
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5998  | https://doi.org/10.1038/s41598-024-56656-4

www.nature.com/scientificreports

Identification and interpretation 
of gait analysis features and foot 
conditions by explainable AI
Mustafa Erkam Özateş 1,3, Alper Yaman 1,3*, Firooz Salami 2, Sarah Campos 2, 
Sebastian I. Wolf 2 & Urs Schneider 1

Clinical gait analysis is a crucial step for identifying foot disorders and planning surgery. Automating 
this process is essential for efficiently assessing the substantial amount of gait data. In this study, we 
explored the potential of state-of-the-art machine learning (ML) and explainable artificial intelligence 
(XAI) algorithms to automate all various steps involved in gait analysis for six specific foot conditions. 
To address the complexity of gait data, we manually created new features, followed by recursive 
feature elimination using Support Vector Machines (SVM) and Random Forests (RF) to eliminate 
low-variance features. SVM, RF, K-nearest Neighbor (KNN), and Logistic Regression (LREGR) were 
compared for classification, with a Majority Voting (MV) model combining trained models. KNN 
and MV achieved mean balanced accuracy, recall, precision, and F1 score of 0.87. All models were 
interpreted using Local Interpretable Model-agnostic Explanation (LIME) method and the five most 
relevant features were identified for each foot condition. High success scores indicate a strong 
relationship between selected features and foot conditions, potentially indicating clinical relevance. 
The proposed ML pipeline, adaptable for other foot conditions, showcases its potential in aiding 
experts in foot condition identification and planning surgeries.

Abbreviations
A-GAS  Automated Gait Assessment Score
AI  Artificial Intelligence
CP  Cerebral Palsy
HFMM  Heidelberg Foot Measurement Method
KNN  K-nearest Neighbor
LDA  Linear Discriminant Analysis
LIME  Local Interpretable Model-agnostic Explanation
LREG  Logistic Regression
LRP  Layer-Wise Relevance Propagation
LSTM  Long Short-Term Memory
ML  Machine Learning
MV  Majority Voting
PCA  Principal Component Analysis
RF  Random Forest
SHAP  Shapley Additive Explanations
Std  Standard Deviation
SVM  Support Vector Machine
XAI  Explainable Artificial Intelligence

Gait analysis relies on torque and angle profiles of the focused joints that are obtained by averaging across multi-
ple strides, which as a result, provides mean and standard deviation values along the whole gait  cycle1. However, 
evaluation of gait profiles is difficult and time-consuming due to the need for manual examination by medical 
experts and physicians. These professionals rely heavily on their experience, expertise, and familiarity with patient 
demographics. Despite the data being quantitative, their evaluations (e.g. the intensity of the foot deformity) may 
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inherently contain a degree of human bias. Keep in mind that, experts and physicians not only check the gait 
data but also use different assistive tools (e.g. foot images) and do physical examinations to eliminate errors in 
the identification and intensity of the foot deformity. Computer-based tools aid in managing large datasets and 
can simplify data by computing major features, such as minimum or maximum specific joint angles. Addition-
ally, automatic feature generation could be implemented using mathematical tools, e.g. principal component 
analysis (PCA)2 or linear discriminant analysis (LDA). However, the resultant features may not correspond to 
the kinematic characteristics of the joints, and hence may not hold clinical relevance.

From a clinical standpoint, foot conditions significantly impact an individual’s mobility, quality of life, and 
risk of injury. Early diagnosis and intervention can greatly enhance treatment outcomes, reduce healthcare costs, 
and improve patient well-being. Therefore, the capacity to identify foot conditions either through the entire gait 
data (i.e., time series normalized to a gait cycle) or generated features is of immense clinical importance.

Moreover, the potential to automate this process through state-of-the-art Machine Learning (ML) based 
classification methods could expedite gait data assessment, thereby helping medical experts to provide faster 
and more accurate  diagnoses3. Artificial Intelligence (AI), specifically ML, has shown exceptional promise in 
various fields, particularly in automating tasks and enhancing predictions. In the medical sphere, ML has con-
tributed to more efficient diagnoses and treatment plans, and in certain areas, even surpassed human experts 
in diagnostic  accuracy4,5.

However, the ’black-box’ nature of ML methods often makes the interpretation of their outcomes  challenging6. 
This opacity can hinder their applicability in medical fields, where understanding the rationale behind predic-
tions is crucial for subsequent diagnoses and treatments. Consequently, Explainable Artificial Intelligence (XAI) 
methods, such as Shapley Additive Explanations (SHAP)7 and Local Interpretable Model-agnostic Explanation 
(LIME)8, have gained traction for their ability to decipher ML model predictions.

Related work
The gait data is obtained commonly in gait labs where the motion capture cameras and sensors are kept well-
calibrated and the environmental conditions are standardized. In this study, the gait data that was averaged across 
multiple strides and normalized to the gait cycle was used. Note that, there are numerous studies in the literature 
that employ wearable sensor data and often employ ML-based time-series classification to enhance the accuracy 
and robustness of gait  analysis1,3.

A gait analysis method employing inertial measurement units (IMUs) attached to the shanks was proposed 
for estimating foot trajectory and temporal gait parameters, including stance and swing  times9. Additionally, a 
gait recognition algorithm was introduced that utilized a fusion network of long short-term memory (LSTM) 
and convolutional neural network (CNN) to identify abnormal gait patterns by feeding preprocessed IMU data 
into the LSTM-CNN network for feature extraction and  classification10. However, having a robust and reliable 
calculation using IMUs can be challenging since the IMU data has notable noise and drift in its linear accelera-
tion and angular velocity data, respectively. Many filters (e.g., complementary filters) and ML algorithms were 
used to eliminate this noise and drift in the calculation of the rotational  angles11–14. In addition to the robustness 
and reliability issues of IMUs, the attachment of these sensors to human limbs introduces an additional source 
of error in joint angle calculations. This error stems from the continuous deviation of their relative pose with 
respect to the joint axis due to the movement of the surrounding soft tissues during walking. Furthermore, their 
location and the orientation relative to the real joint axes may have influence on the joint angle calculations. In 
some studies, this issue was resolved by finding joint axis and transform the calculated angles to the coordinate 
system defined by the joint  axis15,16. In some studies, other types of data, e.g., 3D point clouds generated from the 
camera images were fed into adversarial auto-encoders for the estimation of gait quality  index17. Their approach 
has a potential to be adjusted to classify foot conditions. However, interpretability of this model could be more 
complex considering that it does not use input features that are easy to understand by the clinicians. It is note-
worthy that the aforementioned LSTM-CNN and adversarial auto-encoders need large data, which makes them 
difficult to use with the gait profiles as the data.

In the literature, gait analysis has been extensively conducted using gait profiles because they offer data 
that is easier for non-engineers to understand. Doederlein et al. developed graphical decision matrices of foot 
deformities to assist physicians in disease discrimination for their diagnostic decision  processes18–22. Bajpai et al. 
focused on a probabilistic approach to generate an automated gait assessment score (A-GAS) for children with 
cerebral  palsy23. In a subsequent study, they used the same data and developed a neural network-based tool for 
identifying gait abnormalities in children with cerebral palsy (CP)24. The gait data can be reduced by manually 
extracting features: Wolf et al. presented an automated feature assessment workflow specifically for gait analysis 
of CP  patients25. This approach consists of deriving time series from the original time series, computing scalar 
features from the derived and original time series, and evaluating computed scalar  features26. ML methods were 
successfully employed in clinical gait  analysis27,28 for the classification of  CP29,  osteoarthritis30, multiple  sclerosis31, 
etc. In recent studies, XAI methods were employed, e.g., Layer-Wise Relevance Propagation (LRP) was used 
to interpret the prediction of the individual gait pattern classification  model32. Slijepcevic et. al. employed LRP 
to explain the outputs of CNN, SVM, and Multi-Layer Perceptron-based classifiers in classifying lower body 
gait disorders. 3D ground reaction forces were employed to determine whether a person has a pathological gait 
 pattern33. In their recent study, they compared the performances of CNNs, self-normalizing neural networks, 
random forests, and decision trees in the classification of CP gait patterns in children, and used GradCAM to 
explain the model outputs. It was shown that traditional ML methods achieve better results and focus more on 
clinically relevant regions compared to deep neural  networks34.

In all these studies, only a few foot conditions were aimed to be identified. In this study, we propose an 
approach that harnesses ML for automated feature selection and foot condition identification, and XAI for 
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prediction interpretation. This approach aims to support medical experts and physicians in their assessments, 
thereby improving patient outcomes. By leveraging state-of-the-art feature elimination and ML algorithms, 
we aim to enhance the diagnosis of various foot conditions. Moreover, we also strive to elucidate the outcomes 
of these ML models using XAI methods. We believe that the proposed ML pipeline, which automates feature 
selection, foot condition identification, and interpretation through XAI, represents a significant step forward in 
the fusion of technology and medicine, ultimately benefiting both medical professionals and patients alike. To 
the best of our knowledge, this study is the first to combine feature selection, ML classification, and XAI to use 
gait data and identify foot conditions.

Methods
Subjects
The anonymized retrospective gait data of 248 patients with 6 different foot conditions (Table 1) and 100 subjects 
with the typically developed feet has been collected in the course of patient care over the last two decades in the 
Department of Orthopedics and Traumatology, Heidelberg University, Heidelberg, Germany.

The demographics and the foot conditions focused in this study are listed in Table 1. The number of subjects 
among foot conditions (i.e. classes) varies significantly (Table 1), indicating the imbalance in data. The foot 
conditions are described as follows. Tibiotalar osteoarthritis involves a gradual breakdown of cartilage and 
inflammation in the ankle, leading to pain and mobility  issues35. Relief and joint damage management in this 
condition can be achieved through partial ankle replacement. Planovalgus, characterized by a collapsed arch 
and inward heel tilt, causes instability during walking or  standing36. A consolidated calcaneal fracture refers 
to a healed break in the heel bone, where the fractured parts have reunified to form a solid structure. Hallux 
rigidus induces stiffness and limited movement in the big toe, resulting in pain and difficulties while  walking37. 
Clubfoot, a congenital condition, involves the inward twisting of the foot and necessitates prompt treatment 
for proper  alignment38. Cavovarus, characterized by a high arch and inward heel tilt, leads to instability and 
difficulties in  walking39.

Foot conditions exhibit varied age distributions. For instance, conditions such as tibiotalar osteoarthritis 
and partial ankle replacement tend to manifest in later life, while others like clubfoot are congenital and treated 
during infancy or early childhood. The height and weight distributions align with the age distributions. While 
these demographic variations are noticeable, they might not have significant clinical implications in the diagnosis 
of foot conditions. Nonetheless, the differences in age distributions are potentially relevant, given the distinct 
foot kinematics between children and adults during  walking40. This differentiation is likely to play a role in the 
performance of the ML models.

Retrospective data
The Heidelberg Foot Measurement Method (HFMM)25 was employed for data collection using a 12-camera 
VICON motion capturing system (Vicon Motion Systems Ltd. Oxfordshire UK). The gait data collection 
procedure involved a self-selected speed walking on a seven-meter walkway, and five to seven strides with good 
data quality were taken into account in each single trial. Vertical ground reaction force was also collected using 
force plates (Kistler Instruments, Winterthur, Switzerland) to segment gait cycles with respect to foot-off timing 
points.

The dataset contains 12 functional angles: Tibiotalar flexion, Medial arch inclination, Medial arch angle, Lat-
eral arch angle, Subtalar inversion, Forefoot/ankle supination, Forefoot/midfoot supination, Forefoot/hindfoot 
abduction, Forefoot/ankle abduction, Inter MT I-V angle, Hallux adduction, Hallux flexion. These are described 
by Simon et. al.25 as follows and comprehensive illustrations are available in their published work. Tibiotalar flex-
ion involves the rotational movement between the tibia and talus, indicated by the movement of the calcaneus and 
navicular, around the malleolar line, primarily in the sagittal plane. Medial arch inclination is the angle formed 
between the malleolar line and the line perpendicular to the plane of the medial arch, mostly within the frontal 
plane. Medial arch angle is the 3D absolute angle formed between the line from the medial calcaneus marker 
to the navicular and the first metatarsal (MT I), mostly within the sagittal plane. Lateral arch angle is the angle 
between the line from the lateral calcaneus marker to the fifth metatarsal head (MT V head) and MT V, primarily 
in the sagittal plane. Subtalar inversion is the rotation of the calcaneus around the subtalar axis, primarily within 
the frontal plane. Forefoot/ankle supination refers to the angle between the metatarsal head line and the malleolar 

Table 1.  Foot conditions, number of subjects, age, height, and weight.

Foot conditions (classes) Number of subjects Age (mean ± std) Height(cm) (mean ± std) Weight (kg) (mean ± std)

Tibiotalar osteoarthritis + partial ankle 
replacement 58 57.9 ± 11.7 170.5 ± 8.6 82.6 ± 17.7

Planovalgus 64 31.3 ± 15.6 171.9 ± 12.4 71.7 ± 20.1

Consolidated calcaneal fracture 20 52.5 ± 10.4 178.0 ± 8.2 86.6 ± 11.7

Hallux rigidus 40 58.6 ± 8.2 168.2 ± 9.6 74.8 ± 13.3

Clubfoot 41 11.8 ± 9.3 140.1 ± 28.2 41.5 ± 21.8

Cavovarus 25 19.5 ± 14.9 161.0 ± 18.9 59.7 ± 23.1

Typical feet 100 24.0 ± 15.2 159.8 ± 23.7 55.6 ± 23.9

Total Mean 348 36.5 ± 18.1 164.2 ± 11.4 67.5 ± 14.8
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line, mostly within the frontal plane. Forefoot/midfoot supination is the angle between the metatarsal head line 
and the metatarsal base line, mostly within the frontal plane. Forefoot/hindfoot abduction is the rotation of the 
metatarsal head line relative to the calcaneus, primarily in the transverse plane. Forefoot/ankle abduction is the 
rotation of the metatarsal head line relative to the malleoli line, mostly in the transverse plane. Inter MT I–V angle 
is the absolute angle between the first metatarsal (MT I) and the fifth metatarsal (MT V) when projected into the 
transverse plane. Hallux adduction is the angle between the first metatarsal (MT I) and the hallux projected into 
the plane defined by the metatarsal heads and the foot axis, primarily in the transverse plane. Hallux flexion is 
the rotation between the hallux and the first metatarsal (MT I) around an axis perpendicular to the foot axis, in 
the plane of the foot axis and metatarsal head line, mostly within the sagittal plane.

Each functional angle data was split into strides using foot-off timing points, averaged point-wise across 5–7 
strides from one single trial, and normalized to a percentage gait cycle (i.e. between 0 and 100%) to obtain the 
mean time series in the retrospective dataset. In addition, the standard deviation (std) time series were calculated 
to provide point-wise variation among strides. Each time series consisted of 101 data points representing the gait 
cycle from 0 to 100%. Note that, only the data of the affected legs were selected from the dataset.

Feature engineering
The feature extraction and selection steps are denoted in Fig. 1. Two new time series were derived and scalar 
features were computed from all of the time series as in the study of Wolf et. al.26. Subsequently, median imputa-
tion was performed to fill the missing values as preserving the data distribution. The data was normalized to 
rescale the values between 0 and 1.This was done to prevent over- or under-representation of time series with 
extremely high or low magnitudes compared to the other time series. Subsequently, features with low variance 
were eliminated by ML-based feature selection algorithms since they might have negligible effect in classification. 
In the subsections below, these steps are explained in detail.

New Time series derivation
In order to extract further information from the mean time series, two new time series (i.e. the first gradient 
and difference from normative) were derived similarly to the automated feature assessment workflow of Wolf 
et al.26. The first gradient time series illustrates the changes occurring throughout the gait cycle, while the latter 
indicates how the time series deviates from the average typical foot (i.e., normative). The first gradient “ V  ” of 
the mean time series “ U  ” was calculated in a discrete domain according to the Formula (1):

where “k” is the data point index within a gait cycle, which is in our case a number between 0 and 100. The 
difference from the normative time series “ D ” was calculated according to the Formula (2):

For each functional angle, reference normal time series Unorm was calculated by averaging the corresponding 
time series across all subjects with typical feet.

(1)V[k] =
1

2
(U[k + 1]− U[k − 1])

(2)DN[k] = |U[k]− Unorm[k]|

Figure 1.  Overall method flowchart.
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Feature computation
Each time series was segmented to gait phases (stance and swing) since segmenting enhances the physiological 
relevance of the peak values and other computed features for each gait phase, as suggested by Wolf et al.17. 
Computing scalar features from the segmented time series significantly decreases the ML input size causing 
lesser but still representative data while reducing the complexity of the model. The features explained below 
were separately computed for the stance and swing phases of the gait cycle, except the range of motion feature, 
which was calculated for the whole gait cycle.

For mean and derived time series, the computed scalar features were as follows: Minimum and maximum 
values and their gait cycle instances, i.e., the temporal position in the gait cycle, referred to as "timing" (x-axis 
in Fig. 2) for simplicity throughout the rest of the article. For the standard deviation (std) time series, only the 
maximum value and its corresponding timings were taken into account as features. This decision was based on 
the rationale that certain foot conditions might induce more pronounced variations in gait patterns across strides 
and these features will supply this information. As indicated in Table 2, each functional angle was associated 
with 15 features separately for the stance and swing phases. The total number of features increased to 31 when 
computed separately for these phases (15 × 2 = 30), with the addition of the range of motion as an extra feature. 
The total number of extracted features for all functional angles can be determined by multiplying the number 
of functional angles by the number of features, resulting in 12 × 31 = 372. Furthermore, the dataset incorporated 
the "Foot_off " scalar value, denoting the time when the foot is off, to distinguish between the stance and swing 
phases. Two "Foot_off " values were included, one for the mean and one for the standard deviation of it. Conse-
quently, the overall number of features for each subject reached 374.

Figure 2 shows the computed features on an example mean time series “Tibiotalar Flexion of Left Foot for a 
Hallux Rigidus Subject” and the difference from the normative.

Median imputation and normalization
We employed median imputation to the time series data to fill missing values while preserving the data 
distribution. Similar to the study on missing longitudinal  data41, the missing values were filled with the median 
of the values in the corresponding timing of the other subjects having the same foot condition. The input values 
were of different scales and had to be normalized between 0 and 1 for simplifying the learning process of the ML 
 algorithms42. Moreover, a natural logarithmic transformation was applied to skew the input distribution to the 
normal distribution. However, no significant improvement through skewing was observed.

Figure 2.  Sample features computed from an averaged time series normalized to a gait cycle. The orange line 
shows the tibiotalar flexion of the left foot for a subject with hallux rigidus. The blue line and band show the 
mean value and variation of the reference typical feet data. Red and green circles show the maximum and 
minimum values on the data (orange line) and their corresponding timing values on the x-axis, respectively. 
“Difference from normative” is calculated as a feature by averaging the differences denoted by the vertical black 
lines.

Table 2.  Computed features for the time series.

Time series Max value Timing max Min value Timing min Average difference from normative

Mean X X X X

Std X X

First gradient X X X X

Difference from normative X X X X X
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Feature selection
Computed scalar features ended up with 374 scalar values per subject. Not just for computational applicability, 
but also for problem-related  specification43, the most useful subset of features was selected. Recursive feature 
elimination with cross-validation algorithm of Scikit-Learn  module44 was used for feature selection. This 
algorithm was implemented with a Support Vector Machine (SVM)45 algorithm as an estimator, which was 
trained recurrently with the newest subset of the features, the least important of which (regarding model 
coefficients) was then eliminated for the next trial. The feature subset securing the maximum accuracy in the 
estimator algorithm was then assumed to be the ideal subset. In addition to this algorithm, a Random Forest 
(RF)46 model was trained with all computed features and the importance  parameter44 was used to select the 
most relevant features by eliminating the ones below a threshold. The intersection of the selected relevant 
feature subsets of these two algorithms was used as the optimum subset for training the classifier models. For 
this optimum subset, 334 of the 374 features were selected, which was the intersection of the outcomes of the 
aforementioned algorithms.

Classification for the identification of foot conditions
Figure 1 shows the classification steps. Briefly, the dataset was split for training and testing and median imputation 
and normalization were applied to each subset, separately. In training, hyperparameters of the ML models were 
optimized and then models were trained. In testing, the trained models were tested with the split unseen test data.

Dataset splitting
The dataset consists of the selected scalar features of the functional angles (as inputs) and their foot conditions 
(as outputs). The dataset was split into training and testing groups with a ratio of 0.85 to 0.15 in a stratified way, 
respectively. The test data was isolated to guarantee that there was no information leakage between the train and 
test datasets. Yet, the abovementioned preprocesses (median imputation and normalization) was executed for 
the training and test data separately. Note that the test data was scaled using the scaling factors provided in the 
scaling of the training data to avoid dimension mismatches and scale impropriety.

Machine learning algorithms
For the classification of the aforementioned foot conditions (see Table 1), 5 conventional ML algorithms were 
evaluated in multiclass classification strategy and their results were compared: Support Vector Machines (SVM)45, 
Random Forest (RF)46, Logistic Regression (LREGR)47, K-nearest Neighbor (KNN)48, and a majority voting 
(MV)44 algorithm were trained separately. The MV model was implemented with a weighted soft voting technique 
that uses the trained SVM, KNN, RF, and LREGR models and gives the weighted voting outcome of them as 
the final output.

Hyperparameter tuning
Within the cross-validation, SVM, KNN, and RF models were tuned with a randomized search algorithm before 
training for finding the best  hyperparameters49. For the LREGR model, a computationally expensive grid search 
algorithm was required for ensuring model convergence. The hyperparameters of SVM, RF, LREGR, and KNN 
are as below:

• SVM: Type of kernel, kernel coefficient (gamma), regularization parameter
• RF: Number of trees in the forest, split quality criterion, minimum required samples for splitting a node, 

minimum required samples for being a leaf node, maximum depth of trees, maximum number of features 
for splitting, existence of bootstrapping

• LREGR: Regularization strength, type of solver algorithm, maximum number of iterations
• KNN: Type of distance metric, type of weight function, type of algorithm for computing nearest neighbor, 

size of leaf (for the requiring algorithms)

MV weights were optimized through a randomized search algorithm after training the first four models (SVM, 
KNN, RF, and LREGR). Further details about the mentioned hyperparameters of the models can be found in the 
documentation of Sklearn Framework  for44.

Training and testing
The tuned models were trained without a hard limit on the number of iterations. Instead, a stopping criterion 
was set with a threshold of change in the loss by the value of 1e-4 for two consecutive iterations. 3-times repeated 
leave one out cross-validation was applied, similar to the approach used by Bajpai et. al.50. While the first 4 models 
do not need a special order of training, the MV model has to be trained at last, since it uses the outputs of the 
first 4 models as inputs.

To quantify the classification success of the models, multiclass averages of balanced accuracy, recall, precision, 
and F1 scores of the models were calculated using the counts of true positives (TP), true negatives (TN), false 
negatives (FN), and false positives (FP). Table 3 lists the formulas of the measures and their  descriptions51. The 
highness of these performance measures altogether, without them being correlated, indicates the success of the 
 classification52. These scores were calculated for the isolated test dataset.
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Model interpretation
Before model interpretation, the features were rescaled to reach their original values. The input features of the 
trained models were evaluated in terms of their relation to the decisions of the models. For this purpose, LIME 
algorithm was used, which observes the effect of each input feature on the output by doing perturbations on 
the  inputs8.

The LIME algorithm assigns weights and intervals to each feature, indicating the extent of influence each 
feature has on classification output of the model and the interval within which the feature exerts the greatest 
influence. However, since the intervals of the feature values are more complex to be interpreted by the clinicians, 
we only considered the weight of the features. We have calculated the mostly weighted 5 features in average for a 
randomly selected 20 subjects to be classified in each foot condition, for which these 5 features are then defined 
as the most relevant in classifying them. As from the nature of the LIME algorithm in our case, the magnitude 
of the weight was decreasing significantly after the first 5 features, which allowed us to be able to interpret the 
models using them.

Ethics approval and consent to participate
Ethics approval was obtained from Ethical Commission of the Medical Faculty of the University of Heidelberg 
“Ethikkommission der Med. Fakultät der Universität Heidelberg“ S-850/2019. All methods and procedures were 
carried out in accordance with relevant guidelines and regulations. Contacting patients and asking for their 
consent for a retrospective analysis of their data for the described research purpose is not done in this study. 
The number of persons to be contacted would be large, and in some cases the contact would be in relation to 
medical care that took place several years ago, which means that a corresponding change of address of the persons 
concerned is not unlikely. The protection of the anonymized biomechanical data is of secondary importance 
compared to the described research interest, because in particular.

a) the data to be evaluated are already available at the research centre and the original collection took place in 
the context of routine medical care and the data are to be processed here only for research purposes, and

b) for the purpose of the research, only persons who were already authorized to inspect personal data on the 
occasion of routine medical care are allowed to do so, and

c) Personal data will not be passed on to external bodies.
d) A waiver for the need of informed consent was granted by the Ethical Commission of the Medical Faculty 

of the University of Heidelberg “Ethikkommission der Med. Fakultät der Universität Heidelberg“.

Results
The tuned hyperparameters
The tuned hyperparameters of the aforementioned models are as follows. In the SVM a linear kernel with a 
regularization parameter (C) of 70, was used. In the RF, the number of trees in the forest was selected as 6984, 
the GINI impurity criterion was used, the minimum required subjects for splitting a node was selected as 2, and 
the minimum required subjects for being a leaf node was selected as 1, max depth of trees was limited to 40, 
the square root of the total feature number was selected as the maximum feature number to be considered and 
a bootstrapping was implemented. In the LREGR, the inverse of regularization strength (C) was selected as 0.7 
and the solver was selected as stochastic average gradient (SAG) algorithm. The LREGR was executed with a 
maximum iteration number of 5000 for converging the model. In the KNN, the Manhattan distance metric was 
used for 6 neighbors with uniformed weights and a KDTree algorithm was used for nearest neighbor calculation, 
for which a leaf size of 10 was used.

Training and classification scores
The learning curves and scalability graphs are shown in Fig. 3 for SVM, RF, LREGR, KNN, and MV respectively. 
The faded areas show the standard deviations in each. The learning curve graphs show the average accuracy 
score for training and cross-validation sets. In all graphs, the x-axis corresponds to number of samples, not the 
number of iterations. When there is sufficient number of samples, training gave the score of 1.0, showing that 
the input features provided to the classifier models are in general distinctive. Training scores were descended 
with the increasing number of samples, which suggests that the model is becoming better in generalization with 
the increasing number of samples. Successful cross-validation scores are attained only when a sufficient number 
of samples are included. The cross-validation score graphs for models that do not entirely converge suggest that 

Table 3.  Performance measures, their formulas, and definitions (31).

Measure Formula Description

Balanced accuracy 1
2
∗

(

TP

TP+FN
+ TN

TN+FP

) Average per foot condition effectiveness of a classifier model, calculated for each foot 
condition by weighting the prevalence of it

Recall TP

TP+FN

Effectiveness of a classifier model to identify foot conditions if calculated from sums of 
per-subject decisions

Precision TP

TP+FP

An average per-foot condition agreement of the real foot conditions of subjects with those 
predicted by the classifier model

F1 score 2 ∗ Precision∗Recall
Precision+Recall

Relations between positive labels of data and those given by the classifier model, based on 
sums of per-foot condition decisions
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additional data could lead to more successful model training. The gap between the training and cross-validation 
curves indicates a little yet natural overfitting that may decrease as the data size becomes bigger with the new 

Figure 3.  Training graphs of the models. The learning curves and scalability of the model graphs for (a) SVM, 
(b) RF, (c) LREGR, (d) KNN, (e) MV. X-axis denotes the included number of samples while y-axis refers to the 
average accuracy (score) and model training times (fit times) in the learning curves and scalability of the model 
graphs, respectively.
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data. In the scalability graphs, the linear trends in fit times (model training times) along with the change in the 
number of samples indicate the robustness of the models.

The average test scores for each model are shown in Table 4 below. All of the trained models achieved 
high scores in every metric, meaning that not only the foot conditions were predicted correctly, but also false 
prediction was too rare.

Model interpretation outcomes
In Table 5, the most relevant kinematic features obtained using LIME algorithm are listed for each foot condition. 
In each feature name in Table 5, the following information is to be read: The short name of the functional angle 
the feature belongs to (as in Table 1), the type of the derived time series if not itself, the segment of the gait cycle 
to which the feature belongs to. If the standard deviation time series is used instead of the mean time series, it 
is indicated with a |STD| in the short time series name. The length of the bars corresponds to the number of 
selections of a feature as one of the most dominant ones. By examining the length of the bars representing the 
number of subjects for which the feature was relevant, along with the color of the bars corresponding to the 
model, one can determine per model which features are the most relevant for each foot condition. It is important 
to note that while this table provides an overall perspective, it is also possible to identify the most relevant features 
for each individual patient. This information could be valuable in the diagnosis and treatment for each patient.

Reading example of Table 5: In the classification of Tibiotalar osteoarthritis + partial ankle replacement, 
minimum medial arch angle during both stance and swing phases (the longest bars in the table) were found as 
the most relevant feature by RF, KNN, and MV models. The other relevant features are to be seen in the table. In 
the similar manner, the classification of Cavovarus, the timing of minimum first gradient of tibiotalar flexion in 
stance phase was found the most relevant feature by LREG, SVM, and MV models.

Discussion
In this study, it is aimed to automate the feature selection and foot condition identification to facilitate the 
diagnosis of foot conditions and hence, to support experts and physicians in their clinical assessment. An ML 
pipeline is achieved using the state-of-the-art feature elimination and ML algorithms. LIME is utilized to interpret 
the outcomes of the ML models so that the experts using this pipeline have feedback about how ML models 
predict the foot conditions.

Our findings indicate that all the algorithms showed good prediction with a minimum of 0.82 F-1 scores. 
The success scores of the algorithms are similar but KNN and MV yield the highest scores. When the dataset 
has a class imbalance, namely some classes have very low data compared to the others, the ML models in general 
could tend to learn more about the classes with high data. RF is known to overcome class imbalance inherently, 
however, the test scores in Table 4 indicate that other models also perform well to deal with the class imbalance.

High success scores indicate mathematically strong relationship between the selected features and foot 
conditions. Moreover, different mathematical features can be computed manually and easily added to the created 
models. Additionally, automatic feature generation or even featureless classification methods can be explored 
under the condition that the generated features align with the kinematic characteristics of the joints to ensure 
interpretability.

Note that the data size is comparably small (i.e. 348 subject data). The models will improve, as the new 
data arrives or new features are added. Since MV utilizes the other ML models, it will likely have the highest 
score when there is new data. Another limitation of the data is that averaging across strides may induce non-
gait features, especially if the variability among the strides is significant. This variability is reduced by asking 
participants to walk in their self-walking speed for a certain time before starting the measurement on a walkway 
to reach a fairly stable walking condition. It was shown by some studies that the gait cycle becomes significantly 
reliable after certain walking  strides53,54. Upon achieving a stable walking condition, stride variability becomes 
a valuable measure, as it can signify the underlying foot condition. Consequently, the study includes standard 
deviation values to capture this aspect. Furthermore, this type of averaging has been performed with patients 
who have foot disorders, ambulation, or  amputation26,55–58. However, analyzing stride data directly; i.e. without 
averaging, could provide deeper insights across strides and enhance the feature set. This approach expands 
the dataset size by five to seven times. For these reasons, non-averaged data will be evaluated in future studies.

Furthermore, the model can be extended to classify other functional foot conditions that are not included in 
this study. Progress in digital patient records of specialized treatment centers will facilitate and strengthen the 
assistance opportunities of ML and XAI in orthopedic diagnostic decision-making. The trained models do not 
require high computational resources for making the classification. Therefore, they can be easily integrated into 
any type of software (e.g. web-based) in the future.

Table 4.  Test scores for each model. Peak scores are in bold.

Trained model Mean balanced accuracy Mean recall Mean precision Mean F1 score

SVM 0.83 0.83 0.83 0.82

LREGR 0.83 0.83 0.83 0.83

RF 0.84 0.84 0.84 0.84

KNN 0.87 0.87 0.87 0.87

MV 0.87 0.87 0.87 0.87
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Another potential improvement involves leveraging deep learning to enhance model performances, while 
preserving interpretability. To achieve this, rather than relying solely on time series data, the focus should still be 
on crafting models that utilize manually extracted features as inputs. This is essential for maintaining relevance 
in the XAI outcomes regarding the clinicians’ understanding. Although deep learning methods typically need a 
larger dataset than traditional ML methods and neural networks, few-shot learning techniques could be used to 
train a model with a limited amount of data. Exploring this approach will be a focus of our future research. The 
ML methods generate black-box models, meaning that how these models make a prediction is not transparent 
and very difficult to interpret. It is a common problem in neural network-based models, as well and there are new 
methods to interpret the resulting predictions of the models. In this study, LIME was employed for the interpreta-
tion of the model predictions by showing the most relevant features in the prediction. Furthermore, if the same 
features are selected by most of the models, it can be stated that those features might have strong relevance in 
the classification. Through computational analysis, Wang et. al. conducted a study on the biomechanical effects 
of total ankle replacement (total ankle arthroplasty) and ankle arthrodesis during the stance phase, specifically 
on the inner foot. Their findings revealed that the deviations in ankle join motion are compensated by angular 
displacement in the fore-foot, resulting in different force transmission among segments, joint contact pressure, 
and bone stress distribution compared to intact  foot59. Tibiotalar osteoarthritis + partial ankle replacement might 
have similar effects. Considering the LIME results, it can be said that these effects exert a significant influence on 
the medial arch in both stance and swing phases. In cases of Planovalgus and Cavovarus, the majority of relevant 

Table 5.  The most relevant five classifier features for each foot condition. Colors representing the models: 
Green, dark blue, orange, light blue, and yellow for RF, KNN, LREG, SVM, and MV, respectively. The bar 
length is related to the number of subjects for which the feature was relevant.

Tibiotalar osteoarthritis + partial ankle replacement

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Max of Medial arch angle (Stance)

Max of Medial arch angle (Swing)

Min of Medial arch angle (Swing)

Min of Medial arch angle (Stance)

Planovalgus

Timing of Max of Inter MT I-V angle (Swing)

Timing of Min of Inter MT I-V angle (Swing)

Timing of Min of First Gradient of Medial arch inclination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Swing)

Min of Medial arch angle (Stance)

Consolidated calcaneal fracture

Timing of Max of Difference from Normative of Hallux flexion (Swing)

Timing of Max of Difference from Normative of Subtalar inversion (Stance)

Timing of Min of Forefoot/ankle supination (Swing)

Timing of Max of Forefoot/ankle supination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Hallux rigidus

Range of Motion of Tibiotalar flexion

Range of Motion of Medial arch angle

Range of Motion of Subtalar inversion

Timing of Min of First Gradient of Tibiotalar flexion (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)

Clubfoot

Timing of Min of Hallux flexion (Swing)

Max of Forefoot/ankle abduction (Swing)

Min of Forefoot/ankle supination (Swing)

Max of Forefoot/ankle abduction (Stance)

Min of Forefoot/ankle abduction (Swing)

Cavovarus

Timing of Min of First Gradient of Medial arch angle (Stance)

Timing of Max of Inter MT I-V angle |STD| (Swing)

Timing of Max of Difference from Normative of Medial arch angle (Stance)

Timing of Min of First Gradient of Medial arch inclination (Swing)

Timing of Min of First Gradient of Tibiotalar flexion (Stance)
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features are associated with medial arch and tibiotalar flexion. This alignment with these foot conditions is logical 
since compared to typical feet, Planovalgus and Cavovarus are characterized by lower and higher medial arch, 
respectively. For Clubfoot, the most relevant features pertain to foot abduction and supination, which is again 
logical since in this foot condition, the foot is turned inward.

Upon evaluating the LIME results across different algorithms, it becomes evident that particular algorithms 
work better to identify relevant features associated with specific foot condition. Remarkably, in cases of 
Planovalgus and Clubfoot, certain features are exclusively found as relevant by an individual algorithm (RF, 
KNN, LREG, or SVM). For instance, in the case of Clubfoot, min of forefoot/ankle abduction in swing phase 
was identified only by RF and MV. The employment of MV allows us to harness the distinctive strengths of all 
the algorithms within a unified MV model. This is reflected in the LIME results, where MV emerges as the most 
effective method for identifying nearly all of the relevant features. It is possible that there could be a relation 
between operation of the ML model that exclusively identified relevant features across the patients and the gait 
characteristics of the foot for a specific foot condition as well as the degree of dispersion of features among 
patients. This point will be considered in future studies.

Our study is pioneering the generation of new insights for clinicians, potentially paving the way for future 
research driven solely by clinical priorities and concerns. Note that for a comprehensive understanding of the 
clinical relevance of these findings, the LIME results will be discussed with the experts and physicians for the 
validation of the gained insights. The LIME results may help them discover unknown features that might be 
critical in a successful inspection of the foot conditions.

Conclusions
We built an ML pipeline including feature selection, classification, and an interpretability steps. In the feature 
selection, we extracted features manually and eliminate the ones with low variance. We compared the ML 
models and showed their ability in the classification of the foot conditions that might reduce clinicians’ effort 
on time-consuming evaluation of the gait data. The findings of the explainable AI method (i.e. LIME) indicate 
that it can help to understand the reason behind the classification results, which might give insight in mining 
new knowledge.

Data availability
We have the approval to use these data retrospectively for this specific study. We may not give these data to any 
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not available upon simple request to the corresponding author but only via a regular study.

Received: 19 May 2023; Accepted: 8 March 2024

References
 1. Muro-de-la-Herran, A., Garcia-Zapirain, B. & Mendez-Zorrilla, A. Gait analysis methods: an overview of wearable and non-

wearable systems, highlighting clinical applications. Sensors (Basel) 14, 3362–3394. https:// doi. org/ 10. 3390/ s1402 03362 (2014).
 2. Deluzio, K. J., Wyss, U. P., Costigan, P. A., Sorbie, C. & Zee, B. Gait assessment in unicompartmental knee arthroplasty patients: 

Principal component modelling of gait waveforms and clinical status. Hum. Mov. Sci. 18, 701–711. https:// doi. org/ 10. 1016/ S0167- 
9457(99) 00030-5 (1999).

 3. Halilaj, E. et al. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. 
Biomech. 81, 1–11. https:// doi. org/ 10. 1016/j. jbiom ech. 2018. 09. 009 (2018).

 4. Chen, Y., Elenee Argentinis, J. D. & Weber, G. IBM watson: How cognitive computing can be applied to big data challenges in life 
sciences research. Clin. Ther. 38, 688–701. https:// doi. org/ 10. 1016/j. clint hera. 2015. 12. 001 (2016).

 5. Isci, S., Kalender, D. S. Y., Bayraktar, F. & Yaman, A. Machine learning models for classification of cushing’s syndrome using 
retrospective data. IEEE J. Biomed. Health Inform. 25, 3153–3162. https:// doi. org/ 10. 1109/ jbhi. 2021. 30545 92 (2021).

 6. Borjali, A., Chen, A. F., Muratoglu, O., Morid, M. A. & Varadarajan, K. Deep learning in Orthopedics: How Do We Build Trust in 
the Machine? Healthcare Transformation. https:// doi. org/ 10. 1089/ heat. 2019. 0006 (2020).

 7. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems 4768–4777 (2017).

 8. Ribeiro, M., Singh, S. & Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. (2016).
 9. Hori, K. et al. Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis. Front. Physiol. 10, 1530. 

https:// doi. org/ 10. 3389/ fphys. 2019. 01530 (2019).
 10. Gao, J., Gu, P., Ren, Q., Zhang, J. & Song, X. Abnormal gait recognition algorithm based on LSTM-CNN fusion network. IEEE 

Access 7, 163180–163190 (2019).
 11. Shi, Y., Zhang, Y., Li, Z., Yuan, S. & Zhu, S. IMU/UWB fusion method using a complementary filter and a Kalman filter for hybrid 

upper limb motion estimation. Sensors 23, 6700 (2023).
 12. Potter, M. V. et al. Evaluation of error-state Kalman filter method for estimating human lower-limb kinematics during various 

walking gaits. Sensors 22, 8398 (2022).
 13. Chacko, R., Binoj, R. V. & Ameenudeen, P. E. Performance improvement of a MEMS gyroscope using filtering and machine learn-

ing methods. In 2023 International Conference on Control, Communication and Computing (ICCC). 1–5 (2023).
 14. Han, S., Meng, Z., Zhang, X. & Yan, Y. Hybrid deep recurrent neural networks for noise reduction of MEMS-IMU with static and 

dynamic conditions. Micromachines 12, 214 (2021).
 15. Seel, T., Schauer, T. & Raisch, J. Joint axis and position estimation from inertial measurement data by exploiting kinematic con-

straints. In 2012 IEEE International Conference on Control Applications. 45–49 (2012).
 16. Seel, T., Raisch, J. & Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 14, 6891–6909 (2014).
 17. Nguyen, T.-N. & Meunier, J. Applying adversarial auto-encoder for estimating human walking gait abnormality index. Pattern 

Anal. Appl. 22, 1597–1608 (2019).
 18. Döderlein, L., Häfner, R., Wenz, W. & Schneider, U. Fussdeformitäten: Der Spitzfuss/Der Hackenfuss (Springer, 2013).
 19. Caroll, N., Döderlein, L., Wenz, W., Rauschmann, M. A. & Schneider, U. FussdeformitÄten: Der Knickplattfuss (Springer, 2013).
 20. Döderlein, L., Fixsen, J. A., Wenz, W. & Schneider, U. D. Klumpfuss: Erscheinungsformen und Behandlungsprinzipien jeden Alters. 

Differentialdiagnose und Differentialtherapie (Springer, 2013).

https://doi.org/10.3390/s140203362
https://doi.org/10.1016/S0167-9457(99)00030-5
https://doi.org/10.1016/S0167-9457(99)00030-5
https://doi.org/10.1016/j.jbiomech.2018.09.009
https://doi.org/10.1016/j.clinthera.2015.12.001
https://doi.org/10.1109/jbhi.2021.3054592
https://doi.org/10.1089/heat.2019.0006
https://doi.org/10.3389/fphys.2019.01530


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5998  | https://doi.org/10.1038/s41598-024-56656-4

www.nature.com/scientificreports/

 21. Döderlein, L., Wenz, W. & Schneider, U. Fussdeformitäten: Der Hohlfuss 1–107 (Springer, 2001).
 22. Döderlein, L., Wenz, W. & Schneider, U. Fussdeformitäten: Der Hohlfuss 109–175 (Springer, 2001).
 23. Bajpai, R. & Joshi, D. A-GAS: A probabilistic approach for generating automated gait assessment score for cerebral palsy children. 

IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2530–2539. https:// doi. org/ 10. 1109/ tnsre. 2021. 31314 66 (2021).
 24. Bajpai, R., Tiwari, A., Joshi, D. & Khatavkar, R. AbnormNet: A neural network based suggestive tool for identifying gait abnormali-

ties in cerebral palsy children. 2022 International Conference for Advancement in Technology (ICONAT), 1–5 (2022).
 25. Simon, J. et al. The Heidelberg foot measurement method: Development, description and assessment. Gait Posture 23, 411–424. 

https:// doi. org/ 10. 1016/j. gaitp ost. 2005. 07. 003 (2006).
 26. Wolf, S. et al. Automated feature assessment in instrumented gait analysis. Gait Posture 23, 331–338. https:// doi. org/ 10. 1016/j. 

gaitp ost. 2005. 04. 004 (2006).
 27. Schöllhorn, W. I. Applications of artificial neural nets in clinical biomechanics. Clin. Biomech. 19, 876–898. https:// doi. org/ 10. 

1016/j. clinb iomech. 2004. 04. 005 (2004).
 28. Figueiredo, J., Santos, C. P. & Moreno, J. C. Automatic recognition of gait patterns in human motor disorders using machine learn-

ing: A review. Med. Eng. Phys. 53, 1–12. https:// doi. org/ 10. 1016/j. meden gphy. 2017. 12. 006 (2018).
 29. Van Gestel, L. et al. Probabilistic gait classification in children with cerebral palsy: A Bayesian approach. Res. Dev. Disabil. 32, 

2542–2552. https:// doi. org/ 10. 1016/j. ridd. 2011. 07. 004 (2011).
 30. Nüesch, C., Valderrabano, V., Huber, C., von Tscharner, V. & Pagenstert, G. Gait patterns of asymmetric ankle osteoarthritis 

patients. Clin. Biomech. (Bristol, Avon) 27, 613–618. https:// doi. org/ 10. 1016/j. clinb iomech. 2011. 12. 016 (2012).
 31. Alaqtash, M. et al. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algo-

rithms.2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 453–457 (2011).
 32. Horst, F., Lapuschkin, S., Samek, W., Müller, K. R. & Schöllhorn, W. I. Explaining the unique nature of individual gait patterns 

with deep learning. Sci. Rep. 9, 2391. https:// doi. org/ 10. 1038/ s41598- 019- 38748-8 (2019).
 33. Slijepcevic, D. et al. Explaining machine learning models for clinical gait analysis. ACM Trans. Comput. Healthcare 3, 14. https:// 

doi. org/ 10. 1145/ 34741 21 (2021).
 34. Slijepcevic, D. et al. Explainable machine learning in human gait analysis: A study on children with cerebral palsy. IEEE Access 11, 

65906–65923. https:// doi. org/ 10. 1109/ ACCESS. 2023. 32899 86 (2023).
 35. Herrera-Pérez, M. et al. Ankle osteoarthritis aetiology. J. Clin. Med. 10, 4489 (2021).
 36. Min, J. J. et al. Progression of planovalgus deformity in patients with cerebral palsy. BMC Musculoskeletal Disorders 21, 141. https:// 

doi. org/ 10. 1186/ s12891- 020- 3149-0 (2020).
 37. Ho, B. & Baumhauer, J. Hallux rigidus. EFORT Open Rev. 2, 13–20. https:// doi. org/ 10. 1302/ 2058- 5241.2. 160031 (2017).
 38. Dimeglio, A. & Canavese, F. in Clubfoot and Vertical Talus: Etiology and Clinical Management (eds Matthew B. Dobbs, Ashok N. 

Johari, & Mitzi L. Williams) 29–39 (Springer International Publishing, 2023).
 39. Moran, C. & Tourné, Y. Posterior heel pain in cavovarus foot: How to approach it. Foot Ankle Clin. https:// doi. org/ 10. 1016/j. fcl. 

2023. 06. 001 (2023).
 40. Arnold, J. B., Mackintosh, S., Jones, S. & Thewlis, D. Differences in foot kinematics between young and older adults during walking. 

Gait Posture 39, 689–694. https:// doi. org/ 10. 1016/j. gaitp ost. 2013. 09. 021 (2014).
 41. Engels, J. M. & Diehr, P. Imputation of missing longitudinal data: A comparison of methods. J. Clin. Epidemiol. 56, 968–976. https:// 

doi. org/ 10. 1016/ s0895- 4356(03) 00170-7 (2003).
 42. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of 

the 32nd International Conference on International Conference on Machine Learning - Volume 37 448–456 (2015).
 43. D’Amour, A. et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. (2020).
 44. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 45. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297. https:// doi. org/ 10. 1007/ BF009 94018 (1995).
 46. Breiman, L. Random forests. Mach. Learn. 45, 5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324 (2001).
 47. Bagley, S. C., White, H. & Golomb, B. A. Logistic regression in the medical literature: Standards for use and reporting, with par-

ticular attention to one medical domain. J. Clin. Epidemiol. 54, 979–985. https:// doi. org/ 10. 1016/ S0895- 4356(01) 00372-9 (2001).
 48. Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992).
 49. Paper, D. Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python 137–163 (Apress, 

2020).
 50. Bajpai, R. & Joshi, D. Foot2hip: A deep neural network model for predicting lower limb kinematics from foot measurements. IEEE/

ASME Trans. Mechatron. 28, 2248–2258. https:// doi. org/ 10. 1109/ TMECH. 2022. 32294 04 (2023).
 51. Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inform. Process. Manag. 45, 

427–437. https:// doi. org/ 10. 1016/j. ipm. 2009. 03. 002 (2009).
 52. Seliya, N., Khoshgoftaar, T. M. & Hulse, J. V. A Study on the Relationships of Classifier Performance Metrics. 2009 21st IEEE 

International Conference on Tools with Artificial Intelligence. 59–66 (2009).
 53. Kroneberg, D. et al. Less is more–estimation of the number of strides required to assess gait variability in spatially confined set-

tings. Front. Aging Neurosci. 10, 435 (2019).
 54. Brach, J. S. et al. The reliability and validity of measures of gait variability in community-dwelling older adults. Archiv. Phys. Med. 

Rehabil. 89(12), 2293–2296 (2008).
 55. Böpple, J. C. et al. Short-term results of gait analysis with the Heidelberg foot measurement method and functional outcome after 

operative treatment of ankle fractures. J. Foot Ankle Res. 15, 2 (2022).
 56. Heitzmann, D. W. W. et al. The influence of hip muscle strength on gait in individuals with a unilateral transfemoral amputation. 

PLoS One 15(9), e0238093 (2020).
 57. Kitaoka, H. B. et al. Foot and ankle kinematics and ground reaction forces during ambulation. Foot Ankle Int. 27(10), 808–813 

(2006).
 58. Twomey, D., McIntosh, A. S., Simon, J., Lowe, K. & Wolf, S. I. Kinematic differences between normal and low arched feet in children 

using the Heidelberg foot measurement method. Gait Posture 32(1), 1–5 (2010).
 59. Wang, Y., Wong, D. W., Tan, Q., Li, Z. & Zhang, M. Total ankle arthroplasty and ankle arthrodesis affect the biomechanics of the 

inner foot differently. Sci. Rep. 9, 13334. https:// doi. org/ 10. 1038/ s41598- 019- 50091-6 (2019).

Acknowledgements
This research has been funded by the Federal Ministry of Education and Research of Germany 
(Bundesministerium für Bildung und Forschung; BMBF) within the project “3DFOOT” (project number 
01EC1907D).

Author contributions
M.E.Ö.: Designed and implemented the Machine Learning and explainable AI workflow, Wrote Methods and 
Results sections, Prepared Figures and all tables. A.Y.: Made the initial implementation of the data processing 
pipeline and supervised the Machine Learning and explainable AI workflow, Wrote Abstract, Introduction, 

https://doi.org/10.1109/tnsre.2021.3131466
https://doi.org/10.1016/j.gaitpost.2005.07.003
https://doi.org/10.1016/j.gaitpost.2005.04.004
https://doi.org/10.1016/j.gaitpost.2005.04.004
https://doi.org/10.1016/j.clinbiomech.2004.04.005
https://doi.org/10.1016/j.clinbiomech.2004.04.005
https://doi.org/10.1016/j.medengphy.2017.12.006
https://doi.org/10.1016/j.ridd.2011.07.004
https://doi.org/10.1016/j.clinbiomech.2011.12.016
https://doi.org/10.1038/s41598-019-38748-8
https://doi.org/10.1145/3474121
https://doi.org/10.1145/3474121
https://doi.org/10.1109/ACCESS.2023.3289986
https://doi.org/10.1186/s12891-020-3149-0
https://doi.org/10.1186/s12891-020-3149-0
https://doi.org/10.1302/2058-5241.2.160031
https://doi.org/10.1016/j.fcl.2023.06.001
https://doi.org/10.1016/j.fcl.2023.06.001
https://doi.org/10.1016/j.gaitpost.2013.09.021
https://doi.org/10.1016/s0895-4356(03)00170-7
https://doi.org/10.1016/s0895-4356(03)00170-7
https://doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0895-4356(01)00372-9
https://doi.org/10.1109/TMECH.2022.3229404
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1038/s41598-019-50091-6


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5998  | https://doi.org/10.1038/s41598-024-56656-4

www.nature.com/scientificreports/

and Discussion sections, Prepared Figures. MEÖ and AY contributed equally. F.S. and S.C.: Collected data and 
prepared it for further processing. S.W.: Supervised in the perspective of practical usage of gait analysis as well 
as about the clinical applicability of explainable AI. U.S.: Supervised in the perspective of foot Biomechanics. 
All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This research has been funded by the Federal 
Ministry of Education and Research of Germany (Bundesministerium für Bildung und Forschung; BMBF) within 
the project “3DFOOT” (project number 01EC1907D).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification and interpretation of gait analysis features and foot conditions by explainable AI
	Related work
	Methods
	Subjects
	Retrospective data
	Feature engineering
	New Time series derivation
	Feature computation
	Median imputation and normalization
	Feature selection

	Classification for the identification of foot conditions
	Dataset splitting
	Machine learning algorithms
	Hyperparameter tuning
	Training and testing
	Model interpretation

	Ethics approval and consent to participate

	Results
	The tuned hyperparameters
	Training and classification scores
	Model interpretation outcomes

	Discussion
	Conclusions
	References
	Acknowledgements


