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Creation of a machine 
learning‑based prognostic 
prediction model for various 
subtypes of laryngeal cancer
Wei Wang 1,2,4, Wenhui Wang 2,4, Dongdong Zhang 2, Peiji Zeng 1, Yue Wang 1, Min Lei 2, 
Yongjun Hong 1 & Chengfu Cai 1,2,3*

Depending on the source of the blastophore, there are various subtypes of laryngeal cancer, each 
with a unique metastatic risk and prognosis. The forecasting of their prognosis is a pressing issue that 
needs to be resolved. This study comprised 5953 patients with glottic carcinoma and 4465 individuals 
with non‑glottic type (supraglottic and subglottic). Five clinicopathological characteristics of glottic 
and non‑glottic carcinoma were screened using univariate and multivariate regression for CoxPH 
(Cox proportional hazards); for other models, 10 (glottic) and 11 (non‑glottic) clinicopathological 
characteristics were selected using least absolute shrinkage and selection operator (LASSO) 
regression analysis, respectively; the corresponding survival models were established; and the best 
model was evaluated. We discovered that RSF (Random survival forest) was a superior model for both 
glottic and non‑glottic carcinoma, with a projected concordance index (C‑index) of 0.687 for glottic 
and 0.657 for non‑glottic, respectively. The integrated Brier score (IBS) of their 1‑year, 3‑year, and 
5‑year time points is, respectively, 0.116, 0.182, 0.195 (glottic), and 0.130, 0.215, 0.220 (non‑glottic), 
demonstrating the model’s effective correction. We represented significant variables in a Shapley 
Additive Explanations (SHAP) plot. The two models are then combined to predict the prognosis for 
two distinct individuals, which has some effectiveness in predicting prognosis. For our investigation, 
we established separate models for glottic carcinoma and non‑glottic carcinoma that were most 
effective at predicting survival. RSF is used to evaluate both glottic and non‑glottic cancer, and it has a 
considerable impact on patient prognosis and risk factor prediction.
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Laryngeal carcinoma, which makes up 20% of all malignant tumors of the head and neck, is a prevalent type of 
these  malignancies1,2. Laryngeal cancer is estimated to affect over 1,700,000 people annually, and 123,000 people 
died from it in 2019—86% of whom were  men3,4. The majority of pathological kinds of laryngeal cancer, which 
include squamous cell carcinoma, are believed to be associated with smoking, alcohol use, human papillomavirus 
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infection, and air pollution. Early detection and treatment are especially crucial for laryngeal cancer because it 
has an excellent prognosis and quality of life. Advanced laryngeal cancer can be treated with definitive Radiation 
therapy, combination chemotherapy, or adjuvant radiotherapy and total laryngectomy in addition to surgery, 
radiotherapy, chemotherapy, and other comprehensive  treatments5,6. Different stages, forms, and treatments of 
laryngeal cancer have varying chances of survival, and the overall patient’s 5-year relative survival rate is 64%2. 
Clinically, we use the conventional TNM staging and the 5-year survival rate to develop an overall understanding 
of the prognosis of patients, but it is challenging to quantify and depict  it7. The conventional Cox proportional 
hazards (CoxPH) model is a prominent prediction model used to accomplish this goal, but it has limitations 
since it is based on the presumption that there is a linear relationship between survival outcomes and clinical 
 variables8,9. At the same time, the standard survival analysis is unable to forecast an individual’s survival prog-
nosis with any degree of precision. The creation and prediction of tumor-related survival models now uses a 
large number of sophisticated Machine learning techniques (MLTs). When it comes to predicting the prognosis 
of tumor patients, MLTs—which include Random Survival Forest (RSF), Gradient Boosting Machine (GBM), 
eXtreme Gradient Boosting (XGBoost), and deep learning model Deepsurv—have been demonstrated to be 
more accurate than CoxPH  model10–14. Studies on the equivalent machine learning of laryngeal cancer to create 
a survival model have been conducted  concurrently15. Unfortunately, there are two flaws in the way that current 
research predicts the prognosis and survival of laryngeal cancer. First off, the performance of these models is 
constrained by the small sample size and homogeneity of the prediction algorithms. Furthermore, the lymph 
node metastatic rates of supraglottic and subglottic laryngeal carcinoma (non-glottic laryngeal carcinoma), 
which were 19.9% and 8.0% respectively, were higher. This contributed to the varied survival rates for glottic 
and non-glottic laryngeal  cancer16,17. How to accurately predict the survival of patients with different types of 
laryngeal cancer has become a key problem. Therefore, in this study, we selected different types of laryngeal 
cancer patients using SEER database data, and developed survival models for glottic and non-glottic cancer, 
describing the main factors, to predict the survival of patients with laryngeal cancer more accurately. We develop 
the survival model using data from the SEER database, and compare the CoxPH model with four widely used 
machine learning techniques. Last but not least, we apply the model to forecast each person’s prognosis, which 
aligns more with clinical application.

Methods
Data collection
The Surveillance, Epidemiology, and End Results Program (SEER) database was used to gather the study’s data 
(Incidence-Seer Research Plus Data 17 Registries Nov 2021 Sub). Using the SEER*Stat program (version 8.4.2), 
we retrieved individuals who had been given a larynx carcinoma diagnosis by the third edition of the Interna-
tional Classification of Oncology Diseases (ICD-O-3). The period frame covers instances handled between 2000 
and 2019. The following were the inclusion requirements: The behavior was identified as malignant and encoded 
by position and shape as "larynx".

Data clarity
In total, 54,613 patients with primary laryngeal malignant tumors were included. The median follow-up dura-
tion of the sample in this study is 38 months. We used the following exclusion criteria to clean up the data: (1) 
Patients with limited follow-up information; (2) Patients without T stage (AJCC7), N stage (AJCC7), M stage 
(AJCC7), or AJCC stage grade information.

Feature selection
We selected variables that were directly related to the clinic, such as age, race, and gender, based on clinical 
experience. We chose the T stage, N stage, M stage, AJCC stage (AJCC stage 7), tumor size, and pathological 
categorization to assess the patient’s health. Finally, to evaluate the patient’s treatment plans, we also included 
radiation therapy, surgery, and chemotherapy.

Models for survival analysis
A classic model for survival analysis, the Cox proportional hazards (CoxPH) model has been the most commonly 
applied multifactor analysis technique in survival analysis to  date18,19.

CoxPH is a statistical technique for survival analysis, which is mainly used to study the relationship between 
survival time and one or more predictors. The core of the model is the proportional risk hypothesis.

It is expressed as h(t|x) = h0 (t) exp (β|x), h(t|x) is the instantaneous risk function under the given covariable 
x, h0 (t) is the baseline risk function, on the other hand, exp (β x) represents the multiplicative effect of covari-
ates on risk.

The random survival forest (RSF) model is an extremely efficient integrated learning model that can handle 
complex data linkages and is made up of numerous decision  trees20.

RSF can improve the accuracy and robustness of the prediction, but it does not have a single expression 
because it is an integrated model consisting of multiple decision  trees21. RSF constructs 1000 trees and calculates 
the importance of variables. To find the optimal model parameters, we adjust three key parameters: the maximum 
number of features of the tree (mtry), the minimum sample size of each node (nodesize), and the maximum depth 
of the tree (nodedepth). The values of these parameters are set to mtry from 1 to 10, nodesize from 3 to 30, and 
nodedepth from 3 to 6. We use a random search strategy (RandomSearch) to optimize the parameters. To evalu-
ate the performance of the model under different parameter configurations, we use tenfold cross-validation and 
use C-index (ConcordanceIndex) as the evaluation index. The purpose of this process is to find the parameter 
configuration that can maximize the prediction accuracy of the model through many iterations.
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One of the integrated learning methods called Boosting is the gradient boosting machine (GBM) model, 
which constructs a strong prediction model by combining several weak prediction models (usually decision 
trees). At each step, GBM adds a new weak learner by minimizing the loss function. The newly added model is 
trained to reduce the residual generated in the previous step, and the direction is determined by the gradient 
descent method. It can be expressed as Fm+1(x) = Fm(x) + αmhm(x). Where the  Fm(x) is a weak model newly added, 
and the αm is the learning rate.

XGBoost is an efficient implementation of GBM, especially in optimizing computing speed and efficiency. 
To reuse the learner with the highest performance, it linearly combines the base learner with various  weights22. 
eXtreme Gradient Boosting (XGBoost) is an optimization of the Gradient Boosting Decision Tree (GBDT), 
which boosts the algorithm’s speed and  effectiveness23. The neural network-based multi-task logic regression 
model developed by Deepsurv outperforms the conventional linear survival model in terms of  performance24. 
DeepSurv uses a deep neural network to simulate the Cox proportional hazard model. Therefore, deepsurv can 
be expressed as h(t|x) = h0 (t) exp (g(x)), Where the g (x) is the output of the neural network, which represents 
the linear combination of the covariable  x8.

Model training and validation
We categorize five models to adapt to various variable screening techniques used with various models. The RSF, 
GBM, and XGBoost models are screened using the least absolute shrinkage and selection operator (LASSO) 
regression analysis, while the CoxPH model is screened using the traditional Univariate and multivariate Cox 
regression  analysis25–27.

In contrast, the Deepsurv model can automatically extract features and handle high-dimensional data and 
nonlinear relationships, so variable screening is not  necessary28. We randomly split the data set into t and v 
datasets (training set and validation set) and test set in the ratio of 9:1 using spss (version 26) to further illustrate 
the model’s dependability. Randomly selected 10% of the data as external verification. Once more, the ratio of 
7:3 is used to divide the training set and validation set, and for both splits, the log-rank test is used to evaluate 
any differences between the two cohorts. The mlr3 package of R (version 4.2.2) uses the grid search approach 
to fine-tune the hyperparameters in the RSF, GBM, and XGBoost models in the validation set and chooses the 
most beneficial hyperparameters to build the survival model once the variables have been filtered following the 
aforementioned stages. Finally, the Deepsurv model is constructed using the Python (version 3.9) sksurv pack-
age, and the model is additionally optimized using grid search.

Model evaluation and interpretation
We used the integrated Brier score (IBS), which is appropriate for 1-year, 3-year, and 5-year time points, as the 
major assessment metric when evaluating the prediction performance of the model in the test set. In addition, 
the calibration curve is drawn and the conventional time-dependent receiver operating characteristic (ROC) 
curve as well as the area under the curve (AUC) (1 year, 3 years, and 5 years) are compared. By calculating the 
clinical net benefit to address the actual needs of clinical decisions, Decision Curve Analysis (DCA), a clini-
cal evaluation prediction model, incorporates the preferences of patients or decision-makers into the analysis. 
Calculating the various clinicopathological characteristics is also required for the prognosis of contribution. We 
visualized the survival contribution of several clinicopathological characteristics for 1-year, 3-years, and 5-years 
using The Shapley Additive Explanations (SHAP) plot.

The particular prediction
Clinically speaking, various individuals require personalized care. Consequently, it is crucial to estimate the 
likelihood that a single patient will survive. The survival probability of a certain patient is predicted using the 
ggh4x package of R (version 4.2.2), along with the contribution of several clinicopathological characteristics to 
survival. This has major clinical work implications.

Results
Baseline characteristics
The information of 54,613 patients was included. After data cleaning, there were 5953 patients with glottic car-
cinoma and 4465 patients with non-glottic (supraglottic and subglottic) cancer as a result of the aforementioned 
exclusion criteria. Figure 1 shows specific cleaning procedures. Table 1 displays the clinical and clinicopathologi-
cal characteristics of these patients as well as the relevant categorization ratio. In Fig. 2, the survival curve was 
displayed after patients with glottic and non-glottic cancer were divided into training and validation datasets 
and testing datasets, respectively.

Feature selection and model construction
Age, histology, tumor size, RN Eval (Regular Nodes Evaluation), AJCC T, AJCC N, AJCC M, AJCC Stage, sur-
gery, and chemotherapy were the 10 significant mutations identified in the univariate Cox regression analysis 
for Glottic Carcinoma. Following multivariate Cox regression, age, AJCC T, AJCC N, AJCC Stage, and surgery 
were the final 5 effective variables to be included. Similarly, the effective variables of univariate Cox regression 
analysis and multivariate Cox regression analysis of non-glottic laryngeal carcinoma were age, sex, tumor size, 
RN Eval, AJCC T, AJCC N, AJCC M, AJCC Stage, surgery, radiotherapy and age, sex, AJCC Stage, surgery, 
radiotherapy. Table S1 displays the outcomes of the univariate and multivariate Cox regression. Machine learning 
characteristic variables (Fig. 3) were chosen using lasso regression analysis based on the lowest standard. A total 
of 10 efficient variables were chosen for glottic carcinoma: age, sex, histology, AJCC T, AJCC N, AJCC Stage, RN 
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Eval, radiotherapy, surgery, and tumor size. The 11 effective variables were chosen for non-glottic carcinoma: age, 
sex, histology, AJCC T, AJCC N, AJCC M, AJCC Stage, chemotherapy, radiotherapy, surgery, and tumor size.

Constructing and evaluating survival analysis models
We built the CoxPH model, RSF model, GBM model, and XGBoost model for glottic and non-glottic cancer by 
the outcomes of multivariate Cox regression analysis and lasso regression analysis, respectively. The Deepsurv 
model does not require variable screening, hence all 12 variables are used in the model during model develop-
ment. All survival models are trained to roughly estimate their performance and stability range using Ten-fold 
cross-validation C-index and IBS. Following the visual examination of the test set, we eventually obtained the 
following secondary outcomes: 1-year, 3-year, and 5-year ROC curve, calibration curve, C-index, and 1-year, 
3-year, and 5-year IBS (Table 2 and Fig. 4). The indicators of the training set are shown in Table S2. All models 
have IBS that are less than 0.25, which suggests that they can be calibrated well. Figure 5 displays the 1-year, 
3-year, and 5-year DCA decision curves for the best model RSF at the same period.

Visualization of the optimal model’s evaluation indexes
The RSF model is the most effective one for both glottic and non-glottic carcinomas, and its C-index in the test 
set is 0.687 for glottic and 0.657 for non-glottic, respectively. Their 1-year, 3-year, and 5-year IBS were 0.116, 
0.182, and 0.195 for glottic carcinomas, and 0.130, 0.215, and 0.220 for non-glottic carcinomas, respectively. 
Figure 6 depicts the impact of several clinicopathological characteristics on patient survival for the RSF model 
of two subtypes of laryngeal cancer. AJCC Stage, age, and AJCC T are the first three factors that have the greatest 
impact on glottic carcinoma. And it is AJCC Stage, age, surgery for non-glottic cancer.

The particular forecast
Two patients with glottic carcinoma and two individuals with non-glottic carcinoma were chosen at random. 
Their clinicopathological data is listed below.

Figure 1.  Diagrammatic sketch of study design.
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Glottic laryngeal carcinoma

Variable Training cohort (n,%) N = 3745 Validation cohort (n, %) N = 1610 P value Title 1 Title 2 Title 3

Age (year) 0.954

Entry 1 Data Data

 15–49 238 (6.3) 96 (6.1)

 50–59 774 (20.4) 323 (20.6)

 60–69 1189 (31.4) 502 (32.1)

 70–79 1014 (26.8) 420 (26.8)

  > 79 574 (15.1) 225 (14.4)

Sex 0.066

 Female 495 (13.1) 176 (11.2)

 Male 3294 (86.9) 1390 (88.8)

Histology 0.383

 Other 95 (2.5) 33 (2.1)

 Squamous cell carcinoma 3694 (97.5) 1533 (97.9)

Tumor size(cm) 0.559

  < 1 1148 (30.3) 472 (30.1)

  < 2 11 (0.3) 2 (0.1)

  > 2 2 (0.1) 0 (0)

 Other 2628 (69.4) 1092 (69.7)

RNEval 0.987

 No examination 3452 (91.1) 1433 (91.5)

 Endoscopic examination 73 (1.9) 30 (1.9)

 Autopsy 1 (0) 0 (0)

 RLN removed 225 (5.9) 86 (5.5)

 Endoscopic examination 17 (0.4) 7 (0.4)

 Removed. pathologic 17 (0.4) 8 (0.5)

 Other 4 (0.1) 2 (0.1)

AJCC T 0.647

 T1 2123 (56.0) 878 (56.1)

 T2 823 (21.7) 357 (22.8)

 T3 504 (13.3) 205 (13.1)

 T4 339 (8.9) 126 (8.0)

AJCC N 0.345

 N0 3416 (90.2) 1423 (90.9)

 N1 157 (4.1) 71 (4.5)

 N2a 13 (0.3) 5 (0.3)

 N2b 112 (3.0) 29 (1.9)

 N2c 81 (2.1) 34 (2.2)

 N3 10 (0.3) 4 (0.3)

AJCC M 0.712

 M0 3751 (99.0) 1552 (99.1)

 M1 38 (1.0) 14 (0.9)

AJCC stage 0.8

 Stage I 2072 (54.7) 867 (55.4)

 Stage II 748 (19.7) 323 (20.6)

 Stage III 504 (13.3) 204 (13.0)

 Stage IVa 413 (10.9) 154 (9.8)

 Stage IVb 14 (0.4) 4 (0.3)

 Stage IVc 38 (1.0) 14 (0.9)

Surgery 0.187

 No 2457 (64.8) 1045 (66.7)

 Yes 1332 (35.2) 521 (33.3)

Radiotherapy 0.755

 No 100 (2.6) 39 (2.5)

 Yes 3746 (97.4) 1521 (97.5)

Chemotherapy 0.515

 No 3014 (79.5) 1258 (80.3)

 Yes 775 (20.5) 308 (19.7)

Continued
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Non-glottic laryngeal carcinoma

Variable Training cohort (n, %) N = 2807 Validation cohort (n, %) N = 1208 P value Title 1 Title 2 Title 3

Age (year) 0.144

Entry 1 Data Data

 15–49 232 (8.1) 71 (6.1)

 50–59 885 (31.0) 390 (33.7)

 60–69 1004 (35.1) 406 (35.1)

 70–79 561 (19.6) 225 (19.5)

  > 79 177 (6.2) 64 (5.5)

Sex 0.611

Female 840 (29.4) 349 (30.2)

 Male 2019 (70.6) 807 (69.8)

Histology 0.097

 Other 101 (3.5) 29 (2.5)

 Squamous cell carcinoma 2758 (96.5) 1127 (97.5)

Tumor size(cm) 0.597

  < 1 1676 (58.6) 701 (60.6)

  < 2 11 (0.4) 5 (0.4)

  > 2 7 (0.2) 4 (0.3)

 Other 1165 (40.7) 446 (38.6)

RN Eval 0.137

 No examination 2196 (76.8) 888 (76.8)

 Endoscopic examination 243 (8.5) 115 (9.9)

 Autopsy 2 (0.1) 0 (0)

 RLN removed 364 (12.7) 130 (11.2)

 Endoscopic examination 31 (1.1) 7 (0.6)

 Removed. pathologic 18 (0.6) 14 (1.2)

 Other 5 (0.2) 2 (0.2)

AJCC T 0.78

 T1 454 (15.9) 188 (16.3)

 T2 953 (33.3) 395 (34.2)

 T3 994 (34.8) 382 (33.0)

 T4 458 (16.0) 191 (16.5)

AJCC N 0.431

 N0 1341 (46.9) 514 (44.5)

 N1 461 (16.1) 215 (18.6)

 N2a 61 (2.1) 27 (2.3)

 N2b 387 (13.5) 162 (14.0)

 N2c 531 (18.6) 211 (18.3)

 N3 78 (2.7) 27 (2.3)

AJCC M 0.825

 M0 2756 (96.4) 1116 (96.5)

 M1 103 (3.6) 40 (3.5)

AJCC stage 0.886

 Stage I 297 (10.4) 115 (9.9)

 Stage II 479 (16.8) 188 (16.3)

 Stage III 763 (26.7) 330 (28.5)

 Stage IVa 1132 (39.6) 446 (38.6)

 Stage IVb 85 (3.0) 37 (3.2)

 Stage IVc 103 (3.6) 40 (3.5)

Surgery 0.162

 No 2159 (75.5) 897 (77.6)

 Yes 700 (24.5) 259 (22.4)

Radiotherapy 0.895

 No 121 (4.2) 50 (4.3)

 Yes 2738 (95.8) 1106 (95.7)

Chemotherapy 0.576

 No 1044 (36.5) 433 (37.5)

 Yes 1815 (63.5) 723 (62.5)

Table 1.  The information for laryngeal carcinoma patients in the training set and the validation set. RN Eval 
regular nodes evaluation, AJCC American Joint Committee on Cancer.
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Glottic cancer: Patient 1 is a male, aged 70 to 79 years, with non-squamous cell carcinoma, T3N0, AJCC 
III, undergoing surgery and radiotherapy; tumor size is unknown; Patient 2 is a male, aged 60 to 69 years, with 
squamous cell carcinoma, T3N2c, AJCC IVA, not undergoing surgery and undergoing radiotherapy; tumor size 
is less than 1 cm.

Non-glottic laryngeal carcinoma: Patient 1 is a male, 50–59 years old, squamous cell cancer, T1N0M0, AJCC 
I, surgery, radiation, chemotherapy, tumor size less than 1 cm; Patient 2: Male, 50–59 years of age, squamous 
cell carcinoma, T2N3M0, AJCCIVB, surgery, radiation, no chemotherapy, tumor size less than 1 cm. Figure 7 
depicts their unique forecasting chart.

Discussion
In otorhinolaryngology, head and neck surgery, laryngeal carcinoma is a common malignant tumor. Early laryn-
geal cancer has an occult quality. As examination and treatment techniques advance, the fibrolaryngoscope, for 
instance, is being used more frequently in clinics to play a significant role in early screening for laryngeal cancer. 
Nevertheless, since many patients ignore early symptoms such as hoarseness and throat discomfort, many people 
will mistake them for chronic diseases including chronic pharyngitis, leading to delayed diagnosis and treatment. 
More than 60% of patients are diagnosed with advanced cancer, based on studies, which significantly lowers the 
efficiency of laryngeal cancer  treatment2.

Despite postoperative adjuvant radiotherapy and chemotherapy do not have a favorable prognosis, patients 
with advanced laryngeal cancer with lymph node metastases sometimes undergo partial laryngectomy or even 
total laryngectomy. Patients with early laryngeal cancer have a decent prognosis, and their quality of life will 
significantly diminish as a consequence of total  laryngectomy29. The physical foundation and developmental 
base of the larynx are unique. Glottic type, supraglottic type, and subglottic type are three subtypes of laryngeal 
cancer. The glottic area and subglottic region’s structure is derived from the storage trachea germ base, whereas 
the supraglottic region’s structure is derived from the oropharynx germ. As a result, these two regions have dif-
ferent fibrous fascia and lymphatic drainage systems. Clinically, glottic and non-glottic cancer have significantly 

Figure 2.  The t(train), v(validation), and test cohorts’ Kaplan–Meier curves. The log-rank test revealed no 
statistically significant difference between the two cohorts’ survival rates (P > 0.05). Unit of time: month. (a) 
glottic carcinoma, (b) non-glottic carcinoma.
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Figure 3.  The clinicopathological characteristics of the machine learning model were examined using the least 
absolute shrinkage and selection operator (LASSO) regression. (a) glottic carcinoma, (b) non-glottic carcinoma.

Table 2.  Two types of laryngeal cancer are performed using various survival prediction algorithms. Significant 
values are in bold.

Model C-index

IBS AUC 

1-Year 3-Year 5-Year 1-Year 3-Year 5-Year

Glottic laryngeal carcinoma

 CoxPH 0.650 0.078 0.171 0.202 0.750 0.708 0.706

 RSF 0.687 0.116 0.182 0.195 0.730 0.712 0.703

 XGBoost 0.651 0.082 0.187 0.229 0.660 0.660 0.681

 GBM 0.655 0.083 0.219 0.241 0.719 0.719 0.712

 Deepsurv 0.676 0.076 0.168 0.206 0.709 0.709 0.727

Non-glottic laryngeal carcinoma

 CoxPH 0.638 0.150 0.230 0.227 0.656 0.644 0.650

 RSF 0.657 0.130 0.215 0.220 0.783 0.700 0.682

 XGBoost 0.644 0.147 0.229 0.235 0.696 0.682 0.693

 GBM 0.647 0.149 0.241 0.244 0.692 0.670 0.674

 Deepsurv 0.633 0.160 0.225 0.215 0.688 0.669 0.684
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different risks of lymph nodes and distant metastases. The likelihood of survival varies significantly between 
various forms of laryngeal cancer, too.

There is some research on the likelihood of surviving laryngeal cancer, however, the majority of them use the 
outdated Kaplan–Meier estimator survival model (Kaplan and Meier, 1958), which is unable to incorporate the 
patient’s variables. The obvious drawback of the KM survival model is that diverse clinicopathological variables 
influence how the tumor develops and  evolves5,30.

The CoxPH model, which can handle censored and censored data as well as continuous and sub-type vari-
ables, is suggested as a solution to the problem of covariable fitting. The most used model for predicting survival, 
the CoxPH model, measures the effect of covariables on survival time using a partial regression coefficient and 
risk ratio. CoxPH model’s assumptions that the risk rate is constant and that the logarithm of the risk rate is 
a linear function of the covariable are limiting. If the hypothesis is incorrect, the prediction will be  biased8,31.

Machine learning-based survival analysis has been increasingly used in recent years to forecast the survival 
of tumor patients. Machine learning can handle complex, nonlinear data, extract relevant features and informa-
tion, and enhance the model’s generalizability and accuracy. Machine learning does not need to make as many 
assumptions about data distribution or risk functions as the CoxPH model requires. More significantly, we can 
estimate each patient’s survival after the development of a machine-learning model, which has enormous clinical 
importance. Different machine learning algorithms can be used to handle various types of data and have varying 
properties. Based on the CoxPH model’s survival analysis, RSF, XGBoost, GBM model, and deep learning model 
Deepsurv are added in this work.

Figure 4.  The chart "RSF Model for predicting 3-and 5-year Survival rates of Laryngeal Cancer patients: 
calibration Curve and time-dependent ROC Curve" shows the calibration curve and time-dependent ROC 
curve of RSF model for predicting 3-and 5-year survival rates of laryngeal cancer patients. The calibration curve 
shows the consistency between the predicted survival rate and the actual survival rate, while the ROC curve 
provides the performance of the model under different discriminant thresholds. Month is the unit of time. (a) 
glottic carcinoma, (b) non-glottic carcinoma.
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Many academics have discovered that RSF is a survival analysis model with good performance in earlier 
investigations. It creates several decision trees by self-sampling and combines the outcomes of each tree’s predic-
tions by voting or  averaging32,33.

Of course, similar machine learning studies on the survival analysis of head and neck malignancies, such as 
laryngeal cancer, hypopharyngeal carcinoma, oropharyngeal carcinoma, and nasopharyngeal carcinoma, have 
been conducted by various  researchers34,35. However, as previously mentioned, different embryonic sources and 
fibrous fascia tissues cause laryngeal carcinoma to be divided into different subtypes. Because previous studies 
have not distinguished between different subtypes, there will inevitably be a discrepancy between the expected 
results and the actual results. Based on this, we created the five survival analysis models mentioned above, one 
for glottic carcinoma and the other for non-glottic carcinoma. RSF is an excellent model, to sum up. The C-index 
of two separate subtypes of laryngeal carcinoma RSF reached 0.687 and 0.657, respectively, in the final test set. 
The integrated Brier score (IBS) of their 1-year, 3-year, and 5-year time points is, respectively, 0.116, 0.182, 
0.195 (glottic type), and 0.130, 0.215, 0.220 (non-glottic type). This demonstrates the RSF model’s high degree 
of reliability and strengthens our conclusion. The SHAP plot can also more easily convey how risk factors affect 
specific survival outcomes when compared to the conventional CoxPH analysis nomogram plot. Furthermore, 
using the RSF machine learning model, we can build the individual survival probability curve for any patient and 
display their survival prognosis in a more precise manner. This raises the study’s clinical relevance even further.

This study has some limitations. First of all, glottic carcinoma and supraglottic carcinoma account for the 
vast majority of subtypes of laryngeal carcinoma, and because there is a dearth of data on subglottic type, we are 
unable to develop a survival analysis model for subglottic carcinoma alone. It can only be split into glottic type 
and non-glottic type as a result. Theoretically, a more precise division results in a more precise forecast. Second, 
while not terrible, our model C-index still has to be refined by academics.

In conclusion, we compared the prognostic value of patients with various subtypes of laryngeal cancer using 
five survival prediction model algorithms, and we selected the best RSF algorithm based on which we estab-
lished survival prognosis prediction for patients with two subtypes of laryngeal cancer, model it and depict it. 
To advance customized medicine, we also give professionals a tailored patient prognosis prediction model at 
the same time. Our research demonstrates that the RSF algorithm offers promising therapeutic potential for the 
prognostic prediction of laryngeal cancer.

Figure 6.  The SHAP plot of the RSF model. The vertical axis lists many clinical characteristics, while the 
horizontal axis shows how the variable affected the outcomes. The likelihood of dying increases with a feature’s 
SHAP value. The picture reflects the Shap values predicted by 1-year,3-year, and 5 years. (a) glottic carcinoma, 
(b) non-glottic carcinoma.
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Data availability
The data used in this study are available from the Surveillance, Epidemiology, and End Results Program (SEER) 
database (Incidence-Seer Research Plus Data 17 Registries Nov 2021 Sub).
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