the output of that specified dimension. This result is particularly 
important for the use of physical reservoirs, which are difficult to train.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

(50)d(v, P1(α)) = d(v, v1)− d(P1(α), v1) < δ − d(P1(α), v1) ≤ δ.

(51)S =
{

α ∈ [0, 1]
∣

∣g(α) ∈ V res
}

.

(52)∃δ > 0,
(

f1, . . . , fm
)

(Nδ(v1)) ∩
(

f1, . . . , fm
)

(Nδ(v2)) = ∅,
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