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Development and validation 
of prognostic machine learning 
models for short‑ and long‑term 
mortality among acutely admitted 
patients based on blood tests
Baker Nawfal Jawad 1,3*, Shakir Maytham Shaker 4, Izzet Altintas 1,2,3, Jesper Eugen‑Olsen 1, 
Jan O. Nehlin 1, Ove Andersen 1,2,3 & Thomas Kallemose 1

Several scores predicting mortality at the emergency department have been developed. However, 
all with shortcomings either simple and applicable in a clinical setting, with poor performance, or 
advanced, with high performance, but clinically difficult to implement. This study aimed to explore 
if machine learning algorithms could predict all‑cause short‑ and long‑term mortality based on the 
routine blood test collected at admission. Methods: We analyzed data from a retrospective cohort 
study, including patients > 18 years admitted to the Emergency Department (ED) of Copenhagen 
University Hospital Hvidovre, Denmark between November 2013 and March 2017. The primary 
outcomes were 3‑, 10‑, 30‑, and 365‑day mortality after admission. PyCaret, an automated machine 
learning library, was used to evaluate the predictive performance of fifteen machine learning 
algorithms using the area under the receiver operating characteristic curve (AUC). Results: Data 
from 48,841 admissions were analyzed, of these 34,190 (70%) were randomly divided into training 
data, and 14,651 (30%) were in test data. Eight machine learning algorithms achieved very good to 
excellent results of AUC on test data in a of range 0.85–0.93. In prediction of short‑term mortality, 
lactate dehydrogenase (LDH), leukocyte counts and differentials, Blood urea nitrogen (BUN) and 
mean corpuscular hemoglobin concentration (MCHC) were the best predictors, whereas prediction 
of long‑term mortality was favored by age, LDH, soluble urokinase plasminogen activator receptor 
(suPAR), albumin, and blood urea nitrogen (BUN). Conclusion: The findings suggest that measures of 
biomarkers taken from one blood sample during admission to the ED can identify patients at high risk 
of short‑and long‑term mortality following emergency admissions.

Prognostic tools predicting all-cause mortality are crucial for decision making in Emergency Departments and 
Intensive Care Units (ICU). Tools predicting disease severity and mortality have been inquired for effective 
patient management and resource allocation to ensure appropriate treatment and evaluate medications, pro-
tocols, and  interventions1. Consequently, various scores and indices have been proposed to predict mortality, 
such as Acute Physiologic Assessment and Chronic Health Evaluation (APACHE)2, National Early Warning 
Score (NEWS)3,4, Modified Early Warning Score (MEWS)5, Mortality Probability  Models6, Sequential Organ 
Failure Assessment (SOFA)7, Emergency Severity Index (ESI)8, and Cardiac Arrest Risk Triage score (CART)9. 
Lately, Geriatric scores have also been proposed, such as the Barthel  Index10,11, the Clinical Frailty  Score12, and 
FI-OutRef, a frailty index, calculated as the number of admission laboratory test results outside of the refer-
ence interval based upon blood collected at the admission time in + 65 years old acutely admitted  patients13. 
The majority of the existing score systems are based on a specifically defined patient cohort and target specific 
conditions. Furthermore, with an area under the curve (AUC) of 0.68–8014,15, these scores have only moderate 
accuracy in predicting short-term mortality, and are not developed for predicting long-term mortality. The 
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existing scores are typically based on physiological and laboratory parameters based on a simple linear relation-
ship. However, considering the global aging phenomenon and the increase in the prevalence of multimorbidity 
and polypharmacy, the proportion of complex patients has  increased16–20. As a result, these scores are simple and 
cannot elucidate the complexity, and the clinical requirements for use in daily clinical practice are not  met21–23. 
In recent years, many studies have shown the significant potential of applying advanced machine learning (ML) 
algorithms in healthcare  data24–27. Several ML algorithms have been explored in healthcare to assist with diagnosis 
and prognosis, including the prediction of short and long-time  mortality28–35. For instance, 30-day and up to 
4-year mortality risk models have been explored for medical and surgical patients discharged from the hospital 
with ROC-AUC of 0.95–0.9636,37, and with a balanced-accuracy between 65 and 67% for 4 year-mortality38. 
For in-hospital mortality prediction, Li et al. (2021) achieved an excellent AUC of 0.97 using ML algorithms 
based on 76 combined invasive and non-invasive  parameters39. For 30-day mortality risk after discharge, Blom 
et al.36 achieved an excellent discrimination AUC of 0.95, using data from electronic health records, morbidity 
scores, information about the referred doctor, ambulance transport, previous emergency medical condition, 
information about radiological order, discharge time and days in the hospital, and triage priority. However, to 
our knowledge, most existing models use various parameters, such as demographics, patient history, morbidity, 
medication, and non-invasive and invasive parameters, to predict mortality, which is difficult for clinicians to 
interpret and implement in a flow culture setting such as the  ED40. Furthermore, very few studies have investi-
gated ML modeling for all-cause short- and long-term mortality risk in a general population cohort at the ED. 
Hence, the aim of this study was to explore, develop and validate ML algorithms which can predict all-cause 
short—and long-term mortality based on few or easily measured routine blood samples collected at admittance 
at the emergency department.

Methods
Study design and settings
In this study, we analyzed data from a retrospective cohort study from the Emergency Department at the Copen-
hagen University Hospital, Amager and Hvidovre. The cohort included all patients admitted to the Acute Medical 
Unit of the Emergency Department with an available blood sample during the follow-up between 18 November 
2013 and 17 March 2017, whose follow-up data are available in the Danish National Patient Registry (DNPR). 
The Acute Medical Unit receives patients within all specialties, except children, gastroenterological patients, 
and obstetric patients. The follow-up period began from admission and extending to 90 days after discharge for 
the last patient was included, corresponding to a median follow-up time of 2 years: a range of 90–1.301 days. 
During the study period, patients who left the country for an extended length of time were censored at the time 
they were last admitted. This study was reported in accordance with the Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD  statement41.

Biomarkers
On admission, blood samples were taken, and a standard panel of markers was measured at the Department of 
Clinical Biochemistry, including C-reactive protein (CRP), Soluble urokinase plasminogen activator receptor 
(suPAR), Alanine Aminotransferase (ALAT), Albumin (ALB), International Normalized Ratio (INR), coagu-
lation factors 2,7,10 (KF2710), total Bilirubin (BILI), Alkaline Phosphatase, Creatinine, Lactate dehydroge-
nase (LDH), Blood urea nitrogen (BUN), Potassium (K), Sodium (NA), Estimated Glomerular Filtration Rate 
(eGFR), Hemoglobin (HB), mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration 
(MCHC), number of leukocytes, lymphocytes, neutrocytes, monocytes, thrombocytes, eosinophils, basophils, 
and Metamyelo-, Myelo.—Promyelocytes (PROMM)42. Age and sex were also included as variables in the algo-
rithms (Table 1).

From The Danish Civil Registration System demographic information, including age, sex, and death time 
was collected. This study adhered to regional and national regulatory standards, receiving approvals from rel-
evant Danish authorities. Permissions were granted by the Danish Data Protection Agency (ref. HVH-2014-018, 
02767) ensuring adherence to data protection regulations, the Danish Health and Medicines Authority (ref. 
3-3013-1061/1) for compliance with health and medical standards, and The Capital Region of Denmark, Team for 
Journaldata (ref. R-22041261), for the use and management of healthcare data within the region. These approvals 
collectively ensured that the study met the ethical and legal requirements pertaining to research in Denmark.

Outcomes
In this study, the primary outcomes were 3-,10-,30-, and 365-day mortality, defined as deaths within 3, 10, 30, 
and 365 days after admission at the emergency department, resulting in binary outcomes (0 = survive, 1 = dead).

Statistical analysis
R version (4.1.0) and Python (version 3.8.0) was used for statistical analysis in the demographic statistics part of 
this study. Categorical variables were described as numbers and percentages (%) and continuous variables were 
described as medians with interquartile range (IQR) for the groups.

Data preparation
First the data format was unified. Secondly, we excluded patient admissions from the analysis if more than 50% 
of their clinical biochemistry results were missing. For the admissions included in the study, the median per-
centage of missing variables was 2.6%, with an interquartile range (IQR) from 2.6 to 7.7%. For missing values, 
iterative imputations were used from scikit-learn  package43. For the unequal distribution of our target outcome 
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(imbalance data), several resampling methods were explored, including the random undersampling, the random 
oversampling, and  SMOTE44,45.

In this study, we used the random oversampling from imbalanced-learn  package46 to handle the imbalanced 
classification distribution best. Outliers were removed using an Isolation Forest. The default setting is 0.05, result-
ing as 0.025 of the values on each side of the distribution’s tail were dropped from the training set. To reduce 
the impact of magnitude in the variance, we normalized the values of all variables in the data by z-score. To 
make all variables more normal-distributed like, we power transformed the data by the Yeo-Johnson  method47.

Model construction
In this study we used the PyCaret’s classification module to train fifteen different algorithms, resulting in a total 
of 480 models for the four outcomes with a set of 27, 20, 15, 10, 5, 3, 2, 1 biomarker(s). PyCaret (version 2.2.6)48, 
is an automated machine learning low-code library in Python that automates the ML workflow. For all models 
Python (version 3.8.0) were used. By default, the random selection method was used to split the data into train-
ing and test sets of 70% and 30%, respectively. For hyperparameter tuning, a random grid search was used in 
PyCaret. There was no significant difference between training and test sets after split considering variable values.

Algorithm selection and performance measures
The fifteen machine learning algorithms (Random Forest (RF), SVM-Radial Kernel (RBFSVM), Extra Trees Clas-
sifier (ET), Extreme Gradient Boosting (XGBOOST), Decision Tree Classifier (DT), neural network (MLP), Light 

Table 1.  Baseline characteristics of patients’ blood test results. Stratified by time of death within, 3, 10, 30, 
and 365 days after admission at the emergency department. Baseline results from last admission. Results are 
expressed as median (IQR interquartile range) for continuous variables. For categorical variables, results are 
expressed as number of participants (percentage). ALAT, Alanine-aminotrasferase; BUN, blood urea nitrogen; 
CRP, C-reactive protein; HB, Hemoglobin; INR, prothrombin time and international normalized ratio; 
KF2710, coagulation factors 2,7,10; LDH, lactate dehydrogenase; MCV, mean corpuscular volume; MCHC, 
mean corpuscular hemoglobin concentration; Promm, Metamyelo-, Myelo. – Promyelocytes; suPAR, soluble 
urokinase plasminogen activator receptor; eGFR, estimated glomerular filtration rate.

Total Survival 3-day mortality 10-day mortality 30-day mortality
365-day 
mortality

Number of patients 28,671 23,039

Mortality rate (%) 5632 (19.6%) 0 201 (0.7%) 1252 (4.4%) 2338 (8.2%) 4677 (16.3%)

Variables

Age 65.6 (48.2: 78.5) 54.7(38.0: 70.0) 80.6 (71.5: 87) 80.8 (71.7: 88.2) 80.4 (71: 87.7) 79.1 (69.5: 86.5)

Sex (female) 15,175 (52.9%) 1231 (53.4%) 184 (51.8%) 668 (52%) 1376 (51.5%) 4224 (49%)

ALAT (U/L) 21 (15: 33) 22 (16: 33) 31 (19: 82) 25 (16: 52) 22 (15: 41) 19 (13: 32)

Albumin (g/L) 34 (30: 37) 36(33: 36) 27 (22: 31) 27 (22: 31) 27 (22: 31) 29 (25: 33)

Basophils (× 10^9 /L) 0.03 (0.02: 0.05) 0.03(0.02: 0.05) 0.03 (0.02: 0.05) 0.03 (0.01: 0.05) 0.03 (0.01: 0.05) 0.03 (0.02: 0.05)

Alkaline
Phosphatase (U/L) 76 (63: 94) 69 (56: 85.8) 123 (90: 176) 114 (83: 152) 114 (82: 149) 98 (75: 129)

Bilirubin (µmol/L) 7 (5: 10) 7 (6: 10) 9 (6: 17) 10 (6: 16) 9 (6: 14) 8 (5: 13)

BUN (mmol/L) 5.1 (3.8: 7.2) 4.7 (3.5: 6) 11.5 (7.1: 19.5) 10.8 (6.7: 17.4) 9.6 (6.1: 15.8) 7.6 (5.1: 12.3)

Creatinine (µmol/L) 77 (62: 97) 74 (62:89) 123 (82: 190) 107 (72: 171) 98 (67: 153) 90 (66: 132)

CRP (mg/L) 7 (2: 39) 4 (1:19) 76 (20.5: 180) 73 (27: 160) 67 (22: 148.5) 38 (9: 95)

HB (mmol/L) 8.1 (7.2: 8.9) 8.4 (7.7–9.1) 7.3 (6.3: 8.5) 7.2 (6.2: 8.3) 7.1 (6.2: 8.1) 7.2 (6.3: 8.1)

INR 1 (1: 1.1) 1 (1: 1.1) 1.2 (1: 1.4) 1.1 (1: 1.3) 1.1 (1: 1.3) 1.1 (1: 1.2)

Potassium (mmol/L) 3.9 (3.6: 4.2) 3.8 (3.6: 4.1) 4.3 (3.8: 5.1) 4.1 (3.6: 4.6) 4 (3.6: 4.5) 4 (3.6: 4.3)

KF2710 0.91 (0.77: 1.02) 0.92 (0.77: 1.01) 0.74 (0.55:0.89) 0.76 (0.56: 0.91) 0.77 (0.58: 0.91) 0.83 (0.66: 0.96)

LDH (U/L) 186 (169: 214) 175 (151:205) 334 (267: 410) 289 (229: 355) 268 (219: 328) 224(188: 274)

Leukocytes (× 10^9 /L) 8.7 (6.9: 11.3) 8.5 (6.9: 10.8) 13.7 (9.6: 19.6) 12.7 (9.1: 17.0) 11.8 (8.6: 16.0) 10.1 (7.6: 13.8)

Lymphocytes (× 10^9 /L) 1.7 (1.1: 2.3) 1.8 (1.3: 2.5) 1.2 (0.7: 1.9) 1 (0.6: 1.6) 1.1 (0.7: 1.6) 1.2 (0.8: 1.8)

MCHC (mmol/L) 20.7 (20.1: 21.2) 20.9 (20.4: 21.4) 19.8 (19.1:20.5) 20 (19.3: 20.6) 20 (19.4: 20.7) 20.2 (19.5: 20.8)

MCV (fL) 89 (86: 93) 88 (85: 92) 93 (88: 98) 92 (87: 97) 91 (87: 96) 91 (87: 95)

Monocytes (× 10^9 /L) 0.7 (0.5: 0.9) 0.6 (0.5: 0.8) 0.8 (0.5: 1.3) 0.8 (0.5: 1.16) 0.8 (0.51: 1.1) 0.8 (0.53: 1.02)

Neutrocytes (× 10^9 /L) 5.8 (4.1: 8.3) 5.4 (4.: 7.6) 10.9 (7.4: 15.4) 10.3 (6.9: 14.2) 9.5 (6.4: 13.4) 7.6 (5.3: 11.2)

Promm (× 10^9 /L) 0.03 (0.02: 0.06) 0.03 (0.02: 0.05) 0.11 (0.05: 0.29) 0.09 (0.04: 0.19) 0.08 (0.04: 0.16) 0.05 (0.03: 0.11)

suPAR (ng/ml) 3.3 (2.3: 5.0) 2.6 (1.9–3.6) 7.3 (5.2: 10.8) 7.0 (4.9: 10.2) 6.7 (4.7: 9.7) 5.7 (4.0: 8.2)

Thrombocytes (× 10^9/L) 247 (201: 302) 242 (201: 292) 266 (196: 350) 259 (193: 350) 266 (200: 354) 260 (199: 338)

Eosinophils (× 10^9 /L) 0.11 (0.04: 0.19) 0.11 (0.04: 0.21) 0.01 (0: 0.05) 0.01 (0: 0.07) 0.028 (0: 0.10) 0.07 (0.01: 0.17)

eGFR (mL/min) 80 (60: 90) 87 (70: 90) 42 (25: 69) 51 (29: 77) 56 (34: 83) 62 (40: 86)

Sodium (mmol/L) 139 (136: 141) 139 (137: 141) 138 (134: 142) 138 (134: 142) 138 (134: 142) 138 (135: 141)
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Gradient Boosting Machine(LIGHTBM), K Neighbors Classifier (KNN), Gradient Boosting Classifier (GBC), 
CatBoost Classifier (CATBOOST), Ada Boost Classifier (ADA), Logistic Regression (LR), Linear Discriminant 
Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Naive Bayes(NB)), were trained and evaluated 
first on tenfold cross-validation, then on test data. Model selection was based on the Area under the receiver 
operating characteristic curve (AUC) measure. Additionally, sensitivity, specificity, positive predictive value, and 
negative predictive value for the complete data, based on probability threshold of 0.5, were estimated for the 
training and test data and evaluated between them. Similarly, analyses were performed on the top ML models, 
including a sensitivity analysis using data without variable imputation, and models that included both routine 
biomarkers and co-morbidity based on ICD-10 codes as features. Out of 4400 possible diagnoses, we selected 
389 codes based on a prevalence over 50, focusing on those with a prevalence where at least 50 patients have the 
diagnosis (Supplementary table 3 and 4).

Biomarker selection
In this study we aimed to use few biomarkers for predicting mortality. This can reduce the risk of over-fitting, 
improve accuracy, and reduce the training  time49. Biomarker selection (Feature Selection) was achieved in 
PyCaret using various permutation importance techniques depending on the type of model being evaluated. 
These included Random Forest, Adaboost, and linear correlation with the mortality outcome to select the subset 
of the most relevant biomarkers for modeling. By default, the threshold used for feature selection was 0.850. Dur-
ing iteration, all biomarkers were fed into each of the models, the best biomarkers were kept, and seven to one 
biomarker were removed, resulting in models starting with 27 variables and decreasing to 1.

Results
Figure 1 shows the flow of data. Between 18 November 2013 and 17 March 2017, a total of 51,007 ED admissions 
occurred during this period. Of these 2166 patient records were excluded due to missing data on more than 50% 
of variables, resulting in a study cohort of 48,841 admissions obtained from 28,671 unique patients. Randomly, 
34,193 (70%) patient records were allocated to training data and 14,651 (30%) patient records were allocated to 
test data. Table 1 shows the baseline characteristics of patients, at latest admission, median age was 65.6 (IQR: 
48.2 – 78.5) years and 52.3% were female. A total of 5632 (19.6%) patients did not survive during the follow-up 
(see Methods). The differences between not-survived patient at different times follow-up, are shown in Table 1. 
The mortality rates were 0.7%, 2.4%, 4.6% and 12.7% at 3-day, 10-day, 30-day and 365-day follow-up, respectively. 
Patients excluded due to missing data showed no significant differences compared to those retained in the study. 
Additionally, we conducted a sensitivity analysis fitting the top models with and without the imputed data, and 
demonstrated almost comparable outcomes (except NB and QDA models), indicating that there was no notable 
impact of imputation on our results (Table S4).

Model performance
In Figs. 2a–d and 3a–d, the performance, as denoted by AUC and sensitivity of all fifteen ML models are shown 
(models described in methods section), respectively. The datasets used in the models included all 26 biomarkers 
from the routine blood tests and sex as an additional variable. Feature selection (see method section) ranked 
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Figure 1.  Flowchart of data. We used a cohort study of 51,007 acute patient admissions at the emergency 
department with laboratory and demographical data. At data pre-processing we excluded 2166 records with 
more the 50% missing in data (4.3% of the total), removed outliers, imputed and scaled the data. In total 48,841 
records were structured data, where 34,190 (70%) patient records were allocated to training data and 14,651 
(30%) patient records were allocated to validation and test data.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5942  | https://doi.org/10.1038/s41598-024-56638-6

www.nature.com/scientificreports/

Figure 2.  Predictive performance of fifteen ML algorithms on training data, as measured by the Area Under 
the Receiver Operating Characteristic Curve (AUC) when using 1 to 27 variables as predictors in the machine 
learning algorithms. Figure 2a–d demonstrate the predictive performance for 3-day, 10-day, 30-day and 365-
days mortality, respectively. Among all models, the highest predictive performances in AUC are shown between 
0.90 and 0.93 in Figure 2a–d. When using five variables, the top 3 models achieved an AUC of 0.89 in Fig. 2a–c, 
and an AUC of 0.86 or above when using five variables in Fig. 2d. The AUC falls below 0.85 when using fewer 
than three variables for all models in Fig. 2a–d.

3-day Mortality 10-day Mortality

30-day Mortality 365-day Mortality

Figure 3.  Sensitivity of fifteen ML algorithms on training data, as measured by the Area Under the Receiver 
Operating Characteristic Curve (AUC) when using 1 to 27 variables as predictors in the machine learning 
algorithms. Figure 3a–d demonstrate the sensitivity for 3-day, 10-day, 30-day and 365-day mortality on training 
data, respectively. Among all models, the highest sensitivity is shown between 0.88 and 0.91 in Fig. 3a–c. In 
Fig. 3d, the highest sensitivity reached is 0.85. When using ten variables, the top 3 models achieved a sensitivity 
above 0.85–91 in Fig. 3a–d, The Sensitivity falls below 0.8 when using fewer than three variables for all models 
in Fig. 3a–d.
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the most important biomarkers, removing seven to one variable in every iteration, resulting in models ranging 
from 27 to 1 variable. Based on test data, the AUC of all models ranged between 0.5 and 0.93 and the sensitivity 
ranged between 0.00 and 0.91 (Fig. 2). Eight of the fifteen models achieved very good to excellent results on 
test data with an AUC of 0.85–0.93 with a sensitivity > 0.80 using more ten variables (Fig. 2, and supplementary 
Table 2). Six of the ML algorithms, the Gradient Boosting Classifier (GBC), Light Gradient Boosting Machine 
(LightGBM), Linear Discriminant Analysis (LDA), Logistic regression (LR), Naïve Bayes (NB) and Quadratic 
Discriminant Analysis (QDA) had particularly high AUCs > 0.85 and sensitivity > 0.80, even when using only 
ten variables (Fig. 2). After reducing the number of variables to five, the performance in AUC showed very 
good performance and high sensitivity > 0.80 in two specific ML models the Gradient Boosting Classifier and 
the Quadratic Discriminant Analysis (Fig. 2a–c). The Gradient Boosting Classifier achieved an AUC of 0.89 for 
prediction of 3-day, 10-day, and 30-day mortality, with a sensitivity of 0.85, 0.83, and 0.83, respectively. For pre-
diction of 365-day mortality, the ML algorithm Quadratic Discriminant Analysis had the highest AUC of 0.86, 
with a sensitivity of 0.80 (Fig. 2d). Using fewer than five variables resulted in a significant decrease in all models 
to below 0.85 in AUC and below 0,80 in sensitivity (Fig. 2a–d). Further performance metrics for all models can 
be found in supplementary (Table 2).

Table 2 shows the performance metrics for the top three ML models for prediction of 3-, 10-, 30- and 365-day 
mortality on test data based on the highest AUC and sensitivity performance. The best models were models with 
ten to fifteen variables. Performance metrics between training and test data were similar. The ML algorithms 
Naive Bayes, Linear Discriminant Analysis, and Logistic Regression had the highest mean AUC of 0.91–0.93 and 
sensitivity of 0.85–0.92, for 3-day mortality using 15 variables in the models (Table 2). For 10-day mortality, the 
ML algorithms Linear Discriminant Analysis and Quadratic Discriminant Analysis had the highest mean AUC 
of 0.90–0.91 and sensitivity of 0.90–91 using 10 variables. For 30-day mortality, the Linear Discriminant Analysis, 
Quadratic Discriminant Analysis, and Gradient Boosting Classifier had the highest mean AUC of 0.90–0.92 and 
sensitivity of 0.86–0.90 using 10 variables. Lastly, for 365-day mortality, the ML algorithms Gradient Boosting 
Classifier, the Light Gradient Boosting Machine, and Quadratic Discriminant Analysis had the highest mean 
AUC of 0.87–0.89 and a sensitivity of 0.80–0.85 using 10 to 15 variables (Table 2).

Biomarker importance
Based on feature selection technique used on the IDA, LR, GBC, ADA and LightGBM models (ML algorithms in 
Methods), the biomarkers with the most importance for prediction of mortality were identified. Figure 4. Shows 
the top-ranked biomarkers for 3-, 10-, 30-, and 365-day mortality. Biomarkers like age, LDH, albumin, BUN, 
MCHC, are repeatedly ranked among the top variables in all models. Even when excluding age as a biomarker, the 

Table 2.  Results from test data for top 3 models predicting short- and long-term mortality. AUC, mean area 
under receiver operating curve. The numbers are presented as mean with 95%-confidence; PPV, positive 
predictive value; NPV, negative predictive value.

AUC Sensitivity Specificity PPV NPV
Number of 
variables

3-day Mortality

 Naive bayes 0.91 [0.91—0.91] 0.92 [0.91—0.92] 0.78 [0.78—0.79] 0.03 [0.3–0.3] 0.99 [0.99—0.99] 15

 Linear discrimi-
nant analysis 0.93 [0.93—0.93] 0.89 [0.86—0.89] 0.83 [0.82—0.83] 0.04 [0.4–0.5] 0.99 [0.99—0.99] 15

 Logistic regres-
sion 0.93 [0.93—0.93] 0.85 [0.83—0.86] 0.85 [0.84—0.89] 0.04 [0.4–0.4] 0.99 [0.99—0.99] 15

10-day mortality

 Linear discrimi-
nant analysis 0.91 [0.90—0.91] 0.90 [0.87—0.93] 0.78 [0.78—0.79] 0.1 [0.09—0.11] 0.99 [0.99—0.99] 10

 Logistic regres-
sion 0.91 [0.89—0.93] 0.90 [0.87—0.93] 0.79 [0.79—0.79] 0.1 [0.09—0.11] 0.99 [0.99—0.99] 10

 Quadratic discri-
minant analysis 0.90 [0.90 –0.90] 0.91 [0.87—0.93] 0.77 [0.76—0.77] 0.1 [0.08—0.10] 0.99 [0.99—0.99] 10

30-day Mortality

 Linear discrimi-
nant analysis 0.90 [090—0.90] 0.90 [0.87—0.92] 0.78 [0.77- 0.79] 0.19 [0.18–0.21] 0.99 [0.99—0.99] 10

 Quadratic discri-
minant analysis 0.91 [0.89—0.91] 0.89 [0.86—0.91] 0.76 [0.75—077] 0.18 [0.17—0.19] 0.99 [0.99—0.99] 10

 Gradient boost-
ing classifier 0.92 [0.92—0.92] 0.86 [0.84—0.89] 0.82 [0.82—0.83] 0.22 [0.21—0.24] 0.99 [0.99—0.99] 10

365-day mortality

 Gradient boost-
ing classifier 0.88 [0.88—0.89] 0.82 [0.81—0.83] 0.77 [0.76—0.77] 0.44 [0.43—0.46] 0.96 [0.95—0.99] 10

 Light gradient 
boosting machine 0.89 [0.89—0.89] 0.80 [0.80—0.81] 0.81 [0.80—0.82] 0.46 [0.44—0.49] 0.95 [0.95—0.98] 15

 Quadratic discri-
minant analysis 0.87 [0.87—0.89] 0.85 [0.84—0.89] 0.74 [0.73—0.75] 0.40 [0.40—0.41] 0.96 [0.95—0.99] 15
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remaining variables where still top predictors and the predicted mortality for 3-, 10-, 30-, and 365-day remained 
showing very good performance AUC of > 0.80. Biomarkers like basophiles, INR, bilirubin, and monocytes are 
ranked in repeatedly among the lowest five in all models. Eosinophils, leukocytes, and neutrophils are among 
the biomarkers that move from top to bottom of the rank as follow-up time increases. In contrast, suPAR ini-
tially was ranked low at 3-day mortality outcome but rises to the top, at 365-day mortality, with an increase in 
follow-up time (Fig. 4).

Discussion
The aim of this study was to develop and validate machine learning algorithms for finding high-mortality patients 
admitted to Emergency Departments using the results from routine blood testing and age. With as few as five 
biomarkers, machine learning-based algorithms provided very good performance predicting mortality in acutely 
admitted patients with AUC of 0.89 and 0.86, sensitivity of 0.83 and 0.80 for short and long-term mortality, 
respectively. Top three models, used between ten and fifteen biomarkers achieved an AUC of 90–93 and 87–89, 
sensitivity of 0.86–92 and 0.80–85 for short and long-term mortality, respectively. However, most models did 
not see an improvement from adding additional biomarkers. A similar study using few variables by Xie et al.14, 
developed and validated scores to predict the risk of death for ED patients using five to six biomarkers. These 
biomarkers included age, heart rate, respiration rate, diastolic blood pressure, systolic blood pressure, and cancer 
history. The 30-day score by Xie et al. achieved the best performance for mortality prediction, with an AUC of 
0.82 (95%CI 0.81–0.83). However, similar to the very good discriminative performance of the scores, we further 
have demonstrated an excellent performance of > 0.90 by only using one routine blood sample. The models in 
our study are distinguished by their reliance on minimally modified data, primarily consisting of blood samples 
and patient age. This streamlined data approach stands in stark contrast to methods that require repetitive vital 
signs, medication profiles, and extensive disease histories, thereby significantly enhancing their applicability in 
clinical environments. Notably, these models align with current healthcare AI recommendations that advocate 
the use of high-quality, paraclinical  data51. Such data is fundamental to the efficacy of AI applications in health-
care, providing robustness against stochastic errors. Furthermore, the simplicity of the data requirements in our 
models ensures scalability and adaptability across diverse clinical settings, a feature that is essential given the 
variety of cases encountered in emergency departments. This approach has the potential to democratize access 
to advanced diagnostic tools, broadening the use of machine learning and AI in clinical decision-making across 
a range of healthcare facilities. It’s important to note that while our study focuses on the predictive capacity of 

Figure 4.  Ranking of importance of biomarkers in the IDA, LR, GBC, ADA and LightGBM models for 
prediction of 3-, 10, 30, and 365-day mortality.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5942  | https://doi.org/10.1038/s41598-024-56638-6

www.nature.com/scientificreports/

blood tests, we acknowledge the critical prognostic implications of vital signs and the level of consciousness in 
emergency care. Our intention is not to sideline these factors but to explore additional, complementary diagnostic 
resources. Vital signs are crucial for assessing short-term or in-hospital mortality, but their utility in predicting 
long-term mortality is relatively  limited52–56. In contrast, blood-based biomarkers can offer deeper insights into 
underlying pathologies, potentially improving the accuracy of long-term mortality predictions. This distinction 
becomes particularly crucial in the context of those cases where clinicians face uncertainty based solely on vital 
signs. These predictions can supplement the traditional reliance on vital signs, providing an additional layer of 
information that might tip the balance in clinical judgment for short- and long-term mortality outcomes.

In this study, we consider that clinically, it is easy to interpret and understand algorithms that can predict 
mortality based on the use of biomarkers, such as LDH, albumin, BUN, leukocyte and differential counts, and 
suPAR. An increase or decrease indicates underlying clinically pathological conditions which clinicians can 
comprehend, such as sever tissue damage, kidney disease and infection, and the levels of such biomarkers are 
stable overtime with only minor fluctuations. In contrast, abnormal values of vital signs as heart rate, respiration 
rate and blood pressure are either indicators of acute failure of the body’s most essential physiological functions, 
or an indication of compensatory physiological mechanisms in the heart or lungs and can fluctuate suddenly 
and significantly over minutes. Furthermore, clinically abnormal vital sign values need multiple recordings 
and re-evaluations ranging from four times per hour to two times per day to determine patients at risk of any 
deterioration.

Biomarkers
Biomarker selection was essential since the practical use of algorithms with many clinical biomarkers are not 
feasible. All models ranked age, albumin, LDH, and BUN as key predictive factors. However, the ranks were 
different for short- and long-term mortality. In our study, the best predictors of short-term mortality are LDH, 
leukocyte counts and differential, BUN and MCHC while the best predictors of long-term mortality are age, LDH, 
suPAR, albumin and BUN. The biomarkers identified have previously been shown and used as prognostic and 
monitoring tools for diseases such as anemia, heart attack, bone fractures, muscle trauma, cancers, infections, 
inflammatory disorders, and hepatic-, renal-, and congestive heart  failure57–63. These diseases are often found 
among frailty patients admitted to ED. Our results show that combining these biomarkers in one algorithm 
makes them valuable predictors for mortality.

ML algorithms: new resources to find high‑risk patients
This study’s findings lay the groundwork for developing ML models that utilize a minimal set of biomarkers 
from a single blood sample. These models hold promise for future applications in identifying patients at risk 
following emergency admissions. Given the challenges posed by an aging population and crowded emergency 
departments globally, these tools could play a pivotal role in accurately determining patients’ health statuses and 
directing resources efficiently towards high-risk individuals.

In various clinical scenarios, such mortality prediction algorithms can enhance patient safety and minimize 
preventable errors. These algorithms can serve as vital decision support tools, guiding actions such as hospitaliza-
tion, discharge, delegation, and referral. For example, integrating short-term mortality prediction into the triage 
process in EDs, could assist to identify ’greyish patients’—those for whom clinicians face uncertainty regarding 
hospitalization decisions. This integration could be transformative in managing overcrowded EDs. Additionally, 
these models could be pivotal when assessing patients prior to discharge, particularly in identifying those at 
risk of mortality within the critical 10–30-day post-discharge period. Through the application of our ML algo-
rithms to analyze a patient’s blood sample and relevant biomarkers, clinicians can extract valuable insights into 
a patient’s risk profile. This information may not be evident through conventional clinical assessments alone. 
This predictive capability allows for a more nuanced discharge planning process, ensuring that patients who 
may require additional monitoring or follow-up care are appropriately identified. Such an approach not only 
enhances patient safety post-discharge but also aids in the effective allocation of post-hospitalization resources, 
potentially reducing readmission rates and improving overall patient outcomes.

Moreover, these algorithms have the potential to aid in complex decision-making scenarios, helping to avoid 
overtreatment and care that may not align with a patient’s wishes and recovery capabilities. Understanding the 
appropriate level of medical intervention is a critical aspect of healthcare, particularly in scenarios where there 
is a mismatch between the care provided and patient preferences. In geriatric care, for example, it is often the 
case that aggressive interventions may be less beneficial for frail patients. Some may prefer less invasive treat-
ments or prioritize quality of life over life prolongation. Respecting patient autonomy is a fundamental part of 
patient-centered care. By utilizing these predictive models as decision-making tools, clinicians and patients can 
engage in more informed and individualized healthcare decisions, ensuring an approach that aligns with patient 
preferences and improves their quality of life.

Choosing the right machine learning model for mortality prediction
Our results reveal a crucial trend: the effectiveness of machine learning models varies based on the prediction 
timeframe. Simple models like logistic regression and Linear Discriminant Analysis are effective for short-term 
mortality (3–30 days), offering ease of use and interpretability, ideal for rapid clinical decisions. However, they 
may fall short in capturing complex, long-term data trends.

In contrast, advanced models like Light Gradient Boosting Machine and Gradient Boosting Classifier are 
effective in long-term mortality predictions, adept at analyzing complex data patterns. However, their complex-
ity can be a double-edged sword; these models are often seen as `black boxes’ due to their lack of transparency, 
making it challenging for clinicians to understand the basis of their predictions.
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The choice of the model, therefore requires careful consideration of these trade-offs. Clinicians and data 
scientists must consider both the prediction requirements and the need for model interpretability, ensuring the 
chosen model aligns with patient care’s ethical and practical aspects.

Conclusion
This study has demonstrated that high-risk of death in patients following admission can be identified by a rou-
tine blood sample, using a combination of five to fifteen biomarker measures. Eight of the fifteen evaluated ML 
algorithms achieved very good to excellent results of AUC (0.85–0.93). The ML algorithms Gradient Boosting 
Classifier, Light Gradient Boosting Machine, Linear Discriminant Analysis, Logistic regression, Naïve Bayes 
and Quadratic Discriminant Analysis showed the best performance on AUCs and sensitivity, even using only 
five biomarkers.

Limitations and future research
To our knowledge, this is the first published study that has applied machine learning methods to predict acutely 
admitted emergency patients based on a few routine blood samples with excellent performance. There are, 
however, some limitations to this study. First, the data, which is over five years old, was retrospectively collected 
at a single clinical center. This raises concerns about the generalizability of the findings, as there may have been 
changes in methodologies, practices, population demographics, or environmental factors since the data was 
gathered. Second, our data encompassed patients from all specialties, except for children, gastroenterological, 
and obstetric patients. This exclusion of specific patient groups restricts the applicability of our trained models 
to these populations. Thirdly, our study did not integrate vital signs, due to lack of data and ethics approval, to 
perform a sensitivity analysis test. Fourthly, 4.3% of the total amount of patients with more than 50% missing 
data were excluded from the study, which could result in selection bias for the performance estimates. Fifthly, 
in this study we have used a probability threshold of 0.5, a more comprehensive analysis of the consequences 
of different thresholds is required to determine the right threshold. Last, but not least, machine learning tech-
niques have also been criticized as black boxes by critics, so clinicians are skeptical of their use. This issue may be 
reduced by using interpretable biomarkers and using explaining ML tools or educating clinicians in ML concepts. 
Future work would need to focus on determining which algorithm should in the end be used, additional external 
validation would be needed to verify the robustness of this algorithm. The predictive performance of the ML 
models presented herein will be compared with existing warning scores for mortality prediction in follow-up 
validation studies. Implementation and prospective randomized trials would also be necessary to ensure the use 
and effectiveness of the algorithm.
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