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Clinical gait analysis is a crucial step for identifying foot disorders and planning surgery. Automating
this process is essential for efficiently assessing the substantial amount of gait data. In this study, we
explored the potential of state-of-the-art machine learning (ML) and explainable artificial intelligence
(XAl) algorithms to automate all various steps involved in gait analysis for six specific foot conditions.
To address the complexity of gait data, we manually created new features, followed by recursive
feature elimination using Support Vector Machines (SVM) and Random Forests (RF) to eliminate
low-variance features. SVM, RF, K-nearest Neighbor (KNN), and Logistic Regression (LREGR) were
compared for classification, with a Majority Voting (MV) model combining trained models. KNN

and MV achieved mean balanced accuracy, recall, precision, and F1 score of 0.87. All models were
interpreted using Local Interpretable Model-agnostic Explanation (LIME) method and the five most
relevant features were identified for each foot condition. High success scores indicate a strong
relationship between selected features and foot conditions, potentially indicating clinical relevance.
The proposed ML pipeline, adaptable for other foot conditions, showcases its potential in aiding
experts in foot condition identification and planning surgeries.

Abbreviations

A-GAS  Automated Gait Assessment Score
Al Artificial Intelligence

CP Cerebral Palsy

HFMM  Heidelberg Foot Measurement Method

KNN K-nearest Neighbor

LDA Linear Discriminant Analysis

LIME Local Interpretable Model-agnostic Explanation
LREG Logistic Regression

LRP Layer-Wise Relevance Propagation
LSTM  Long Short-Term Memory

ML Machine Learning

MV Majority Voting

PCA Principal Component Analysis

RF Random Forest

SHAP  Shapley Additive Explanations

Std Standard Deviation

SVM Support Vector Machine

XAI Explainable Artificial Intelligence

Gait analysis relies on torque and angle profiles of the focused joints that are obtained by averaging across multi-
ple strides, which as a result, provides mean and standard deviation values along the whole gait cycle!. However,
evaluation of gait profiles is difficult and time-consuming due to the need for manual examination by medical
experts and physicians. These professionals rely heavily on their experience, expertise, and familiarity with patient
demographics. Despite the data being quantitative, their evaluations (e.g. the intensity of the foot deformity) may
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inherently contain a degree of human bias. Keep in mind that, experts and physicians not only check the gait
data but also use different assistive tools (e.g. foot images) and do physical examinations to eliminate errors in
the identification and intensity of the foot deformity. Computer-based tools aid in managing large datasets and
can simplify data by computing major features, such as minimum or maximum specific joint angles. Addition-
ally, automatic feature generation could be implemented using mathematical tools, e.g. principal component
analysis (PCA)? or linear discriminant analysis (LDA). However, the resultant features may not correspond to
the kinematic characteristics of the joints, and hence may not hold clinical relevance.

From a clinical standpoint, foot conditions significantly impact an individual’s mobility, quality of life, and
risk of injury. Early diagnosis and intervention can greatly enhance treatment outcomes, reduce healthcare costs,
and improve patient well-being. Therefore, the capacity to identify foot conditions either through the entire gait
data (i.e., time series normalized to a gait cycle) or generated features is of immense clinical importance.

Moreover, the potential to automate this process through state-of-the-art Machine Learning (ML) based
classification methods could expedite gait data assessment, thereby helping medical experts to provide faster
and more accurate diagnoses®. Artificial Intelligence (AI), specifically ML, has shown exceptional promise in
various fields, particularly in automating tasks and enhancing predictions. In the medical sphere, ML has con-
tributed to more efficient diagnoses and treatment plans, and in certain areas, even surpassed human experts
in diagnostic accuracy**.

However, the *black-box’ nature of ML methods often makes the interpretation of their outcomes challenging®.
This opacity can hinder their applicability in medical fields, where understanding the rationale behind predic-
tions is crucial for subsequent diagnoses and treatments. Consequently, Explainable Artificial Intelligence (XAI)
methods, such as Shapley Additive Explanations (SHAP)” and Local Interpretable Model-agnostic Explanation
(LIME)?, have gained traction for their ability to decipher ML model predictions.

Related work

The gait data is obtained commonly in gait labs where the motion capture cameras and sensors are kept well-
calibrated and the environmental conditions are standardized. In this study, the gait data that was averaged across
multiple strides and normalized to the gait cycle was used. Note that, there are numerous studies in the literature
that employ wearable sensor data and often employ ML-based time-series classification to enhance the accuracy
and robustness of gait analysis'>.

A gait analysis method employing inertial measurement units (IMUs) attached to the shanks was proposed
for estimating foot trajectory and temporal gait parameters, including stance and swing times’. Additionally, a
gait recognition algorithm was introduced that utilized a fusion network of long short-term memory (LSTM)
and convolutional neural network (CNN) to identify abnormal gait patterns by feeding preprocessed IMU data
into the LSTM-CNN network for feature extraction and classification!’. However, having a robust and reliable
calculation using IMUs can be challenging since the IMU data has notable noise and drift in its linear accelera-
tion and angular velocity data, respectively. Many filters (e.g., complementary filters) and ML algorithms were
used to eliminate this noise and drift in the calculation of the rotational angles'!~!*. In addition to the robustness
and reliability issues of IMUs, the attachment of these sensors to human limbs introduces an additional source
of error in joint angle calculations. This error stems from the continuous deviation of their relative pose with
respect to the joint axis due to the movement of the surrounding soft tissues during walking. Furthermore, their
location and the orientation relative to the real joint axes may have influence on the joint angle calculations. In
some studies, this issue was resolved by finding joint axis and transform the calculated angles to the coordinate
system defined by the joint axis'>'®. In some studies, other types of data, e.g., 3D point clouds generated from the
camera images were fed into adversarial auto-encoders for the estimation of gait quality index'”. Their approach
has a potential to be adjusted to classify foot conditions. However, interpretability of this model could be more
complex considering that it does not use input features that are easy to understand by the clinicians. It is note-
worthy that the aforementioned LSTM-CNN and adversarial auto-encoders need large data, which makes them
difficult to use with the gait profiles as the data.

In the literature, gait analysis has been extensively conducted using gait profiles because they offer data
that is easier for non-engineers to understand. Doederlein et al. developed graphical decision matrices of foot
deformities to assist physicians in disease discrimination for their diagnostic decision processes'®?% Bajpai et al.
focused on a probabilistic approach to generate an automated gait assessment score (A-GAS) for children with
cerebral palsy®. In a subsequent study, they used the same data and developed a neural network-based tool for
identifying gait abnormalities in children with cerebral palsy (CP)**. The gait data can be reduced by manually
extracting features: Wolf et al. presented an automated feature assessment workflow specifically for gait analysis
of CP patients®. This approach consists of deriving time series from the original time series, computing scalar
features from the derived and original time series, and evaluating computed scalar features?®. ML methods were
successfully employed in clinical gait analysis*”?® for the classification of CP%, osteoarthritis*’, multiple sclerosis’!,
etc. In recent studies, XAI methods were employed, e.g., Layer-Wise Relevance Propagation (LRP) was used
to interpret the prediction of the individual gait pattern classification model®. Slijepcevic et. al. employed LRP
to explain the outputs of CNN, SVM, and Multi-Layer Perceptron-based classifiers in classifying lower body
gait disorders. 3D ground reaction forces were employed to determine whether a person has a pathological gait
pattern®®. In their recent study, they compared the performances of CNNs, self-normalizing neural networks,
random forests, and decision trees in the classification of CP gait patterns in children, and used GradCAM to
explain the model outputs. It was shown that traditional ML methods achieve better results and focus more on
clinically relevant regions compared to deep neural networks**.

In all these studies, only a few foot conditions were aimed to be identified. In this study, we propose an
approach that harnesses ML for automated feature selection and foot condition identification, and XAI for
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prediction interpretation. This approach aims to support medical experts and physicians in their assessments,
thereby improving patient outcomes. By leveraging state-of-the-art feature elimination and ML algorithms,
we aim to enhance the diagnosis of various foot conditions. Moreover, we also strive to elucidate the outcomes
of these ML models using XAI methods. We believe that the proposed ML pipeline, which automates feature
selection, foot condition identification, and interpretation through XALI represents a significant step forward in
the fusion of technology and medicine, ultimately benefiting both medical professionals and patients alike. To
the best of our knowledge, this study is the first to combine feature selection, ML classification, and XAI to use
gait data and identify foot conditions.

Methods

Subjects

The anonymized retrospective gait data of 248 patients with 6 different foot conditions (Table 1) and 100 subjects
with the typically developed feet has been collected in the course of patient care over the last two decades in the
Department of Orthopedics and Traumatology, Heidelberg University, Heidelberg, Germany.

The demographics and the foot conditions focused in this study are listed in Table 1. The number of subjects
among foot conditions (i.e. classes) varies significantly (Table 1), indicating the imbalance in data. The foot
conditions are described as follows. Tibiotalar osteoarthritis involves a gradual breakdown of cartilage and
inflammation in the ankle, leading to pain and mobility issues®. Relief and joint damage management in this
condition can be achieved through partial ankle replacement. Planovalgus, characterized by a collapsed arch
and inward heel tilt, causes instability during walking or standing®. A consolidated calcaneal fracture refers
to a healed break in the heel bone, where the fractured parts have reunified to form a solid structure. Hallux
rigidus induces stiffness and limited movement in the big toe, resulting in pain and difficulties while walking™’.
Clubfoot, a congenital condition, involves the inward twisting of the foot and necessitates prompt treatment
for proper alignment®. Cavovarus, characterized by a high arch and inward heel tilt, leads to instability and
difficulties in walking®.

Foot conditions exhibit varied age distributions. For instance, conditions such as tibiotalar osteoarthritis
and partial ankle replacement tend to manifest in later life, while others like clubfoot are congenital and treated
during infancy or early childhood. The height and weight distributions align with the age distributions. While
these demographic variations are noticeable, they might not have significant clinical implications in the diagnosis
of foot conditions. Nonetheless, the differences in age distributions are potentially relevant, given the distinct
foot kinematics between children and adults during walking®. This differentiation is likely to play a role in the
performance of the ML models.

Retrospective data

The Heidelberg Foot Measurement Method (HFMM)* was employed for data collection using a 12-camera
VICON motion capturing system (Vicon Motion Systems Ltd. Oxfordshire UK). The gait data collection
procedure involved a self-selected speed walking on a seven-meter walkway, and five to seven strides with good
data quality were taken into account in each single trial. Vertical ground reaction force was also collected using
force plates (Kistler Instruments, Winterthur, Switzerland) to segment gait cycles with respect to foot-off timing
points.

The dataset contains 12 functional angles: Tibiotalar flexion, Medial arch inclination, Medial arch angle, Lat-
eral arch angle, Subtalar inversion, Forefoot/ankle supination, Forefoot/midfoot supination, Forefoot/hindfoot
abduction, Forefoot/ankle abduction, Inter MT I-V angle, Hallux adduction, Hallux flexion. These are described
by Simon et. al.?* as follows and comprehensive illustrations are available in their published work. Tibiotalar flex-
ion involves the rotational movement between the tibia and talus, indicated by the movement of the calcaneus and
navicular, around the malleolar line, primarily in the sagittal plane. Medial arch inclination is the angle formed
between the malleolar line and the line perpendicular to the plane of the medial arch, mostly within the frontal
plane. Medial arch angle is the 3D absolute angle formed between the line from the medial calcaneus marker
to the navicular and the first metatarsal (MT I), mostly within the sagittal plane. Lateral arch angle is the angle
between the line from the lateral calcaneus marker to the fifth metatarsal head (MT V head) and MT V, primarily
in the sagittal plane. Subtalar inversion is the rotation of the calcaneus around the subtalar axis, primarily within
the frontal plane. Forefoot/ankle supination refers to the angle between the metatarsal head line and the malleolar

Foot conditions (classes) Number of subjects Age (mean * std) Height(cm) (mean + std) Weight (kg) (mean + std)
BE;;’EZ?}E l‘l’:te""“thrms +partial ankle 58 57.9+11.7 170.5+8.6 82.6+17.7
Planovalgus 64 31.3+15.6 171.9+12.4 71.7+20.1
Consolidated calcaneal fracture 20 52.5+10.4 178.0+8.2 86.6+11.7
Hallux rigidus 40 58.6+8.2 168.2+£9.6 74.8+13.3
Clubfoot 41 11.8+9.3 140.1+£28.2 41.5+21.8
Cavovarus 25 19.5+14.9 161.0+£18.9 59.7+23.1
Typical feet 100 24.0+15.2 159.8£23.7 55.6+23.9
Total Mean 348 36.5+18.1 164.2+11.4 67.5+14.8

Table 1. Foot conditions, number of subjects, age, height, and weight.
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line, mostly within the frontal plane. Forefoot/midfoot supination is the angle between the metatarsal head line
and the metatarsal base line, mostly within the frontal plane. Forefoot/hindfoot abduction is the rotation of the
metatarsal head line relative to the calcaneus, primarily in the transverse plane. Forefoot/ankle abduction is the
rotation of the metatarsal head line relative to the malleoli line, mostly in the transverse plane. Inter MT I-V angle
is the absolute angle between the first metatarsal (MT I) and the fifth metatarsal (MT V) when projected into the
transverse plane. Hallux adduction is the angle between the first metatarsal (MT I) and the hallux projected into
the plane defined by the metatarsal heads and the foot axis, primarily in the transverse plane. Hallux flexion is
the rotation between the hallux and the first metatarsal (MT I) around an axis perpendicular to the foot axis, in
the plane of the foot axis and metatarsal head line, mostly within the sagittal plane.

Each functional angle data was split into strides using foot-off timing points, averaged point-wise across 5-7
strides from one single trial, and normalized to a percentage gait cycle (i.e. between 0 and 100%) to obtain the
mean time series in the retrospective dataset. In addition, the standard deviation (std) time series were calculated
to provide point-wise variation among strides. Each time series consisted of 101 data points representing the gait
cycle from 0 to 100%. Note that, only the data of the affected legs were selected from the dataset.

Feature engineering

The feature extraction and selection steps are denoted in Fig. 1. Two new time series were derived and scalar
features were computed from all of the time series as in the study of Wolf et. al.®. Subsequently, median imputa-
tion was performed to fill the missing values as preserving the data distribution. The data was normalized to
rescale the values between 0 and 1.This was done to prevent over- or under-representation of time series with
extremely high or low magnitudes compared to the other time series. Subsequently, features with low variance
were eliminated by ML-based feature selection algorithms since they might have negligible effect in classification.
In the subsections below, these steps are explained in detail.

New Time series derivation

In order to extract further information from the mean time series, two new time series (i.e. the first gradient
and difference from normative) were derived similarly to the automated feature assessment workflow of Wolf
et al.?. The first gradient time series illustrates the changes occurring throughout the gait cycle, while the latter
indicates how the time series deviates from the average typical foot (i.e., normative). The first gradient “V” of
the mean time series “U” was calculated in a discrete domain according to the Formula (1):

VIk] = %(U[k—l— 1] - Uk —1]) (1)

where “k” is the data point index within a gait cycle, which is in our case a number between 0 and 100. The
difference from the normative time series “D” was calculated according to the Formula (2):
DN([k] = |U[k] = Unorm k]| )

For each functional angle, reference normal time series Uy, was calculated by averaging the corresponding
time series across all subjects with typical feet.

series / scalar data \
|
|
|
i |
[ ! I
| | |
| | |
: l Testing i
| ! Selected I . RN
! ‘ features ! 5 h ( Median imputation | o
! data I ! i .
| | I ! ! v
21 | I | I ¥ | |
E | | I Mormalization/ | | Mormalization/ ! |
gl | el skewin | ) skewin i
'E I | =] l 1 ' | H |
=l 1 Sl ! i P
@Y ____ ! ! I
g : ! & : ! 7" Hyper parameter | | ( . ) ' I
= ) 1
31 : gl : tuning ,: | i Testing [
21 | =1 * ! ' |
wl | Sy 1 s A |
| | I 1 P I
| | [ Trained |
. s 1
: ! Feature selection v : ! \ models Mode! explanation I
i

;o P I ! |
[ . | ! 1 |
: ! Recursive : : : i 5 I
[ feature I I ! |
[ elimination I I | |
I i I ! |
[ . |1 i |
[ i I K |
| e 0 L - !

\\_ __________________ // \\ ____________________________________________

Figure 1. Overall method flowchart.
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Feature computation

Each time series was segmented to gait phases (stance and swing) since segmenting enhances the physiological
relevance of the peak values and other computed features for each gait phase, as suggested by Wolf et al."”.
Computing scalar features from the segmented time series significantly decreases the ML input size causing
lesser but still representative data while reducing the complexity of the model. The features explained below
were separately computed for the stance and swing phases of the gait cycle, except the range of motion feature,
which was calculated for the whole gait cycle.

For mean and derived time series, the computed scalar features were as follows: Minimum and maximum
values and their gait cycle instances, i.e., the temporal position in the gait cycle, referred to as "timing" (x-axis
in Fig. 2) for simplicity throughout the rest of the article. For the standard deviation (std) time series, only the
maximum value and its corresponding timings were taken into account as features. This decision was based on
the rationale that certain foot conditions might induce more pronounced variations in gait patterns across strides
and these features will supply this information. As indicated in Table 2, each functional angle was associated
with 15 features separately for the stance and swing phases. The total number of features increased to 31 when
computed separately for these phases (15 x 2 =30), with the addition of the range of motion as an extra feature.
The total number of extracted features for all functional angles can be determined by multiplying the number
of functional angles by the number of features, resulting in 12 x 31 =372. Furthermore, the dataset incorporated
the "Foot_off" scalar value, denoting the time when the foot is off, to distinguish between the stance and swing
phases. Two "Foot_off" values were included, one for the mean and one for the standard deviation of it. Conse-
quently, the overall number of features for each subject reached 374.

Figure 2 shows the computed features on an example mean time series “Tibiotalar Flexion of Left Foot for a
Hallux Rigidus Subject” and the difference from the normative.

Median imputation and normalization

We employed median imputation to the time series data to fill missing values while preserving the data
distribution. Similar to the study on missing longitudinal data*!, the missing values were filled with the median
of the values in the corresponding timing of the other subjects having the same foot condition. The input values
were of different scales and had to be normalized between 0 and 1 for simplifying the learning process of the ML
algorithms*2. Moreover, a natural logarithmic transformation was applied to skew the input distribution to the
normal distribution. However, no significant improvement through skewing was observed.
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Figure 2. Sample features computed from an averaged time series normalized to a gait cycle. The orange line
shows the tibiotalar flexion of the left foot for a subject with hallux rigidus. The blue line and band show the
mean value and variation of the reference typical feet data. Red and green circles show the maximum and
minimum values on the data (orange line) and their corresponding timing values on the x-axis, respectively.
“Difference from normative” is calculated as a feature by averaging the differences denoted by the vertical black
lines.

Time series Max value | Timing max | Minvalue | Timingmin | Average difference from normative
Mean X X X X

Std X X

First gradient X X X X

Difference from normative | X X X X X

Table 2. Computed features for the time series.
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Feature selection

Computed scalar features ended up with 374 scalar values per subject. Not just for computational applicability,
but also for problem-related specification®?, the most useful subset of features was selected. Recursive feature
elimination with cross-validation algorithm of Scikit-Learn module** was used for feature selection. This
algorithm was implemented with a Support Vector Machine (SVM)* algorithm as an estimator, which was
trained recurrently with the newest subset of the features, the least important of which (regarding model
coefficients) was then eliminated for the next trial. The feature subset securing the maximum accuracy in the
estimator algorithm was then assumed to be the ideal subset. In addition to this algorithm, a Random Forest
(RF)* model was trained with all computed features and the importance parameter** was used to select the
most relevant features by eliminating the ones below a threshold. The intersection of the selected relevant
feature subsets of these two algorithms was used as the optimum subset for training the classifier models. For
this optimum subset, 334 of the 374 features were selected, which was the intersection of the outcomes of the
aforementioned algorithms.

Classification for the identification of foot conditions

Figure 1 shows the classification steps. Briefly, the dataset was split for training and testing and median imputation
and normalization were applied to each subset, separately. In training, hyperparameters of the ML models were
optimized and then models were trained. In testing, the trained models were tested with the split unseen test data.

Dataset splitting

The dataset consists of the selected scalar features of the functional angles (as inputs) and their foot conditions
(as outputs). The dataset was split into training and testing groups with a ratio of 0.85 to 0.15 in a stratified way;,
respectively. The test data was isolated to guarantee that there was no information leakage between the train and
test datasets. Yet, the abovementioned preprocesses (median imputation and normalization) was executed for
the training and test data separately. Note that the test data was scaled using the scaling factors provided in the
scaling of the training data to avoid dimension mismatches and scale impropriety.

Machine learning algorithms

For the classification of the aforementioned foot conditions (see Table 1), 5 conventional ML algorithms were
evaluated in multiclass classification strategy and their results were compared: Support Vector Machines (SVM)*,
Random Forest (RF)*, Logistic Regression (LREGR)*, K-nearest Neighbor (KNN)*, and a majority voting
(MV)* algorithm were trained separately. The MV model was implemented with a weighted soft voting technique
that uses the trained SVM, KNN, RF, and LREGR models and gives the weighted voting outcome of them as
the final output.

Hyperparameter tuning

Within the cross-validation, SVM, KNN, and RF models were tuned with a randomized search algorithm before
training for finding the best hyperparameters*. For the LREGR model, a computationally expensive grid search
algorithm was required for ensuring model convergence. The hyperparameters of SVM, RF, LREGR, and KNN
are as below:

® SVM: Type of kernel, kernel coefficient (gamma), regularization parameter

e RF: Number of trees in the forest, split quality criterion, minimum required samples for splitting a node,
minimum required samples for being a leaf node, maximum depth of trees, maximum number of features
for splitting, existence of bootstrapping

e LREGR: Regularization strength, type of solver algorithm, maximum number of iterations

e KNN: Type of distance metric, type of weight function, type of algorithm for computing nearest neighbor,
size of leaf (for the requiring algorithms)

MYV weights were optimized through a randomized search algorithm after training the first four models (SVM,
KNN, RE, and LREGR). Further details about the mentioned hyperparameters of the models can be found in the
documentation of Sklearn Framework for*:.

Training and testing

The tuned models were trained without a hard limit on the number of iterations. Instead, a stopping criterion
was set with a threshold of change in the loss by the value of 1e-4 for two consecutive iterations. 3-times repeated
leave one out cross-validation was applied, similar to the approach used by Bajpai et. al.**. While the first 4 models
do not need a special order of training, the MV model has to be trained at last, since it uses the outputs of the
first 4 models as inputs.

To quantify the classification success of the models, multiclass averages of balanced accuracy, recall, precision,
and F1 scores of the models were calculated using the counts of true positives (TP), true negatives (TN), false
negatives (FN), and false positives (FP). Table 3 lists the formulas of the measures and their descriptions®!. The
highness of these performance measures altogether, without them being correlated, indicates the success of the
classification®. These scores were calculated for the isolated test dataset.
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Measure Formula Description

1 ™ N Average per foot condition effectiveness of a classifier model, calculated for each foot
Balanced accuracy Ly (B 4 IN - L p

2 TP+FN T TN+FP condition by weighting the prevalence of it

TP Effectiveness of a classifier model to identify foot conditions if calculated from sums of

Recall [ . o

TP+FN per-subject decisions

L TP An average per-foot condition agreement of the real foot conditions of subjects with those

Precision e B :

TP+FP predicted by the classifier model
F1 score PrecisionsRecall Relations between positive labels of data and those given by the classifier model, based on

Precision+Recall sums of per-foot condition decisions

Table 3. Performance measures, their formulas, and definitions (31).

Model interpretation

Before model interpretation, the features were rescaled to reach their original values. The input features of the
trained models were evaluated in terms of their relation to the decisions of the models. For this purpose, LIME
algorithm was used, which observes the effect of each input feature on the output by doing perturbations on
the inputs®.

The LIME algorithm assigns weights and intervals to each feature, indicating the extent of influence each
feature has on classification output of the model and the interval within which the feature exerts the greatest
influence. However, since the intervals of the feature values are more complex to be interpreted by the clinicians,
we only considered the weight of the features. We have calculated the mostly weighted 5 features in average for a
randomly selected 20 subjects to be classified in each foot condition, for which these 5 features are then defined
as the most relevant in classifying them. As from the nature of the LIME algorithm in our case, the magnitude
of the weight was decreasing significantly after the first 5 features, which allowed us to be able to interpret the
models using them.

Ethics approval and consent to participate

Ethics approval was obtained from Ethical Commission of the Medical Faculty of the University of Heidelberg
“Ethikkommission der Med. Fakultit der Universitit Heidelberg® S-850/2019. All methods and procedures were
carried out in accordance with relevant guidelines and regulations. Contacting patients and asking for their
consent for a retrospective analysis of their data for the described research purpose is not done in this study.
The number of persons to be contacted would be large, and in some cases the contact would be in relation to
medical care that took place several years ago, which means that a corresponding change of address of the persons
concerned is not unlikely. The protection of the anonymized biomechanical data is of secondary importance
compared to the described research interest, because in particular.

a) the data to be evaluated are already available at the research centre and the original collection took place in
the context of routine medical care and the data are to be processed here only for research purposes, and

b) for the purpose of the research, only persons who were already authorized to inspect personal data on the
occasion of routine medical care are allowed to do so, and

¢) Personal data will not be passed on to external bodies.

d) A waiver for the need of informed consent was granted by the Ethical Commission of the Medical Faculty
of the University of Heidelberg “Ethikkommission der Med. Fakultit der Universitit Heidelberg®

Results

The tuned hyperparameters

The tuned hyperparameters of the aforementioned models are as follows. In the SVM a linear kernel with a
regularization parameter (C) of 70, was used. In the RE, the number of trees in the forest was selected as 6984,
the GINI impurity criterion was used, the minimum required subjects for splitting a node was selected as 2, and
the minimum required subjects for being a leaf node was selected as 1, max depth of trees was limited to 40,
the square root of the total feature number was selected as the maximum feature number to be considered and
a bootstrapping was implemented. In the LREGR, the inverse of regularization strength (C) was selected as 0.7
and the solver was selected as stochastic average gradient (SAG) algorithm. The LREGR was executed with a
maximum iteration number of 5000 for converging the model. In the KNN, the Manhattan distance metric was
used for 6 neighbors with uniformed weights and a KDTree algorithm was used for nearest neighbor calculation,
for which a leaf size of 10 was used.

Training and classification scores

The learning curves and scalability graphs are shown in Fig. 3 for SVM, RE, LREGR, KNN, and MV respectively.
The faded areas show the standard deviations in each. The learning curve graphs show the average accuracy
score for training and cross-validation sets. In all graphs, the x-axis corresponds to number of samples, not the
number of iterations. When there is sufficient number of samples, training gave the score of 1.0, showing that
the input features provided to the classifier models are in general distinctive. Training scores were descended
with the increasing number of samples, which suggests that the model is becoming better in generalization with
the increasing number of samples. Successful cross-validation scores are attained only when a sufficient number
of samples are included. The cross-validation score graphs for models that do not entirely converge suggest that
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Figure 3. Training graphs of the models. The learning curves and scalability of the model graphs for (a) SVM,
(b) RE (c) LREGR, (d) KNN, (e) MV. X-axis denotes the included number of samples while y-axis refers to the
average accuracy (score) and model training times (fit times) in the learning curves and scalability of the model

graphs, respectively.

additional data could lead to more successful model training. The gap between the training and cross-validation
curves indicates a little yet natural overfitting that may decrease as the data size becomes bigger with the new
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data. In the scalability graphs, the linear trends in fit times (model training times) along with the change in the
number of samples indicate the robustness of the models.

The average test scores for each model are shown in Table 4 below. All of the trained models achieved
high scores in every metric, meaning that not only the foot conditions were predicted correctly, but also false
prediction was too rare.

Model interpretation outcomes
In Table 5, the most relevant kinematic features obtained using LIME algorithm are listed for each foot condition.
In each feature name in Table 5, the following information is to be read: The short name of the functional angle
the feature belongs to (as in Table 1), the type of the derived time series if not itself, the segment of the gait cycle
to which the feature belongs to. If the standard deviation time series is used instead of the mean time series, it
is indicated with a [STD| in the short time series name. The length of the bars corresponds to the number of
selections of a feature as one of the most dominant ones. By examining the length of the bars representing the
number of subjects for which the feature was relevant, along with the color of the bars corresponding to the
model, one can determine per model which features are the most relevant for each foot condition. It is important
to note that while this table provides an overall perspective, it is also possible to identify the most relevant features
for each individual patient. This information could be valuable in the diagnosis and treatment for each patient.
Reading example of Table 5: In the classification of Tibiotalar osteoarthritis + partial ankle replacement,
minimum medial arch angle during both stance and swing phases (the longest bars in the table) were found as
the most relevant feature by RF, KNN, and MV models. The other relevant features are to be seen in the table. In
the similar manner, the classification of Cavovarus, the timing of minimum first gradient of tibiotalar flexion in
stance phase was found the most relevant feature by LREG, SVM, and MV models.

Discussion

In this study, it is aimed to automate the feature selection and foot condition identification to facilitate the
diagnosis of foot conditions and hence, to support experts and physicians in their clinical assessment. An ML
pipeline is achieved using the state-of-the-art feature elimination and ML algorithms. LIME is utilized to interpret
the outcomes of the ML models so that the experts using this pipeline have feedback about how ML models
predict the foot conditions.

Our findings indicate that all the algorithms showed good prediction with a minimum of 0.82 F-1 scores.
The success scores of the algorithms are similar but KNN and MV yield the highest scores. When the dataset
has a class imbalance, namely some classes have very low data compared to the others, the ML models in general
could tend to learn more about the classes with high data. RF is known to overcome class imbalance inherently,
however, the test scores in Table 4 indicate that other models also perform well to deal with the class imbalance.

High success scores indicate mathematically strong relationship between the selected features and foot
conditions. Moreover, different mathematical features can be computed manually and easily added to the created
models. Additionally, automatic feature generation or even featureless classification methods can be explored
under the condition that the generated features align with the kinematic characteristics of the joints to ensure
interpretability.

Note that the data size is comparably small (i.e. 348 subject data). The models will improve, as the new
data arrives or new features are added. Since MV utilizes the other ML models, it will likely have the highest
score when there is new data. Another limitation of the data is that averaging across strides may induce non-
gait features, especially if the variability among the strides is significant. This variability is reduced by asking
participants to walk in their self-walking speed for a certain time before starting the measurement on a walkway
to reach a fairly stable walking condition. It was shown by some studies that the gait cycle becomes significantly
reliable after certain walking strides®***. Upon achieving a stable walking condition, stride variability becomes
a valuable measure, as it can signify the underlying foot condition. Consequently, the study includes standard
deviation values to capture this aspect. Furthermore, this type of averaging has been performed with patients
who have foot disorders, ambulation, or amputation?**>-3%. However, analyzing stride data directly; i.e. without
averaging, could provide deeper insights across strides and enhance the feature set. This approach expands
the dataset size by five to seven times. For these reasons, non-averaged data will be evaluated in future studies.

Furthermore, the model can be extended to classify other functional foot conditions that are not included in
this study. Progress in digital patient records of specialized treatment centers will facilitate and strengthen the
assistance opportunities of ML and XAI in orthopedic diagnostic decision-making. The trained models do not
require high computational resources for making the classification. Therefore, they can be easily integrated into
any type of software (e.g. web-based) in the future.

Trained model | Mean balanced accuracy | Mean recall | Mean precision | Mean F1 score
SVM 0.83 0.83 0.83 0.82
LREGR 0.83 0.83 0.83 0.83
RF 0.84 0.84 0.84 0.84
KNN 0.87 0.87 0.87 0.87
MV 0.87 0.87 0.87 0.87

Table 4. Test scores for each model. Peak scores are in bold.
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Tibiotalar osteoarthritis + partial ankle replacement

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Max of Medial arch angle (Stance)

Max of Medial arch angle (Swing)

Min of Medial arch angle (Swing)

Min of Medial arch angle (Stance)

Planovalgus

Timing of Max of Inter MT I-V angle (Swing)

Timing of Min of Inter MT I-V angle (Swing)

Timing of Min of First Gradient of Medial arch inclination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Swing)

Min of Medial arch angle (Stance)

Consolidated calcaneal fracture

Timing of Max of Difference from Normative of Hallux flexion (Swing)

Timing of Max of Difference from Normative of Subtalar inversion (Stance)

Timing of Min of Forefoot/ankle supination (Swing)

Timing of Max of Forefoot/ankle supination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Hallux rigidus

Range of Motion of Tibiotalar flexion

Range of Motion of Medial arch angle

Range of Motion of Subtalar inversion

Timing of Min of First Gradient of Tibiotalar flexion (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Clubfoot

Timing of Min of Hallux flexion (Swing)

Max of Forefoot/ankle abduction (Swing)

Min of Forefoot/ankle supination (Swing)

Max of Forefoot/ankle abduction (Stance)

Min of Forefoot/ankle abduction (Swing)

Cavovarus

Timing of Min of First Gradient of Medial arch angle (Stance)

Timing of Max of Inter MT I-V angle |STD| (Swing)

Timing of Max of Difference from Normative of Medial arch angle (Stance)

Timing of Min of First Gradient of Medial arch inclination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Table 5. The most relevant five classifier features for each foot condition. Colors representing the models:
Green, dark blue, orange, light blue, and yellow for RE, KNN, LREG, SVM, and MV, respectively. The bar
length is related to the number of subjects for which the feature was relevant.

Another potential improvement involves leveraging deep learning to enhance model performances, while
preserving interpretability. To achieve this, rather than relying solely on time series data, the focus should still be
on crafting models that utilize manually extracted features as inputs. This is essential for maintaining relevance
in the XAI outcomes regarding the clinicians’ understanding. Although deep learning methods typically need a
larger dataset than traditional ML methods and neural networks, few-shot learning techniques could be used to
train a model with a limited amount of data. Exploring this approach will be a focus of our future research. The
ML methods generate black-box models, meaning that how these models make a prediction is not transparent
and very difficult to interpret. It is a common problem in neural network-based models, as well and there are new
methods to interpret the resulting predictions of the models. In this study, LIME was employed for the interpreta-
tion of the model predictions by showing the most relevant features in the prediction. Furthermore, if the same
features are selected by most of the models, it can be stated that those features might have strong relevance in
the classification. Through computational analysis, Wang et. al. conducted a study on the biomechanical effects
of total ankle replacement (total ankle arthroplasty) and ankle arthrodesis during the stance phase, specifically
on the inner foot. Their findings revealed that the deviations in ankle join motion are compensated by angular
displacement in the fore-foot, resulting in different force transmission among segments, joint contact pressure,
and bone stress distribution compared to intact foot™. Tibiotalar osteoarthritis + partial ankle replacement might
have similar effects. Considering the LIME results, it can be said that these effects exert a significant influence on
the medial arch in both stance and swing phases. In cases of Planovalgus and Cavovarus, the majority of relevant
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features are associated with medial arch and tibiotalar flexion. This alignment with these foot conditions is logical
since compared to typical feet, Planovalgus and Cavovarus are characterized by lower and higher medial arch,
respectively. For Clubfoot, the most relevant features pertain to foot abduction and supination, which is again
logical since in this foot condition, the foot is turned inward.

Upon evaluating the LIME results across different algorithms, it becomes evident that particular algorithms
work better to identify relevant features associated with specific foot condition. Remarkably, in cases of
Planovalgus and Clubfoot, certain features are exclusively found as relevant by an individual algorithm (RE
KNN, LREG, or SVM). For instance, in the case of Clubfoot, min of forefoot/ankle abduction in swing phase
was identified only by RF and MV. The employment of MV allows us to harness the distinctive strengths of all
the algorithms within a unified MV model. This is reflected in the LIME results, where MV emerges as the most
effective method for identifying nearly all of the relevant features. It is possible that there could be a relation
between operation of the ML model that exclusively identified relevant features across the patients and the gait
characteristics of the foot for a specific foot condition as well as the degree of dispersion of features among
patients. This point will be considered in future studies.

Our study is pioneering the generation of new insights for clinicians, potentially paving the way for future
research driven solely by clinical priorities and concerns. Note that for a comprehensive understanding of the
clinical relevance of these findings, the LIME results will be discussed with the experts and physicians for the
validation of the gained insights. The LIME results may help them discover unknown features that might be
critical in a successful inspection of the foot conditions.

Conclusions

We built an ML pipeline including feature selection, classification, and an interpretability steps. In the feature
selection, we extracted features manually and eliminate the ones with low variance. We compared the ML
models and showed their ability in the classification of the foot conditions that might reduce clinicians’ effort
on time-consuming evaluation of the gait data. The findings of the explainable Al method (i.e. LIME) indicate
that it can help to understand the reason behind the classification results, which might give insight in mining
new knowledge.

Data availability

We have the approval to use these data retrospectively for this specific study. We may not give these data to any
third party without formulating a specific scientific goal (like we did here in our collaboration). Also they are
not available upon simple request to the corresponding author but only via a regular study.
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