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Automated detection 
and classification of concealed 
objects using infrared 
thermography and convolutional 
neural networks
WeeLiam Khor 1,2, Yichen Kelly Chen 3, Michael Roberts 3,4 & Francesco Ciampa 1*

This paper presents a study on the effectiveness of a convolutional neural network (CNN) in classifying 
infrared images for security scanning. Infrared thermography was explored as a non-invasive security 
scanner for stand-off and walk-through concealed object detection. Heat generated by human 
subjects radiates off the clothing surface, allowing detection by an infrared camera. However, 
infrared lacks in penetration capability compared to longer electromagnetic waves, leading to less 
obvious visuals on the clothing surface. ResNet-50 was used as the CNN model to automate the 
classification process of thermal images. The ImageNet database was used to pre-train the model, 
which was further fine-tuned using infrared images obtained from experiments. Four image pre-
processing approaches were explored, i.e., raw infrared image, subject cropped region-of-interest 
(ROI) image, K-means, and Fuzzy-c clustered images. All these approaches were evaluated using the 
receiver operating characteristic curve on an internal holdout set, with an area-under-the-curve of 
0.8923, 0.9256, 0.9485, and 0.9669 for the raw image, ROI cropped, K-means, and Fuzzy-c models, 
respectively. The CNN models trained using various image pre-processing approaches suggest that the 
prediction performance can be improved by the removal of non-decision relevant information and the 
visual highlighting of features.

The detection of concealed weapons and improvised explosive devices by terrorists has been a constant challenge 
for security operations. In populated venues such as airports and football stadia, it would not be practical for the 
security personnel to perform manual checks on all visitors. Ideally, a stand-off and walk-through scanner would 
determine if a threat exists, followed by the execution of a threat isolating or removal procedure, eliminating or 
minimizing the harm inflicted to  civilians1. Electromagnetic waves (EM waves) have often been exploited for 
non-contact object detection in human  subjects1–4. Some of the established EM waves used in security scanning 
include X-ray, millimetre-waves (MMW) and  terahertz1 (THz).

One of classic scanners is the X-ray  detector5, which emits X-rays that are short in wavelength  (10–7 to  10–9 m), 
high in frequency (3 ×  1016 to 3 ×  1019 Hz) and energy (124 keV to 145 eV). X-rays are the most penetrative 
among commercial EM scanners, giving full information on the cross section of the subject. However, the use 
of X-ray scanners is gradually being phased out due to the potential health implications when human subjects 
are exposed to ionizing  radiation6–10. On the other hand, longer wavelength EM waves, such as MMW and THz 
have been effective in personnel security scanning applications. MMW has a frequency between 30 and 300 GHz 
with a wavelength between 1 and 10 mm, and can penetrate low visibility conditions, such as fog, to reflect off 
the  subject11–13. The penetration capability of MMW have led to the development of a commercial personnel 
threat detection system by QinetiQ, the SPO-NX14. Like MMW, THz enables good penetration through general 
 clothing15,16. THz has a frequency span between 100 GHz and 10 THz, and a wavelength between 3 mm and 
30 μm. The penetrative capability of THz has led to the development of a commercial personnel scanning system 
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by  Thruvision17–19. Infrared (IR), when compared to MMW and terahertz, has a shorter wavelength (760 nm to 
50 μm) and higher frequency (up to 214 THz). IR thermography captures thermal radiation emitted by objects in 
the form of image. There are two distinct forms of thermography: active thermography, where an IR illuminator 
(e.g., a flash or heater) illuminates the surface of the object, and passive thermography, where the IR radiation 
emitted from the surface of the object is directly sensed by the IR camera. Based on the black body radiation law, 
all objects above absolute zero degrees emit IR radiation, and variations of the radiation intensity are correlated 
to temperature gradients.

The potential use of IR technology in security scanning has been explored with various level of  success3,20–27. 
In cases of stand-off scanning for concealed object detection, the human subject acts as the heat source for 
passive emission sensing. The heat emitted from the body is absorbed by the concealed object and transferred 
to the clothing before emission off the surface of the top clothing layer. This generally results in a temperature 
gradient between the concealed object area and the clothing surface. However, emission signals detected from 
IR systems are less distinctive compared to the MMW and THz counterpart, as the wave penetration through 
clothing increases with  wavelength28. As a result, a low signal is expected when scanning through thicker layers 
of clothing using IR  thermography21,29,30. Despite these physical limitations, there are also inherent advantages 
of using IR systems for security scanning. IR has a shorter wavelength than MMW, which means it is possible 
to have a higher resolution when constructed as an image for visualisation, allowing detection from longer 
 distances4,20,31. It also enables higher-volume applications since multiple subjects can be visualised with larger 
fields-of-view. Additionally, images of faces captured using passive thermography are difficult to recognise, thus 
providing an additional layer of  privacy23.

In the context of concealed object scanning, most works have resorted to MMW or THz since they enable 
better penetration. Even though IR was less explored in this aspect, machine learning (ML)-based techniques 
have been successfully implemented with IR data, e.g., for non-destructive damage inspection and segmentation 
of moving  objects32–37. In an ideal concealed object detection system, the decision made upon scanning of the 
subject should be decisive and accurate. Due to the penetration limitation of IR systems, it could be difficult for 
an operator to make consistent decisions, particularly in cases of layered clothing.

The proposed approach in this paper to address this issue is by implementing convolutional neural networks 
(CNN) for concealed object detection and classification. Utilizing the transfer learning approach, a pre-trained 
CNN was fine-tuned using application-specific data, i.e., IR images of subjects with and without concealed 
objects. Transfer learning has been successfully implemented in many areas, such as biomedical  imaging38–42, 
non-destructive testing in  buildings43, agricultural pest and disease  management44,45, topology  segmentation46, 
image  enhancement47, pedestrian  identification48, and security  scanning5,28. The aim of this work is to explore 
the potential of using CNNs to predict the presence of a target object concealed underneath layered clothing 
using IR thermography. Raw IR images and pre-processed images were used to fine-tune a pre-trained ResNet-50 
CNN model. This was followed by an evaluation of model performance using receiver operating characteristic 
(ROC) curves.

Methodology
Data acquisition
A FLIR A6750sc Mid Wavelength IR camera with a 3–5 µm waveband, < 20 mK thermal sensitivity (NETD), and 
a focal plane array size of 640 × 512 pixels was used to capture thermal data. Examples of clothing and simulated 
concealed weapons used in data collection are shown in Fig. 1.

Image pre-processing
Four different pre-processing methods were investigated in this work: raw data from the IR camera, cropped 
region-of-interest (ROI), K-means clustered, and Fuzzy-c clustered images. This enabled us to investigate the 
effects of background removal, clustering, and information reduction on the trained CNN model for classification.

The ROI images were produced by cropping the subject from the raw image. Based on the generalised assump-
tion of a 32 °C skin temperature, a threshold of 30 °C was used to crop the subject. This was applied on the raw 
image, where the first and last time the threshold temperature was encountered when reading temperature values 
from left to right of the image, and the first time when reading from top to bottom. This retains some of the 
exposed skin of the subject within the ROI image, removing some background information.

The K-means49 and Fuzzy-c32 methods are unsupervised ML techniques used for information reduction. 
K-means is a well-known clustering method whereas Fuzzy-c is a less famous variation. Both approaches com-
mence by establishing cluster centres to initiate the cluster affiliation. This is followed by computing membership 
scores based on distances between datapoints (pixels) and the cluster centres, which reveal the degree of associa-
tion between each pixel and each cluster. These scores guide the adjustment of cluster centres, with more weights 
placed on pixels that exhibit stronger association. This iterative procedure continues until a defined stopping 
criterion is satisfied. The application of such information reduction technique on images will typically simplify 
the illustration of images. The primary distinction between these two methods lies in the fact that K-means 
employs hard clustering, restricting each data point to a singular cluster association (usually the nearest cluster 
centre)49. Conversely, Fuzzy-c utilises a soft clustering approach, enabling each data point to be linked with all 
available clusters while assigning distinct degrees of importance (or weight)50. The weighting (or membership 
score) is computed as,

(1)
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1
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, 1 ≤ i ≤ C, 1 ≤ j ≤ N,
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where μij is the membership score of the j-th pixel (N pixels in total) for the i-th cluster (C clusters in total); 
Dij is the distance (i.e., intensity difference) between the j-th pixel and the centre of the i-th cluster; and m is 
a parameter to control the extent of the fuzzy overlap. Updated cluster centres are subsequently computed as,

where ci is the updated centre of the i-th cluster and xj is the intensity of the j-th pixel. Furthermore, there is a 
disparity in the stopping criteria between K-means and Fuzzy-c. In K-means, the algorithm halts when cluster 
centres remain constant between consecutive iterations. In contrast, for Fuzzy-c, the algorithm continues its 
iterations until there is no further enhancement in the objective function. This objective function J is defined as

On general consensus, Fuzzy-c is considered more robust compared to K-means51. However, this could differ 
depending on application  scenarios52. The thermal intensity data (apparent temperature) obtained from the IR 
camera was flattened into 1D before the pixel intensities enter the clustering algorithm. This allows the cluster-
ing algorithms to cluster the data relative to the apparent temperature in 1D, instead of area clustering in 2D. A 
total of 16 cluster centres were set to illustrate a total of 16 intensity bins in each image. Commercial numerical 
computing software,  MATLAB53, was used to process images and train models.

Convolutional neural networks, CNN
A ResNet-50 CNN  model54 was used to classify IR images. CNNs are a class of deep learning network archi-
tectures that can be applied to the classification of audio, time-series, signals, and most commonly for image 
classification. In the case of image classification, the input image is passed through a set of convolutional filters, 
each of which extract certain features from the images, e.g., brightness and edges Fig. 2.

The rectified linear unit (ReLU) serves as an activation function for the convolutional filter, and the pooling 
layer performs linear downsizing on the output, reducing the number of parameters that the network needs 
to learn. In the classification layers, the data is flattened into 1D before passing through a classification neural 
network, typically consisting of a fully connected network (also described as dense layer) and a SoftMax activa-
tion which normalises the output into probabilities. Typically, to train a CNN model from scratch, the general 
consensus requires that the size of the training dataset be at least one magnitude higher than the size of the test 
dataset to improve diversity and avoid  overfitting55,56. However, well-labelled IR datasets for subjects with con-
cealed objects are rare and often not publicly shared. To tackle the small-dataset problem, a pre-trained ResNet-50 
model was used. The model was pre-trained using the ImageNet  dataset57, which contained 1.4 million natural 
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Figure 1.  Photographs of simulated concealed weapons including (a) neoprene rubber block, (b) metal 
bearings in clay, and (c) fragments in money bag. Examples of outer clothing such as (d) layered windproof, (e) 
t-shirt, and (f) hoodie.
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images with 1000 classes. In the transfer learning step, the fully connected layer was fine-tuned using a total 
of 900 labelled images (462 with and 438 without object). The underlying assumption in the transfer learning 
approach is that generic features extracted from an exceptionally large dataset are also present and informative in 
different datasets. This portability of learned generic features is a unique advantage of deep learning that makes 
itself useful in various domain tasks with small  datasets58. Using MATLAB’s Deep Network Designer, the fully 
connected layer in the pre-trained model was modified to train using a weight learn rate factor and bias learn 
rate factor of 10. During training, argumentations were applied to the training images to improve the diversity 
of data and to avoid overfitting. Transformations were performed by applying reflection on the Y-axis, rotation 
by ± 45°, and rescaling by ± 25%. Internal validation was performed using 30% of randomly sampled training 
data to monitor the training process. Stochastic gradient descent was used as the optimiser with an initial 
learning rate of 0.0001, validation frequency of 5, maximum epoch of 20 and a mini batch size of 10. Validation 
accuracies of 98.95%, 97.19%, 94.07%, and 95.19% were achieved for the raw image, ROI, K-means, and Fuzzy 
C image models, respectively.

After training, a total of 200 images (equal split with and without object) that have not been exposed to the 
models (internal holdout/test-set) were pre-processed into the respective image type to evaluate the fine-tuned 
ResNet-50 models. When a cut-off is applied to the predicted probabilities, the comparison of the predicted and 
the true label will result in a confusion matrix consisting of true positives, false positives, false negatives, and 
true negatives Fig. 3. True positives and true negatives correspond to correct predictions, whilst false positives 
and false negatives are wrong predictions.

To evaluate the model performances without assuming a cut-off on the predicted probabilities, a receiver-
operator characteristic (ROC) curve was used. This is a 2D diagram that is built using the true positive rate (TPR, 
also described as sensitivity or recall) and false positive rate (FPR, also described as false alarm rate) calculated 
using results obtained from the confusion matrix using each predicted probability as a tentative cut-off. These 
parameters are given by,

(4a)TPR =
�TP

�(TP + FN)
,

Figure 2.  Architecture of the CNN image classification-based framework with multiple convolutional layers.

Figure 3.  Confusion matrix for model evaluation.
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The TPR and FPR are metrics to evaluate the correct predictions of the model. Integrating the ROC curve, 
an area-under curve (AUC) can be obtained. The AUC provides a performance metric for the models, where 
0.5 suggests no discrimination, 0.7–0.8 is considered acceptable, 0.8–0.9 is considered excellent, and > 0.9 is 
 outstanding59. The diagram in Fig. 4 illustrates the process of training and evaluation of the ResNet-50 models.

Results and discussion
The raw image illustrates the thermal intensity data captured by the camera data in 256 intensity values Fig. 5a. 
The ROI image crops the subject using a rectangular bounding box, removing excess background from the image 
Fig. 5b. An illustration of the K-means and Fuzzy-c post-processed images are shown in Fig. 5c,d respectively. 
The K-means and Fuzzy-c images looked like the ROI image, but with reduced information, as the images were 
illustrated with 16 grayscale bins instead of 256 bins. The cluster centre distribution in the K-means image is 
more even, making it look more similar to the ROI image. In contrast, in the Fuzzy-c image, clusters are more 
’polar,’ with distinct separation between cold and warmer areas.

The test-set ROC curves obtained from each model are shown in Fig. 6, revealing an AUC of 0.8923, 0.9256, 
0.9485, and 0.9669 for the raw image model, ROI sectioned image, K-means and Fuzzy-c clustered image model, 
respectively. Based on AUCs, it is clear that pre-processed images tend to perform better than unprocessed data. 
Subject isolation by ROI cropping performed better than the raw image model, where some background not 
indicating the object presence was removed. K-means and Fuzzy-c both resulted in an improved background 
removal, where the background was entirely represented by a cluster. This offers a potential explanation to their 
superior model performance compared to the ROI cropped model. In the K-means model, the clustered image 
seemed more like the raw data where cluster transition is more gradual. In Fuzzy-c, the clustered image was more 
‘polar’, where the clothing showed a brighter cluster, and the object area was significantly darker. This could be 
a reasoning to the improved performance in the Fuzzy-c model compared to the K-means model, where the 
object area is more ‘obvious’, allowing the CNN model to have more distinct features during the training process. 
Considering the improved performance of the post-processed image models, it is hypothesised that 2D cluster-
ing (1D clustering was used above), or advanced segmentation techniques could potentially further improve 
the performance of CNN models.

In the current study, concealed objects exhibited lower temperatures compared to the subjects. Consequently, 
pockets of lower apparent temperature, detected by the IR camera, indicated the presence of concealed objects 
on the surface of the clothing. Most of the clothing types used in this practice were mono-material, where the 
exposed clothing surface exhibited similar emissivity. However, in complex clothing, such as those comprising 
two or more materials with distinctly different emissivity, pockets or regions of low temperature can be ’artifi-
cially’ created.

An image with an object concealed under complex clothing material is shown in Fig. 7. In the concealed 
object area, the torso area above the elbow exhibited a higher temperature reading compared to the area directly 
below the elbow, with a distinct border corresponding to the clothing design. The top part of the jacket is made 
of polyester (PET) with an approximate emissivity of 0.80, while the lower region of the jacket is made of cotton, 
with an emissivity of ~ 0.6760. Therefore, the development of a robust model with the ability to identify concealed 
objects in complex clothing requires a large dataset with a variety of complex clothing materials for training.

(4b)FPR =
�FP

�(FP + TN)
.

Figure 4.  An illustration of the training and evaluation process of the ResNet-50 models for each of the 
different image type.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8353  | https://doi.org/10.1038/s41598-024-56636-8

www.nature.com/scientificreports/

Conclusions
Convolutional neural network, ResNet-50 was used to classify infrared images of subjects with concealed objects 
under clothing. The transfer learning approach was used to fine tune an ImageNet pre-trained model. Four mod-
els were developed and evaluated: a raw image model, ROI cropped model, K-means model, and Fuzzy-c model, 
which produced ascending improvement in model performance, exhibiting area-under-curve of 0.8923, 0.9256, 
0.9485, and 0.9669, respectively. Pre-processing image data by removing non-decision relevant information from 
the images, such as background information, and visual highlighting of the object area effectively resulted in auto-
mated and enhanced model prediction performance. Regardless of image processing techniques, the application 
of transfer learning on a robust pre-trained network was shown to be effective on such small dataset problem.

Figure 5.  An example of the dataset image with a hidden rectangular box in the pocket, showing the (a) raw 
image, (b) ROI sectioned image, (c) K-means clustered image, and (d) Fuzzy-c clustered image.
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Figure 6.  Receiver-operator Characteristics curves for the model trained using (a) raw images, and (b) ROI 
cropped images, (c) K-means clustered, and (d) Fuzzy-c clustered images.
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Data availability
The data that support the findings of this study are available from the corresponding author, but restrictions apply 
to the availability of these data, which were used under license for the current study, and so are not publicly avail-
able. Data are however available from the authors upon reasonable request and with permission of the Defence 
Science and Technology Laboratory (DSTL), via the Defence and Security Accelerator (DASA).
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