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Challenges in the discovery 
of tumor‑specific alternative 
splicing‑derived cell‑surface 
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Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In 
glioma, profound inter‑ and intra‑tumoral heterogeneity of antigen landscape hampers therapeutic 
development. Therefore, it is critical to consider alternative sources to expand the repertoire of 
targetable (neo‑)antigens and improve therapeutic outcomes. Accumulating evidence suggests that 
tumor‑specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, 
we investigated tumor‑specific AS events in glioma, focusing on those predicted to generate major 
histocompatibility complex (MHC)‑presentation‑independent, cell‑surface antigens that could be 
targeted by antibodies and chimeric antigen receptor‑T cells. We systematically analyzed bulk RNA‑
sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal 
tissue samples (from the Genotype‑Tissue Expression project), and identified 13 AS events in 7 genes 
predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were 
corroborated by an external RNA‑sequencing dataset. Subsequently, we validated our predictions and 
elucidated the complexity of the isoforms using full‑length transcript amplicon sequencing on patient‑
derived glioblastoma cells. However, analyses of the RNA‑sequencing datasets of spatially mapped 
and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity 
of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra 
matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor‑
specific AS events and the challenges of antigen exploration due to their notable spatiotemporal 
heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, 
MHC‑presented antigens could offer a more viable avenue.

Keywords Glioma, Alternative splicing, Antigen, Neojunction, Bulk RNA-sequencing, Long-read 
sequencing, Intratumoral heterogeneity, Proteomics

Over the last decade, cancer immunotherapy, including immune checkpoint blockade (ICB) and chimeric antigen 
receptor (CAR)-T cell therapy, has revolutionized treatments for various types of cancers, notably encompassing 
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hematological malignancies and  melanoma1–3. However, many patients, particularly those with solid tumors, 
including glioma, have not yet experienced commensurate therapeutic  benefits4–6.

The sparsity of targetable antigens is a crucial obstacle for immunotherapeutic approaches targeting specific 
antigens, such as CAR-T, genetically engineered T-cell-receptor (TCR)-T cell, and  vaccines7,8. For the develop-
ment of such therapeutics, multiple critical factors must be considered. For safety and efficacy, it is crucial that 
these targets are both robustly expressed and exclusively present on tumor cells, and absent on non-tumor cells 
and healthy tissues. In particular, antigen tumor-specificity must be assured to avoid on-target/off-tumor cross-
reactions of the infused or induced immune cells, which can sometimes be  lethal9–11. Therefore, tumor-specific 
antigens (neoantigens) arising from somatic mutations have emerged as attractive  targets12. In particular, antigens 
shared among patients would be more suitable for an off-the-shelf approach; however, the number of such tumor-
specific antigens currently available is limited. For example, in the case of glioma, only a few shared antigens 
have been identified and investigated in clinical  trials13. These include mutations, such as IDH1 R132H and 
EGFRvIII in adult  glioma14,15 and H3.3 K27M in pediatric  glioma16,17. Additionally, spatio-temporal and inter- 
and intra-patient heterogeneity amplify this challenge, as glioma is known for its remarkable  heterogeneity18. It 
is anticipated that single antigen-oriented therapies are likely to fail in heterogenous tumors due to tumor clonal 
evolution and antigen  loss15,19. As such, it is crucial to expand the repertoire of antigens so that more patients 
who are otherwise ineligible for currently available therapeutic options can benefit, increasing the chances of 
treatment success.

Recent studies have shown that tumor-specific antigens can arise from sources outside of somatic mutations, 
such as aberrant RNA splicing specific to  cancers7,8. Two studies analyzing the RNA sequencing (RNA-seq) 
data from The Cancer Genome Atlas (TCGA) revealed that tumor-specific alternative splicing (AS) events, 
or “neojunctions,” are abundant and may contribute to expanding the repertoires of therapeutic targets for 
cancer  immunotherapy20,21. Kahles et al. also showed that IDH1 mutations, observed in approximately 24% of 
adult glioma  cases22, are associated with increased genome-wide splicing  disruption20. The studies collectively 
reported that some tumor-specific AS events are shared among the patients, implicating the translational pos-
sibility of cancer immunotherapy targeting these AS-derived antigens. Furthermore, other recent studies have 
provided proof-of-concept data showing that certain AS-derived neoepitopes exhibit protein-level expression 
and demonstrate  immunogenicity23–25. Altogether, these observations indicate that exploring cancer-specific 
AS may expand the repertoire of antigens, particularly in glioma, contributing to the development of successful 
cancer immunotherapy.

In this study, we investigated tumor-specific AS events in glioma as a potential source of untapped antigens, 
with a particular focus on putative cell-surface antigen candidates derived from these events. Importantly, because 
major histocompatibility complex (MHC)-epitope-type antigens have been studied using different analytical 
approaches and reported  separately26,27, our investigation exclusively focused on the AS events occurring at the 
cell-surface that are independent of MHC presentation. These cell-surface candidates could serve as targets for 
antibodies and CAR-T cells in future therapeutic development. Our in silico analyses revealed encouraging find-
ings. However, the examination of our unique datasets obtained from clinical tumor samples, including spatially 
mapped and longitudinally collected specimens, unveiled the unprecedentedly diverse landscape of the candidate 
tumor-specific AS events. These investigations, along with proteomics data, have shed light on the challenges 
associated with this discovery strategy.

Results
Screening analyses to identify the tumor‑specific AS events as potential sources for cell‑ 
surface antigens
We aimed to identify tumor-specific AS events that exhibit: (1) robust expression; (2) presence on the cell surface; 
(3) absence or minimal presence in normal tissues; and (4) shared occurrence among patients. For screening pur-
poses, we developed a discovery analysis workflow with a concept similar to the study of Kahles et al.20. The pre-
vious study comprehensively analyzed transcriptome data of pan-cancer and normal tissues and the underlying 
genetic changes, identified numerous shared tumor-specific exon-exon junctions (neojunctions), and implicated 
expression of AS-derived potential antigens. In the present study, we applied more stringent criteria and focused 
on avoiding on-target-off-tumor effects in future therapeutic development (Fig. 1a). Additionally, to investigate 
the genes encoding cell-surface proteins, we selected 2886 genes encoding “surfaceome” proteins that were identi-
fied using a machine-learning-based predictor SURFY with the Cell Surface Protein Atlas (CSPA) serving as a 
training  dataset28,29. We compared bulk RNA-seq data of adult diffuse glioma in TCGA  datasets30 with those of 
all normal tissues in Genotype-Tissue Expression project (GTEx)31. First, we identified 429 out of 663 primary 
tumor cases in study projects TCGA-GBM and -LGG, which met our criteria of ABSOLUTE-estimated tumor 
purity ≥ 60% (median, 82%; range, 60–100%), for subsequent analyses (Supplementary Table S1)32. The pass-filter 
TCGA-glioma cohort was composed of 166 glioma/glioblastoma, IDH-wildtype (IDHwt), 140 astrocytoma, IDH-
mutant, 1p/19q-non-codeleted (IDH-A), and 123 oligodendroglioma, IDH-mutant, 1p/19q-codeleted (IDH-O) 
 cases33. Simultaneously, we obtained bulk RNA-seq data of 9,166 human normal tissues collected from various 
organs throughout the bodies, including 1,436 brain samples, from the GTEx dataset (Supplementary Table S2)31.

Our analysis workflow initially detected a total of 366,734 distinct splicing junctions with ≥ 10 supportive 
junction read counts in chromosomes 1–22, X, and Y across 429 tumor samples in the TCGA-glioma dataset 
(Fig. 1b). Among these, 168,286 events were defined as non-annotated based on the absence in the Ensembl 
reference gene-transfer format (GTF) file. Of these, 9,041 events were found within the genomic regions of the 
“surfaceome” genes with an average expression of transcript-per-million (TPM) ≥ 10 in the TCGA-glioma dataset. 
Emphasizing tumor-specificity, we carefully compared the analysis results between TCGA-glioma and GTEx, 
and retained only events with a positive sample rate (the number of event-positive samples divided by the total 
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number of samples) < 1% in GTEx samples, which resulted in 5947 “tumor-specific” events passing the filter. 
Finally, aiming for an off-the-shelf approach in future therapeutic applications, we defined events as “shared” 
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Figure 1.  Analysis workflow to identify the tumor-specific AS events as potential sources for cell-surface 
antigens. (a) Overview of the analytic workflow of The Cancer Genome Atlas (TCGA) glioma and the 
Genotype-Tissue Expression (GTEx) project datasets. (b) The number of exon-exon junctions identified in each 
step of the screening analyses.
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if they were commonly found in ≥ 10% cases in any of the disease groups (IDHwt, IDH-A, or IDH-O) within 
the TCGA-glioma dataset, resulting in 66 events retained. Notably, an exon skipping event of exons 2–7 in the 
EGFR gene was identified within the list, exclusively in the IDHwt group of the analysis cohort. The event was 
consistent with the genomic rearrangement mutation EGFRvIII, relatively common (~ 20%) in IDH-wildtype 
 glioblastoma34. EGFRvIII is not an alternative splicing event but a genomic rearrangement with an in-frame dele-
tion of exons 2–7, affecting the extracellular domains but retaining the intact transmembrane and intracellular 
components, leading to constitutive activation of downstream pathways, such as the PI3K/Akt  signaling34. We 
utilized EGFRvIII as a positive control throughout the downstream analyses hereafter.

Furthermore, we investigated intron-retention (IR) type events separately using  IRFinder35. Similar to the 
exon-exon junction investigation, we compared the intron expression profiles of tumor samples from IDHwt 
(n = 166), IDH-A (n = 140), and IDH-O (n = 123) in the TCGA-glioma dataset with those from normal brain 
samples in the GTEx dataset (n = 1436). Through differential intron retention analysis, we identified 893 dis-
tinct events that exhibited significantly higher expression in TCGA-glioma samples (adjusted P < 0.05). Among 
these, 55 events were located within the genomic regions of “surfaceome” genes with an average expression of 
TPM ≥ 10 in the TCGA-glioma dataset. However, when defining events with an IRratio > 0.1 and coverage of 
≥ 3 reads across the entire intron, as  recommended35, all 55 candidate events were positive in more than 1% of 
GTEx-brain samples. Moreover, none of these events were present in 10% or more of the cases in any disease 
groups (IDHwt, IDH-A, or IDH-O) in the TCGA-glioma dataset (Supplementary Table S3). As such, due to the 
absence of tumor-specific IR events, we focused on the exon-exon junction events hereafter.

Among the identified 66 tumor-specific AS events, 42 events were predicted to occur within extracellular 
segments of the proteins. We then performed an in silico translation of the nucleotide sequence of the identi-
fied events into an amino-acid sequence. Approximately two-thirds of the events (26, 61.9%) were predicted to 
generate premature termination codons (PTCs) due to frame-shift changes and were excluded from the subse-
quent analysis. Only events predicted to cause alterations within the extracellular region of the molecule, while 
retaining intact transmembrane segments, were regarded as “pass-filter” and retained. After careful manual 
review, along with the positive control EGFRvIII, 13 additional events from 7 genes—BCAN, TREM2, NRCAM, 
PTPRZ1, NCAM1, NCAM2, and DLL3 passed all the filters and were identified as the most promising candidates 
(Fig. 1b and Supplementary Table S4).

Characteristics of the identified 13 AS events
Among 2,886 surfaceome genes tested, 737 genes had median expression TPM values ≥ 10 in the TCGA-glioma 
cohort (Fig. 2a). Out of the 8 genes above, 6 were identified in the top 60 genes (BCAN, average TPM 1505 [1st]; 
PTPRZ1, 589 [13th]; NCAM1, 249 [29th]; EGFR, 185 [41st]; NRCAM, 169 [45th]; DLL3, 144 [54th]). All eight 
genes were significantly highly expressed in TCGA-glioma samples compared with the GTEx normal tissue 
samples (Fig. 2b and Supplementary Fig. S1).

For each of the 13 events and EGFRvIII, the identified AS pattern, the abundance of the supportive read 
count, and the frequency are displayed in Fig. 2c–p and Supplementary Fig. S1. The patterns included alterna-
tive 3’ splice-site (n = 7 events), alternative 5’ splice-site (n = 4), exon skipping (n = 1, “NRCAM-01”), and cryptic 
intron (n = 1, “PTPRZ1-04”). Reflecting the higher gene-level expressions, most read counts were substantially 
higher in TCGA-glioma samples than in the GTEx normal tissue samples. For certain events, such as BCAN-01 
and PTPRZ1-02, many of the “event-positive” cases displayed junction read frequencies of approximately 10%. 
Conversely, the rest of the events displayed a junction-supportive read frequency between 1 and 5% across the 
majority of the TCGA-glioma cases. A positive control event EGFRvIII exhibited an outstandingly higher fre-
quency spanning 50–90%, highlighting its amplification  status34.

Regarding the positive sample rate, each event exhibited distinct patterns among the disease groups. For 
instance, BCAN-01, BCAN-03, NRCAM-01, NCAM-01, DLL3-01, -02, and NCAM2-01 were more frequently 
positive in the IDH-O, or both IDH-A and IDH-O groups. In contrast, PTPRZ1-03 was predominantly observed 
in the IDHwt group, similar to EGFRvIII. When the positive sample rate is set to < 1% specifically for normal 
brain tissues, 7 out of 13 events exhibited slightly higher positive sample rates than 1%, indicating tissue-specific 
predisposition of these AS events (Supplementary Fig. S3 and Supplementary Table S5). Furthermore, certain 
events displayed a relatively high positive sample rate across the disease groups in common. For instance, BCAN-
01 was positive in 15.7% of IDHwt, 33.6% of IDH-A, and 42.3% of IDH-O cases, with a rate of 0.2% in GTEx 
samples. Similarly, PTPRZ1-02 exhibited positivity in 18.1% of IDHwt, 16.4% of IDH-A, and 24.4% of IDH-O 
cases, while the rate was 0.15% in GTEx samples. These findings collectively suggest the potential of an off-the-
shelf approach in future therapeutic development, although inter-disease differences should also be thoroughly 
considered.

Moreover, we analyzed additional transcriptome (bulk RNA-seq) data of patient-derived xenograft-origin 
glioblastoma (PDX-GBM) cell lines (n = 66)36 both for validation purposes as well as screening purposes for the 
subsequent experimental investigation. Among the candidates mentioned above, 10 out of 13 were found to be 
present, with 9 present in multiple cases, along with EGFRvIII (Supplementary Fig. S4). Overall, the analysis of 
this external dataset provided further evidence supporting that these candidate AS events are present in other 
datasets.

Validation of predicted cryptic transcripts using full‑length amplicon sequencing
An inherent shortcoming of ordinal bulk RNA-seq is the inability to determine full-length transcript sequences 
solely based on short-read sequencing, especially for isoforms with high  complexity37–39. To address this limita-
tion and provide a foundation for further investigations, we conducted full-length amplicon sequencing using the 
MinION, a nanopore sequencer from Oxford Nanopore Technologies, on eight PDX-GBM cell  lines36. We chose 
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Figure 2.  Characteristics of the identified candidate cell-surface tumor-specific AS events. (a) Dot plots illustrating the 
gene-level expression of cell-surface (“surfaceome”) genes in the TCGA-glioma dataset. Genes with an average expression 
of TPM ≥ 10 are depicted in color, while those with an average TPM < 10 are shown in gray. The eight genes identified 
as the final candidates are labeled for reference. (b) Dot and violin plots depicting the gene level expression of the eight 
genes in each sample group. Statistical analysis data is provided in Supplementary Fig. S1. (c–p) Details of the 13 identified 
events and EGFRvIII as a positive control. Each event is accompanied by a schematic illustration of the identified AS 
pattern, total supportive read count, supportive read frequency, and positive sample rate (PSR) in each sample group. The 
numbers in the schema indicate the genomic coordinates of the junction edges on the human genome hg19. Note that 
the Y-axis scales for the ‘count’ panels vary across the events, while those for ‘frequency’ and PSR remain consistent. In the 
panels of ‘count’ and ‘frequency,’ only ‘positive’ cases are shown as colored dots, while all others are in gray. The violin plots 
are drawn against all cases. Relevant datasets are provided in Supplementary Figs. S2 and S3.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6362  | https://doi.org/10.1038/s41598-024-56684-0

www.nature.com/scientificreports/

to focus on PTPRZ1 for this experiment because of its robust expression and the highest number of predicted 
AS events (n = 4) in the candidate list.

We designed the PCR primer pair to bind the 5’- and 3’- untranslated regions (UTRs), allowing us to amplify 
the entire coding sequence (CDS) (Fig. 3a). Following the PCR amplification, we observed various amplicon 
lengths, in addition to the expected size compatible with a canonical transcript PTPRZ1-002 (ENST00000449182, 
4,875 bp), on agarose gel electrophoresis (Fig. 3b and Supplementary Fig. S5). After purification, we prepared the 
amplicon library, barcoded, pooled, and sequenced the samples using a MINION sequencer. Consistent with the 
observation on the agarose gel electrophoresis, the subsequent analysis revealed the distribution of the various 
lengths of the sequencing reads mapped on hg19 chromosome 7, where the PTPRZ1 gene is located (Fig. 3c). We 
further analyzed the acquired data using the FLAIR  platform40. This analysis identified 357 different isoforms, 
each supported by 3 or more sequencing reads. Among these, the top 50 most frequently identified isoforms are 
displayed in Fig. 3d and Supplementary Fig. S6.

In this analysis, based on Ensembl GRCh37, we defined PTPRZ1-001 and -002 (ENST00000393386 and 
ENST00000449182) as the two canonical isoforms of the PTPRZ1 gene. Across all eight samples, PTPRZ1-002 
was consistently the second most frequently detected isoform (average, 20%; range, 12.1–29.3%), while the 
other isoform, PTPRZ1-001, was observed less frequently (average, 1.2%; range, 0.04–6.3%). Interestingly, the 
most frequently detected transcript was a variant of PTPRZ1-002 containing exon 16 (ENSE00001288312). This 
exon was present in PTPRZ1-001 but absent in PTPRZ1-002. Given that it was the most frequently detected 
isoform (average: 35.6%, range: 25.2–43.5%), that none of the junctions used in the transcript are cryptic, and 
that the length of exon 16 (21 nt) does not affect the reading frame, we consider this variant also canonical. We 
have designated it as “PTPRZ1-002+E16” in this study. On the other hand, the two most frequently detected 
non-canonical isoforms were PTPRZ1-002+E16 containing AS-02 (corresponding to an AS event PTPRZ1-02 in 
Fig. 2; average, 8.3%; range, 5.8–9.9%) and PTPRZ1-002+E16 containing AS-01 (average, 5.5%; range, 4.0–6.5%). 
Additionally, as shown in Fig. 3e–f, other identified non-canonical isoforms include those harboring both AS-01 
and AS-02 (7th most frequent), exon-skipping of the exon 2 (8th), IR of the intron 7 (9th), and AS-01, -02, and 
03 (31st). Notably, all the four AS events predicted from short-read data (PTPRZ1-01, −02, −03, and −04) were 
detected either individually or in combination with other AS events (average, −01, 14.0%; −02, 19.8%; −03, 0.3%; 
−04, 1.3%) (Fig. 3e–f). Specifically, AS-01 and AS-02 denote 3’-alternative splice site-type events, resulting in 
the loss of one amino acid each, while AS-03 represents a 5’-alternative splice site-type event leading to a loss of 
356 amino acids. AS-04 indicates a novel intron within exon 12 of PTPRZ1, resulting in a loss of 270 amino acids 
(Fig. 2h–k). Intriguingly, this full-length amplicon sequencing also revealed the co-occurrence of multiple AS 
events within a single transcript, which is challenging to discern solely through short-read sequencing.

Taken together, our full-length amplicon sequencing assay substantiates the presence of several candidate 
AS events predicted based on short-read sequencing. Furthermore, the co-occurrence of multiple AS events 
underscores their complexity and highlights the utility of long-read sequencing-based investigation in identify-
ing and characterizing cryptic isoforms.

Spatiotemporal heterogeneity of tumor‑specific AS events in clinical tumor samples
Spatial, temporal, inter-patient, and intra-patient heterogeneity are among the most prominent characteristics of 
glioma, which makes the disease more difficult to  treat18,41–44. However, in contrast to the well-studied mutational 
landscape, our understanding of the AS landscape remains limited. This knowledge gap is particularly critical 
in antigen-oriented immunotherapy, where high heterogeneity increases the risk of antigen loss and treatment 
failure. To this end, we explored two unique datasets of clinical sample transcriptomes: (1) those collected 
through spatially mapped multi-sampling and (2) those obtained longitudinally from primary and recurrent 
paired tumor samples within the same individual patients.

In the first dataset, we examined transcriptomes of 169 tumor pieces from 24 primary gliomas (3–12 pieces 
with sufficient tumor purity per patient, averaging 7 pieces) (Fig. 4a–b, Supplementary Table S6). Notably, intra-
tumoral heterogeneity was prominent in most cases and events. Tumor-wide (100%) positivity was exhibited only 
for four event-case pairs (PTPRZ1-03 in tumor T2; NCAM1-01 in T24; DLL3-02 in tumors T15 and T16). While 
certain events, such as BCAN-02, PTPRZ1-03, and DLL3-02, displayed relatively homogenous positivity, many 
others were highly heterogeneous. Interestingly, even EGFRvIII, one of the most common genetic rearrangement 
mutations in IDHwt gliomas, exhibited non-negligible intratumoral heterogeneity—three tumors (T1, T2, T3) 
displayed positivity in multiple tumor pieces, yet none of them were tumor-wide.

In the second dataset, we investigated the transcriptomes of 23 tumors, encompassing 11 pairs/sets of primary 
and recurrent tumors, including 4 with multisampling tissue collections (Fig. 4c–d, Supplementary Table S7). 
As shown in Fig. 4d, when defining the positivity as ≥ 50%, only 10 events (event-patient pairs) were shared 
between primary and recurrent tumors in this analysis, and most of the detected events were transient—either 
disappeared or newly emerged at the time of recurrence.

Our investigations of clinical samples reveal remarkable spatiotemporal heterogeneity in candidate AS events, 
underscoring the challenges associated with the development of AS-derived antigen-targeting therapeutics.

CPTAC proteomics data analyses fail to detect candidate AS‑derived peptide signals
Protein-level expression is pivotal for antigens to elicit host immunity and to be targeted for immunotherapy. 
However, transcripts harboring alterations are more likely to undergo degradation before translation, often 
through nonsense-mediated mRNA  decay45. Therefore, validating their protein-level expression is crucial. To 
address this question, we re-analyzed a publicly available proteome dataset from the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC)46.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6362  | https://doi.org/10.1038/s41598-024-56684-0

www.nature.com/scientificreports/

AS-01

14.0%

0.2%

19.8%

positive negative

1.3%

AS-03 AS-04

AS-02

0 2000 60004000
size (bases)

co
un

t

8000

4×105

2×105

0

3

2

4
5
6
8

10
15
20

48.5
(kb)

GB
M6

no
tem

pla
te

GB
M3
9

GB
M4
3

GB
M6
4

GB
M7
5

GB
M1
17

GB
M1
26

GB
M2
29

a

d

f

c

b

Fwd Rev

1exon 2 3 4 5 6 7 8 9 1011 12 13141516171819 20 21 22 23242526 27 28 29 30

PTPRZ1-001
PTPRZ1-002
PTPRZ1-002+E16

100
(%)

80

60

40

20

0

GB
M6

GB
M3
9

GB
M4
3

GB
M6
4

GB
M7
5

GB
M1
17

GB
M1
26

GB
M2
29

e

amplicon library

MinION flowcell
priming and

library loading

amplicon
sequencing

base
calling

Fast5
files

total
FastQ
files

nanopore
sequencer

GBM-PDX
cell line total RNA cDNA

full-length
transcript

amplification

alignment

isoform identification,
quantification

RNA
extraction

cDNA
synthesis

PTPRZ1-002+E161

PTPRZ1-0022

template ES/IR neojunctions

PTPRZ1-002+E16 + AS-023

PTPRZ1-002+E16 + AS-014

rankcolor

PTPRZ1-00111

PTPRZ1-002+E16 + ES-E28

PTPRZ1-002+E16 + AS-01/027

+ AS-04PTPRZ1-00114

PTPRZ1-002+E16 + IR-I79

31 PTPRZ1-001 + AS-01/02/03

1 2 3 4 5 6 7 8 9 1011 12 13 1415161718 19 20 21 22 23 2425 26 27 28 29 30
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(UTRs), respectively. (b) Agarose gel electrophoresis of the PTPRZ1 full-length transcript amplicon. The 
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Supplementary Fig. S6. (e) Pie chart displaying the percentages of total reads of all isoforms involving each 
candidate AS event. (f) Schematic illustration of representative canonical and cryptic isoforms found in the 
top 50 isoforms. The colors in the left square correspond to Fig. 3e. The rank number indicates the ranking 
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Consistent with the original analysis pipeline, we employed the software MSGF+ with a modified human pro-
teome reference file that incorporated all the predicted cryptic protein FASTA sequences. As shown in Fig. 5a–b, 
the analysis successfully detected two distinct peptide spectra matching EGFRvIII-specific peptide fragments 
with statistical significance. In this analysis, however, none of the predicted AS-derived candidates were reliably 
supported by mass spectral signals. Among those examined, BCAN-03 exhibited the lowest E-value and Q-value, 
but did not reach statistical significance.

We also applied quantitative analysis using the software  MASIC47 to investigate the relative intensity of each 
detected peptide spectrum. One of the two EGFRvIII-specific peptide fragments (KGNYVVTDHGSCVR) dis-
played a significantly higher average value in tumor samples than normal controls (average: 2.99 vs. 1.06, P = 0.02) 
(Fig. 5c). Similarly, the other EGFRvIII-specific peptide (GNYVVTDHGSCVR) exhibited a similar trend but did 
not reach statistical significance (average: 2.42 vs. 1.59, P = 0.12). In contrast, no difference was observed between 
tumor and normal samples concerning the BCAN-03-related peptide candidate (average: 1.43 vs. 1.27, P = 0.61). 
Since the wild-type proteins corresponding to the candidate AS events were expressed and detectable within the 
dataset (Supplementary Fig. S7), it seems unlikely that the failure to detect the predicted aberrant peptide signals 
can be attributed to the lack of absolute wild-type protein expressions. Therefore, the protein-level expression for 
the predicted AS candidate events was not supported by the proteomics analysis, except for the positive control 
EGFRvIII, despite such a large-scale cohort dataset (n = 99 tumors). These observations underscore the challenges 
and uncertainties in the discovery of tumor-specific AS-derived cell-surface antigens.
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Discussion
In this study, we embarked on a multi-layered exploration of tumor-specific AS events in glioma. Our primary 
goal was to uncover a potential reservoir of untapped antigens, specifically identifying cell-surface antigen can-
didates derived from these tumor-specific AS events. The screening analysis comparing the TCGA-glioma and 
GTEx normal tissue datasets identified 13 tumor-specific AS events as top candidates for further scrutiny. To 
reinforce our findings, we conducted full-length transcript amplicon sequencing, providing additional evidence 
of the predicted AS patterns within the expressed transcripts.

Notably, our analysis of unique clinical tumor sample datasets, both spatially mapped and longitudinally 
collected, revealed a complex landscape characterized by profound spatio-temporal and inter- and intra-patient 
heterogeneity in the predicted AS events. This heterogeneity, observed across different patients, diverse tumor 
fragments, and distinct stages of disease progression, emerged as a prominent feature of our investigation. 
Moreover, through the re-analysis of the CPTAC proteome data, we were unable to corroborate the protein-level 
expression of the predicted tumor-specific AS-derived antigen candidates.

While our pursuit for tumor-specific antigen discovery has not yielded the expected results, the findings 
from our study still hold several valuable implications. First, the analysis of two unique datasets of clinical 
tumor samples, meticulously curated within our institution, shed light on the intricate transcriptomic diversity 
of these tumors. The analysis of the spatially mapped tumor dataset revealed the rarity of “tumor-wide” events, 
with most detected events exhibiting intratumoral heterogeneity, including EGFRvIII. Second, temporal hetero-
geneity was revealed as prominent, with only a limited number of events shared between primary and recurrent 
tumors within our analyzed dataset. It is plausible that heterogeneous genomic variants may alter spliceosome 
recognition sites, contributing to the diverse landscape of alternative splicing events within  tumors21. While 
certain aspects of this heterogeneity may also stem from technical constraints intrinsic to sequencing and sub-
sequent analysis, it underscores the significance of recognizing intra- and inter-tumoral heterogeneity in future 
endeavors of therapeutic development. Otherwise, targeting suboptimal antigens will likely cause clonal evo-
lution and antigen  loss15,19,48, leading to treatment failure. Therefore, irrespective of genomic, transcriptomic, 
and post-translational events, future antigen discovery efforts should carefully integrate considerations for this 
spatio-temporal heterogeneity issue, particularly in tumors recognized for their heterogeneity, as exemplified 
by  glioma18.

Third, a fundamental principle in antigen exploration emphasizes the significance of evaluating protein-
level expression. A limitation of this study is that the CPTAC-GBM proteome dataset primarily consists of only 
glioblastoma cases, with all but one case being  IDHwt46. Indeed, our transcriptome-based screening analyses 
indicated a more frequent presence of certain candidate AS events in IDH-mutant tumors. In a separate study, 
our group investigated mechanistic insights into the differences in AS patterns across disease types, including 
the contributions of chromosome aberrations and copy number  variants27. In addition, in this study, we did not 
analyze and incorporate the transcriptomic data for the CPTAC-GBM samples. Therefore, we acknowledge a 
limitation: it is uncertain whether these samples carry the same AS events at the transcriptome level. Neverthe-
less, the absence of peptide signals from these candidate AS-derived peptides, in contrast to the positive control 
EGFRvIII, implies their elusive nature within detectable ranges. In most scenarios, antibody or CAR-T cell 
recognition positively correlates with the abundance of surface  antigens49. Although it is crucial to bear in mind 
that the absence of evidence does not necessarily indicate evidence of absence, our analytical findings did not 
provide a compelling rationale for further pursuit of this avenue in antigen discovery.

Our study additionally highlights the value of long-read sequencing-based investigation using a nanopore 
platform. Full-length transcript amplicon sequencing revealed a complex landscape of isoforms involving the 
co-occurrence of multiple AS events, which cannot be accurately determined only through short-read-based 
sequencing. When interpreting the data, it is imperative to be cautious regarding any quantitative analysis due 
to the PCR amplification bias introduced as part of the library preparation  workflow50. Nevertheless, determin-
ing the full-length transcript sequence is pivotal for precise antigen prediction since it can directly influence the 
reading frame, swiveling between an in-frame and frame-shift configuration. While our full-length transcript 
amplicon sequencing focused on PTPRZ1 as the only target in this study, leveraging a more high-throughput 
approach could be considered for future antigen discovery attempts involving AS.

Lastly, in the context of antigen discovery exploration or prediction of this nature, it is crucial to always bear 
in mind that there are no definitive thresholds for ensuring efficacy and  safety7–11,51. We set arbitrary thresholds, 
such as a junction-supportive read frequency of < 1% and a positive sample rate of less than 1% in the GTEx 
samples, referring to a previous study by Kahles et al.20. While we aimed to establish stringent criteria emphasiz-
ing tumor-specificity and safety, it is anticipated that analyses with different criteria will identify dissimilar sets 
of candidates, considering the inevitable trade-off relationship between sensitivity and specificity. Furthermore, 
despite this stringency, the designation of “less than 1%” does not guarantee an adequate level of safety. Following 
the discovery phase, the safety profile must be ensured through rigorous assessments of novel antigen candidates.

Conclusions
In conclusion, our investigation shed light on the challenges in exploring tumor-specific AS-derived cell-surface 
antigens. Their remarkable spatiotemporal heterogeneity and elusive nature at the protein levels underscore a 
formidable challenge. We should incorporate the lessons learned during this quest as we chart our course. Redi-
recting our efforts toward intracellular, MHC-presented antigens arising from  AS27 and other tumor-specific 
post-translational events could offer a more viable avenue. This path may offer more attainable prospects within 
the expansive landscape of cancer immunotherapy.
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Methods
Data downloading from the TCGA and GTEx projects
Regarding the TCGA-glioma dataset, raw RNA-seq BAM files of the primary tumor cases found in the study 
projects TCGA-GBM and TCGA-LGG were downloaded through GDC Data Portal website (https:// portal. 
gdc. cancer. gov/) in February 2019. These BAM files were converted to FASTQ format using Picard (v2.17.1) 
SamToFastq function with default settings. For the GTEx dataset, paired-end FASTQ files were downloaded 
using pfastq-dump (v0.1.6, github.com/inutano/pfastq-dump) with the ‘–split-files’ option. Access permission 
to protected data on dbGaP was obtained under project number 14627. Clinical, pathological, molecular diag-
nosis information, and ABSOLUTE-estimated tumor purity data were gathered for the TCGA dataset from 
the  reference32. After excluding the samples with unknown or low tumor purity (ABSOLUTE-estimated tumor 
purity < 0.6) and those lacking essential molecular diagnosis information, 429 tumor samples were retained 
for this study (115 and 314 tumor cases from TCGA-GBM and TCGA-LGG cohorts, respectively). Based on 
the IDH1/2 mutation and chromosome 1p/19q statuses, the tumor samples were classified into glioma IDH 
wildtype (IDHwt), astrocytoma, IDH-mutant, 1p/19q-non-codeleted (IDH-A), or oligodendroglioma, IDH-
mutant, 1p/19q-codeleted (IDH-O)33. For the GTEx dataset, annotation information for organs and tissue types 
was obtained from GTEx_v7_Annotations_SampleAttributesDS.txt, available on the GTEx Data Portal website 
(https:// www. gtexp ortal. org/ home/ downl oads/ adult- gtex# metad ata). RNA-seq gene expression abundance data 
of both the TCGA and the GTEx datasets were downloaded through the UCSC Xena-Toil web portal (dataset ID: 
TcgaTargetGtex_rsem_gene_tpm; filename: ‘TcgaTargetGtex_rsem_gene_tpm.gz’; version: 2016-09-03)52. The 
downloaded log2(transcript-per-million [TPM] + 0.001) values were transformed back to original TPM values 
for subsequent quantitative analyses and visualization.

RNA sequencing read alignment
A genome index was built using STAR (v2.7.7a) and a reference genome ‘GRCh37.primary_assembly.genome.
fa’ downloaded from GENCODE, along with ‘Homo_sapiens.GRCh37.87.chr.gtf ’ from Ensembl. The follow-
ing command was used: STAR –runMode genomeGenerate –genomeDir $GENOME –genomeFastaFiles $FASTA 
–sjdbGTFfile $GTF –sjdbOverhang 100 –runThreadN $N. Then, FASTQ reads were aligned to the human refer-
ence genome hg19, generating BAM files and SJ.out.tab files for each sample. The alignment process followed 
the command reported by Kahles et al.20: STAR –genomeDir $GENOME –readFilesIn $FQ1 $FQ2 –runThreadN 
$N –outFilterMultimapScoreRange 1 –outFilterMultimapNmax 20 –outFilterMismatchNmax 10 –alignIntronMax 
500000 –alignMatesGapMax 1000000 –sjdbScore 2 –alignSJDBoverhangMin 1 –genomeLoad NoSharedMemory 
–limitBAMsortRAM 70000000000 –readFilesCommand cat –outFilterMatchNminOverLread 0.33 –outFilter-
ScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif –outSAMattributes NH HI NM 
MD AS XS –limitSjdbInsertNsj 2000000 –outSAMunmapped None –outSAMtype BAM SortedByCoordinate –out-
SAMheaderHD @HD VN1.4 –twopassMode Basic –outSAMmultNmax 1. Samtools (v.1.10) was used for sorting 
and indexing the generated BAM files. The resulting BAM files and the SJ.out.tab files containing detected junc-
tion information were utilized for subsequent analyses.

Identification of “surfaceome” genes
To investigate the genes encoding cell-surface proteins, we selected 2,886 “surfaceome” genes, referring  to28. 
Amino acid position information of the extracellular segment was also obtained from the same database. The 
genomic coordinates of each gene were obtained from the GTF files described above, and were referred to for 
matching of the junction coordinates.

Identification of the exon‑exon splicing junctions
Quantitative information regarding the high-confidence collapsed splice junctions was extracted from the STAR-
generated SJ.out.tab files. A unique junction ID was defined based on the information in columns 1–4 (chro-
mosome, first base of the intron, last base of the intron, and the strand). The column 7 provided the count of 
uniquely mapped reads crossing the junction, allowing for the acquisition of quantitative data for each unique 
splicing junction.

The positivity of a junction in each sample was determined based on the following three factors: (1) the junc-
tion supportive read count; (2) the read depth at the junction; and (3) the junction supportive read frequency. 
The junction supportive read count represents the number of uniquely mapped reads as described earlier. For 
each investigated junction, the most dominant overlapping junction was defined either by the most abundant 
‘annotated’ junction or, if no ‘annotated’ junctions were present, by the most abundant junction in the total 
TCGA-glioma samples. For each junction, the selected same most dominant overlapping junction was applied 
to both the TCGA-glioma and the GTEx datasets. The read depth was calculated as the sum of the junction read 
count and the corresponding most dominant overlapping junction. The junction supportive read frequency was 
obtained by dividing the junction-supportive read counts by the read depth. Due to substantial differences in 
RNA-seq data size and detected total junction read counts between the TCGA-glioma and the GTEx datasets (the 
total read count in RNAseq data: 1.3 ×  108 and 8.8 ×  107, respectively; t-test P = 5.5 ×  10–118; the total number of 
uniquely mapped junction reads on average: 6.1 ×  106 and 4.7 ×  106, respectively; t-test P = 7.5 ×  10–5; Supplemen-
tary Fig. S8a–b), different cut-off values were applied to determine the positivity for each event. For the TCGA-
glioma dataset, junctions with (1) junction-supportive read counts ≥ 10, (2) read depth at the junction ≥ 20, and 
(3) junction-supportive read frequency ≥ 0.01 (1%) were considered positive for the event. In the GTEx dataset, 
junctions with (1) read counts ≥ 2, (2) read depth ≥ 10, and (3) read frequency ≥ 0.01 were deemed positive for the 
event. For each identified distinct event, the positive sample rate (PSR) was determined by dividing the number 
of positive samples by the total number of samples in the group (n = 166 for IDHwt; n = 140 for IDH-A; n = 123 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/downloads/adult-gtex#metadata
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for IDH-O; n = 9,166 for all GTEx samples). Events with PSR < 0.01 (1%) in the GTEx samples were defined as 
tumor-specific, while those with PSR ≥ 0.1 (10%) in at least one disease group (either IDHwt, IDH-A, or IDH-O) 
were considered shared events.

Intron retention analysis
For the detection of intron retention (IR)-type AS events, the RNA-seq BAM files of both the TCGA-glioma 
(n = 429) and the brain samples of the GTEx datasets (n = 1436) were analyzed using IRFinder (v1.2.3)35. The 
command used to generate the output file ‘IRFinder-IR-nondir.txt’ was as follows: IRFinder -m BAM -r REF/
Human-hg19-release75 -d $DIRECTORY $BAM.

Differential IR analysis was conducted by passing the above IRFinder result files to  DESeq253 in the R inter-
face. The fold change of IR between the two groups was tested using a generalized linear model (GLM) based on 
the provided design matrix, following the software  recommendation35. The analyses were repeated by comparing 
the 1436 brain samples in the GTEx dataset and (1) IDHwt (n = 166); (2) IDH-A (n = 140); (3) IDH-O (n = 123). 
In each comparison, events that were more frequent in tumor samples (positive fold change values) with adjusted 
P values < 0.05 were considered significantly differentially expressed and retained. In the subsequent investigation, 
events with an IRratio > 0.1 and at least coverage of three reads across the entire intron were defined as positive 
in the sample, as recommended by the  developer35.

In silico translation into amino acid sequences
For each candidate AS event, one or more canonical isoforms were identified as the templates. For instance, in 
the case of PTPRZ1, which has two canonical isoforms (ENST00000393386 [8175 bp] and ENST00000449182 
[4875 bp]), both were used as templates for PTPRZ1-related candidate AS events. The altered nucleotide sequence 
for each candidate AS event was predicted based on the genomic coordinates of the event and the nucleotide 
sequence of the corresponding template transcripts. This process utilized the R packages ‘GenomicRanges,’ 
‘ensembldb,’ ‘EnsDb.Hsapiens.v75,’ and ‘BSgenome.Hsapiens.UCSC.hg19’. The predicted nucleotide sequences 
with alterations were translated into amino acid sequences using the DNAString() and translate() functions in 
the R package ‘Biostrings’. Any termination codons, including the PTCs, were marked by asterisks (*) in the 
output. The same in silico translation was also performed with the wildtype sequence and cross-validated with 
the sequence information in the Ensembl database to ensure accuracy.

Filtering steps to identify non‑annotated, highly expressed, cell‑surface, tumor‑specific 
exon‑exon junctions
The following filtering steps were employed to identify the non-annotated, tumor-specific, expressed, and sur-
faceome-gene-derived AS events:

1. Examination of all exon-exon splicing junctions with a junction-supportive read count of ≥ 10 in the 429 
samples of the TCGA-glioma cohort, resulting in the listing of all unique junction IDs (n = 366,734 unique 
junctions).

2. Exclusion of junctions found in the reference junction database generated by STAR based on the reference 
GTF file, retaining only the “non-annotated” junctions (n = 168,286).

3. Retention of junctions overlapping with any portion of the genomic coordinates of the surfaceome genes 
that have an average gene expression TPM value ≥ 10 in the TCGA-glioma dataset (n = 9041).

4. Retention of events with a PSR < 0.01 (1%) in the GTEx samples, labeled as “tumor-specific” (n = 5947).
5. Retention of events with a PSR ≥ 0.1 (10%) in either IDHwt, IDH-A, or IDH-O, categorized as “shared” events 

(n = 66).
6. Retention of events affecting the extracellular segments, based on the extracellular segment information 

from the surfaceome database (n = 42).
7. Evaluation of the predicted altered amino acid FASTA sequence information for each pass-filter event, con-

sidering whether the consequence is in-frame or frame-shift, whether PTCs are induced, and whether the 
transmembrane segment is intact. Because of the complexity of the prediction, multi-pass proteins (those 
with multiple transmembrane segments) were excluded. Events predicted to be without PTCs and with intact 
transmembrane segments were retained (n = 14).

8. Manual examination and confirmation of these pass-filter events.

Validation analysis with an external dataset
For both in silico and experimental validations, we obtained raw bulk RNA-seq data of glioma patient-derived 
xenograft (PDX) models (n = 66 tumors) from the Mayo Clinic GBM PDX National  Resource36 via the NCBI 
Gene Expression Omnibus (GEO) under Accession PRJNA548556. Paired-end FASTQ files were downloaded 
using pfastq-dump (v0.1.6) with the following option ‘—disable-multithreading –split-3 –split-files – s $SRA_ID’. 
The processing of the downloaded FASTQ files, quantification of the splicing junctions, and assessment of the 
presence of the junctions in each sample were all performed in the same manner as for the TCGA-glioma dataset.

Tumor cell line culture
From the Mayo Clinic GBM PDX National  Resource36, we obtained the following 8 GBM-PDX cell lines under 
the material transfer agreement: GBM6, 39, 43, 64, 75, 117, 126, and 229. These cells were maintained in com-
plete NeuroCult media, which consisted of NS-A Basal Medium (Human) (STEMCELL Technologies, 05750) 
supplemented with 10% NeuroCult™ Proliferation Supplement (Human) (STEMCELL Technologies, 05753), 
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heparin solution (final concentration, 2 µg/mL, STEMCELL Technologies, 07980), recombinant human EGF 
(20 ng/mL, PeproTech, AF-100-15), recombinant human FGF-basic (20 ng/mL, PeproTech, 100-18B), and 1% 
Penicillin–Streptomycin (Gibco, 15070063). The cells were cultured in spheroid form on culture dishes with an 
ultra-low attachment surface (Corning, 3471, 3473, 3814, or 4616) and maintained in a humidified incubator 
at 37°C with 5% CO2. Passaging of the cells was performed by dissociating them using Accutase (Innovative 
Cell Technologies, AT104) and then plating them onto new culture dishes. EGF and FGF-basic were directly 
supplemented to the media twice a week during maintenance. Regular testing for mycoplasma infection was 
conducted every 3–4 months using the PlasmoTest mycoplasma detection kit (InvivoGen, catalog # rep-pt1). 
No other authentication assay was performed.

RNA extraction and cDNA synthesis
Total RNA was extracted from tumor cell culture pellets using the RNeasy Mini Kit (Qiagen, 74106) and the 
RNase-Free DNase Set (Qiagen, 79254) following the manufacturer’s protocol. The RNA integrity was evaluated 
using the Agilent Bioanalyzer 2100 and confirmed to be RIN ≥ 7 (range, 7.3–9.9). Subsequently, complementary 
DNA (cDNA) was synthesized from the total RNA samples using the TaKaRa PrimeScript 1st strand cDNA 
Synthesis Kit (TaKaRa, 6110A).

Acquisition of PTPRZ1 full length transcript amplicons
To obtain the amplicons of the entire coding sequence (CDS) region of PTPRZ1 transcripts, the following oligo 
primers were designed to bind to the 5’-UTR and 3’-UTR of PTPRZ1 transcripts, respectively: Fwd: 5’- ACC GTC 
TGG AAA TGC GAA TC-3’; Rev: 5’- TGG TCC ATG GAG ACA CTA GG-3’. Polymerase chain reaction (PCR) was 
performed using PrimeSTAR GXL DNA Polymerase (TaKaRa, R050A), following the recommended Rapid PCR 
protocol, consisting of 35 cycles of 98℃ for 10 s, 60℃ for 15 s, and 68℃ for 80s. The amplicons (PCR products) 
were imaged after electrophoresis on a 0.8% agarose gel. Gel pieces of each lane were excised from the agarose 
gel, digested, and purified using the NucleoSpin® Gel and PCR Clean-Up kit (TaKaRa, 740609), according to 
the manufacturer’s protocols.

Nanopore full‑length transcript amplicon sequencing
The library preparation of the nanopore full-length transcript amplicon was conducted following the protocol 
“native-barcoding-amplicons-NBA_9093_v109_revD_12Nov2019-minion,” provided by Oxford Nanopore Tech-
nologies (ONT). The following materials were used: Ligation Sequencing Kit (ONT, SQK-LSK109); Native Bar-
coding Expansion 1–12 (PCR-free) (ONT, EXP-NBD104); Flow Cell Priming Kit (ONT, EXP-FLP002); Agencourt 
AMPure XP beads (Beckman Coulter, A63880); Blunt/TA Ligase Master Mix (New England Biolabs, M0367S); 
NEBNext Quick Ligation Reaction Buffer (New England Biolabs, B6058S); NEBNext Companion Module for 
Oxford Nanopore Technologies Ligation (New England Biolabs, E7180S). As per the recommended protocol, 
the sample concentration was measured using the Qubit™ dsDNA HS Assay Kit (Invitrogen, Q32854) and Qubit 
Fluorometer (Invitrogen), and was adjusted accordingly at each step. After barcode ligation, all the individual 
libraries were pooled. Subsequently, following adapter ligation and the concentration measurement, 50 fmol of 
the pooled library was loaded to the R9.4.1 flow cells (ONT, FLO-MIN106D) on the MinION Mk1B sequencer.

Analysis of the full‑length transcript amplicon sequencing
The sequencing data was acquired using the MinKNOW software (v4.0.20) with high-accuracy mode. The gen-
erated Fast5 data were analyzed, excluding the Fast5_fail data and only focusing solely on the Fast5_pass data. 
Base calling was performed using Guppy basecaller (4.2.2 + effbaf8) with the following command: guppy_base-
caller –flowcell FLO-MIN106 –kit SQK-LSK109 –cpu_threads_per_caller $NUM_CPU_THREADS –num_callers 
$NUM_CPUS –compress_fastq –barcode_kits EXP-NBD104 –trim_barcodes –qscore_filtering -i $INPUT_DIR -s 
$OUTPUT_DIR.

The generated FASTQ files were analyzed using FLAIR (v2.0.0)40 in the Python 3.9.16 environment. For the 
FLAIR analyses, a customized reference genome was prepared by extracting the chromosome 7 region where 
PTPRZ1 gene is located in the human genome hg19 (GRCh37). Additionally, the GTF annotation file was also 
narrowed down to the chromosome 7 region from the file ‘Homo_sapiens.GRCh37.87.chr.gtf,’ and each of the 
expected AS patterns of PTPRZ1 was concatenated.

The first module, ‘flair align,’ was performed for the FASTQ files with the reference genome, generating BED 
files. The second module, ‘flair correct,’ was performed with the BED files using the following command: flair 
correct -q $BED -g $GENOME -t $N -f $GTF -o $OUT_PREFIX. The third module, ‘flair collapse,’ was conducted 
with the concatenated single FASTQ file and the concatenated single BED file of all tested samples using the fol-
lowing command: flair collapse -g $GENOME -q $BED -r $FQ -t $N -f $GTF -o $OUT_PREFIX –keep_intermedi-
ate –generate_map –check_splice –annotation_reliant generate –trust_ends. Based on the defined high-confidence 
isoforms, the fourth module, ‘flair quantify,’ was performed to obtain the read count data of each isoform in 
each sample using the following command: flair quantify -r $MANIFEST -i $ISOFORM -o $OUT_PREFIX2 -t 
$N –generate_map –sample_id_only –trust_ends. The output data were summarized and visualized in the R 4.1.3 
environment.

Clinical sample data acquisition and analysis
Detailed information on the acquisition and processing of clinical tumor sample has been previously 
 documented54. For the dataset of spatially mapped tumor samples, tumors with a T2-defined lesion of 4–5 cm 
diameter or greater, enabling sufficient capacity for multi-sample collection, were considered eligible for inclu-
sion. During tumor resection craniotomy, spatially mapped samples were collected by neurosurgeons to represent 
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a comprehensive, randomly sampled view of the total tumor geography. The 3D coordinates of each resected 
tumor piece were recorded and registered to a preoperative magnetic resonance image (MRI) using a Brainlab 
Cranial Navigation system (BrainLAB, v3). The weights of the collected samples ranged between 75 and 225 
mg. When feasible, 2/3 of each sample were flash-frozen in liquid nitrogen for DNA and RNA extraction and 
subsequent sequencing, while the remaining 1/3 was utilized for histopathological examinations.

Genomic DNA and RNA were simultaneously extracted from frozen tissues using an AllPrep DNA/RNA/
miRNA Universal kit (Qiagen, 80224), following the manufacturer’s instructions. Whole-exome sequenc-
ing (WES) was conducted as previously  reported41. Tumor-purity was estimated for each sample using either 
 FACETS55 for IDH-wt and IDH-O cases or the variant allele frequency (VAF) of IDH1 R132 mutations for IDH-A 
cases, based on WES data. RNA-seq libraries were prepared using the KAPA Stranded mRNA-Seq kit (Kapa 
Biosystems, KK8421) or KAPA mRNA HyperPrep Kit (Kapa Biosystems, KK8580), a streamlined version of 
Stranded mRNA-Seq kit, and sequenced on a HiSeq2500, 4000, or NovaSeq (Illumina). The sequencing FASTQ 
files were processed and analyzed in the same manner as the TCGA and GTEx datasets, as described earlier. 
Samples with estimated tumor purity ≥ 50% in IDHwt and IDH-O cases, and the VAF of IDH1 R132 > 25% in 
IDH-A cases, were included in the analysis of the spatially mapped dataset. For the longitudinally collected tumor 
dataset, tissue collections, processing, and analyses were carried out as previously  reported41.

The RNA-seq data of the spatially mapped dataset have been deposited in the European Genome-phenome 
Archive (EGA) under accession number EGAS00001003710. The data for the longitudinally collected data-
set have been deposited in the EGA under accession number EGAS00001002368 and dbGaP study accession: 
phs002034.v1.p1.

Data downloading of the CPTAC‑GBM dataset
The CPTAC-GBM46 human glioblastoma proteome raw files (.raw), the processed mass spectra data files 
(.mzML), and the metadata files were obtained in April 2020 through the NIH Proteomic Data Commons 
(Study ID PDC000204). The download included 264 separate files from 11 run batches. Additionally, quantitative 
analysis data, specifically the reporter ion intensity Log2Ratio of the identified proteins, was also downloaded 
(filename: cfe9f4a2-1797-11ea-9bfa-0a42f3c845fe-log2_ratio).

Peptide spectra database search using MSGF+
For the proteomics database search, the reference human proteome database (filename: UP000005640_9606.
fasta) was downloaded from UniProt in November 2020. The FASTA sequence of the altered proteins putatively 
derived from the 14 candidate AS events, including EGFRvIII, was concatenated and used as the customized 
reference proteome database. Following the original workflow of the CPTAC-GBM project, peptide spectra data-
base search was performed using MSGF + (v2020.07.02)56 in a Java environment (v1.8.0_382) with the following 
configurations: PrecursorMassTolerance = 20ppm; IsotopeError: 0, 1; NumMods = 3; FragmentationMethodID = 0; 
InstrumentID = 1; EnzymeID = 1; NTT = 2; TDA = 1; NumThreads = All; MinPepLength = 6; MaxPepLength = 50; 
MinCharge = 2; MaxCharge = 5; NumMatchesPerSpec = 1; MaxMissedCleavages = 1; StaticMod = 229.1629, *, fix, 
N-term, TMT11plex; StaticMod = 229.1629, K, fix, any, TMT11plex; StaticMod = C2H3N1O1, C, fix, any, Carba-
midomethyl; DynamicMod = O1, MP, opt, any, Oxidation. The database search was performed with the following 
command: java -Xmx3500M -jar MSGFPlus.jar -s $MZML -d $FASTA -conf $CONFIG -o $MZID.

Quantification analysis using MASIC
From the proteome raw files, the intensities of all 11 TMT reporter ions were extracted using MASIC software 
(v3.2.7465)47 with the default parameter settings, except for ‘ReporterIonStatsEnabled value = True’ and ‘Reporte-
rIonMassMode value = 16’ (11-plex TMT). Subsequently, the peptide-spectrum matches (PSMs) of interest were 
associated with the extracted reporter ion intensities based on the scan number. Signal intensities from tumor 
and normal samples were segregated according to the TMT reporter ion intensity patterns and the downloaded 
metadata. Peptide mass spectra was visualized using the plotSpectra() function of R package Spectra (v1.5.1).

Data visualization
Graphical illustrations were generated using the BioRender web tool. Data visualization was performed using 
R (v4.1.2) and the ggplot2 package (v3.3.6). All figures were combined, readjusted, and rendered in Affinity 
Designer (Serif, v1.10.5).

Statistics
For two-group comparisons, Student’s t-test was used unless otherwise specified in figure legends. A significance 
level of P < 0.05 was considered statistically significant. All statistical analyses were performed in R (v4.1.2).

Study approval
For all human tissue studies, written informed consent was obtained from all patients. All the experiments and 
analyses using clinical samples were approved by the University of California, San Francisco (UCSF) institutional 
review board (IRB) for human research and conducted according to the Declaration of Helsinki.

Ethics approval and consent to participate
For all human tissue studies, written informed consent was obtained from all patients. All the experiments and 
analyses using clinical samples were approved by the University of California, San Francisco (UCSF) institutional 
review board (IRB) for human research and conducted according to the Declaration of Helsinki.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6362  | https://doi.org/10.1038/s41598-024-56684-0

www.nature.com/scientificreports/

Prior publications
Part of this work was presented at the 26th Annual Meeting of the Society for Neuro-Oncology (SNO, 11/20/2021, 
Boston, MA, USA), and the 6th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies 
(WFNOS, 03/26/2022, Seoul, Korea).

Data availability
The nanopore full-length transcript amplicon sequencing dataset generated in this study is available through 
the NCBI Gene Expression Omnibus (GEO) website under accession number GSE261440. RNA-seq data of the 
TCGA (phs000178.v10.p8) and the GTEx (phs000424.v9.p2) datasets were obtained through the GDC Data 
Portal with an approved dbGaP data access. RNA-seq data of Mayo Clinic GBM PDX was obtained through the 
NCBI GEO (accession, PRJNA548556). The CPTAC-GBM proteomics data was obtained through NIH Proteomic 
Data Commons (Study ID PDC000204).

Code availability
The R codes that were used for data analysis can be found at Github: https:// github. com/t- nejo/ Tumor- Speci 
fic- AS- deriv ed- Cell- Surfa ce- Antig ens- in- Glioma.
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