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Deep learning‑based forecasting 
of electricity consumption
Momina Qureshi 1, Masood Ahmad Arbab 1 & Sadaqat ur Rehman 2*

Building energy management systems (BEMS) are integrated computerized systems that track and 
manage the energy use of many pieces of building‑related machinery and equipment, including 
lighting, power systems, and HVAC systems. Modern buildings must have BEMSs in order to reduce 
energy usage while maintaining comfort. Not only for energy‑saving purposes, BEMS is essential in 
enhancing the quality of the energy supply, which helps to gain a better understanding of how energy 
is used and the building’s energy usage. When the dynamics of a building’s energy usage are known, it 
is possible to determine which changes are most likely to reduce consumption. Numerous connected 
devices, operating modes, energy usage, and environmental factors can all be monitored and 
controlled in real‑time using BEMS. Changing operating times and setting points to maximize comfort 
and efficiency is made simple by this. In this paper, we have primarily addressed the two significant 
issues of model optimization and electricity consumption forecasts. Future forecasting has been 
done using the LSTM based time series approach. We generated data on the amount of electricity 
consumed by a hospital facility and tested our suggested methodologies on actual data. The findings 
gained demonstrated that the strategies were successful with both types of data. On actual data, the 
trend in electricity consumption can be accurately predicted. Several model optimizers enhanced the 
suggested methods’ performance as well. Our objective function gain accuracy result of 95%.

Keywords BEMS, LSTM, Electricity demand forecasting, Anomaly detection, Energy consumption, Future 
forecasting, Model optimizer

When the buildings are in operation, human error and technical malfunctions cause a lot of energy to be lost. 
Any energy-saving technique that has buildings as its primary objective has a major impact on overall energy use 
and carbon emissions. In order to monitor and detect anomalous usage and alert building managers to execute 
suitable cost-saving measures, smart building facilities are now a complement to Building Energy Monitoring 
Systems (BEMS). As a result, this project suggests a deep neural network-based model for forecasting energy use.

A Building Energy Management System (BEMS) is a collection of hardware and software technologies 
designed to assist organizations in tracking, managing, and optimizing their buildings’ energy use. Heating, 
ventilation, and air conditioning (HVAC), lighting, and other energy-consuming equipment are just a few of 
the systems that BEMS can monitor and manage in a building. BEMS evaluate and optimize the energy use of 
buildings using data from sensors, meters, and other sources. Building owners and facility managers can make 
data-driven decisions to increase energy efficiency since BEMS gives them access to real-time information on 
energy consumption.

Initiatives to improve energy efficiency in the building industry can significantly contribute to the develop-
ment of a greener future. Furthermore, the Building Automation System (BAS)’s massive collection of building 
operating data has made it possible to create data-driven methods for predicting energy use. Due to the recent 
growth of sensor devices, modern buildings today contain an increasing number of sensors and smart meters. The 
building manager is informed if consumption patterns are discovered through data analysis from these devices 
that do not match the typical profiles, and the necessary energy-saving actions could then be implemented. 
More importantly, early detection and notification of unusual behavior, such as gas leaks, may help to prevent 
potentially deadly catastrophes for safety–critical building services, such as gas consumption. Additionally, it is 
difficult to identify unusual consumption patterns due to the volume and rate of sensor data generation. The goal 
of this work is to suggest a method for capturing historical consumption trends that uses unsupervised learning 
with unlabeled data. By assuming that historical data are predominantly normal, the framework builds a model 
representing normal consumption behavior, after which this model is used to identify new patterns.
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Therefore, the need for improved monitoring technologies that can automatically identify consumption pat-
terns and provide precise information about the variables involved is what drove this work. Energy managers 
and energy service providers lack the time to assess energy consumption and hunt for anomalies. Instead, BEMS 
should have these features to quickly recognize and report such instances. The concept was put into practice, 
and the advantages of this approach were highlighted, using energy data from several commercial buildings that 
had been obtained from online sources. Most of the current research in this area has been limited to techniques 
that have been proposed within specific application domains. For symbolic sequences, most of the existing 
techniques either focus on detecting anomalies in data obtained in the domain of system call intrusion detection 
or in the domain of biological sequences. For univariate time series data, especially in the field building energy, 
the research is even sparser.

The goal of the study is to close the gap between existing research on deep neural network-based energy fore-
casting in time series data and algorithm optimization. Based on this knowledge, the objectives of this project are:

1. To develop a prediction model of time-series electricity consumption data using LSTM network method.
2. To optimize the algorithm through several methods of deep learning for increasing the performance of the 

proposed algorithms.

Literature review
The International Energy Outlook 2019 by the (U.S. Energy Information Administration, 2019) reported that 
global energy consumption has anticipated an increase of nearly 50% between 2018 and 2050. The building 
sector recorded 30–45% of the total energy demand globally and is among the largest contributors compared 
to industrial and  transportation1.  Furthermore2, suggested that growth in population and income as well as 
increasing need for comfort will result in the progressive rise in energy demand.

Energy efficiency and savings methods have been a top concern for energy policies in most nations due to 
the growth of energy consumption and carbon dioxide (CO2) emissions in the built  environment3. Commercial 
structures, especially office and academic structures, are among those with the highest energy  usage4.

As a result, several government initiatives to reduce energy use have turned their attention to the commercial 
building  sector5. According to earlier  studies6 and an on-site study of existing university  buildings4, modern office 
buildings have a large potential for energy savings. This potential is in the range of 6–29%.

An essential component of this study is the analysis of time series data. Time series data refers to anything 
that is measured over a period of time, and its primary use is to identify trends and patterns that can be used to 
anticipate and draw conclusions about future outcomes. For  instance7, noted that it is crucial for the electricity 
function to model load forecasts in an effective and safe manner. Additionally, it’s critical to generate accurate 
projections and operating rebuilding costs that are as low as  possible8.

In addition to that, power system planners and demand controllers could guarantee that there would be a 
sufficient supply of electricity to meet growing demands by forecasting future load  demands9. Due to these fac-
tors, load forecasting has drawn organisations and researchers with a similar interest in predicting energy use 
using a variety of methodologies, from traditional methods to cutting-edge methods.

Mocanu et al.10 divided electricity demand forecasting into three categories based on the time horizon of 
prediction: short-term load forecasts (STLF) covering a time period between one hour and one week, medium-
term load forecasts (MTLF) covering a time period between one week and one year, and long-term load forecasts 
(LTLF) covering a time period of more than one year. According  to11,12,  and13, short-term forecasts are typically 
helpful for scheduling generation capacity and short-term maintenance, evaluating short-term energy storage 
usage, as well as real-time control of building energy systems and optimising fuel purchase plans.

On the other hand, choices regarding the installation of new distributed generation and storage systems as well 
as the creation of effective demand response  techniques10 are made using medium- to long-term  projections14. 
Planning and trading on energy markets at the regional level may benefit from anticipating aggregated electricity 
usage over the medium- to long-term15 (Table 1).

In summary, researchers are now concentrating on discovering methods that could model their data and 
produce an accurate forecast in accordance with their application and limits, whether it be short-, medium-, or 
long-term load projections.

Table 1.  Different algorithms used for forecasting electricity consumption.

References algorithm/method Year Results
9 Forecasting future load demands 2000 Suggest for future forecasting and Electricity consumption analysis
10 STLF, MTLF, LTLF Time Division 2016 Predict short, Medium, Long term forecast

11,12  and13 short-term forecasts helpful for scheduling generation capacity and short-
term maintenance and short-term forecasts 2015, 2016 Short-term maintenance forecast prediction

This Study LSTM and future electricity consumption 2023–2024 Model optimization and electricity consumption forecasts using LSTM. 
Objective Function give accuracy of 95%
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Methodology
Overview
The following sections discusses the detailed methodology process. The paper has four main parts. The first part 
discusses the details of how the datasets were set up. In the second parts, the overall forecasting of electricity 
consumption algorithm is explained in details respectively. It covers the working of LSTM and future electricity 
consumption. Part three covers the optimization of algorithm that was used in conjunction with the overall 
system. In this part various optimizers and hyper parameters are used in order to get optimal result.

Dataset
A real-world electricity demand dataset was used in this project that was downloaded from open-source data 
portal OpenEI. The dataset has a year records of hourly electricity consumption of a hospital building located in 
Phoenix, USA. The readings were taken in a year from January 1st, to December 31st, starting from 00:00 to 23:00 
each day that sums up to a total of 8760 data instances. The data was arranged in a time series manner whereby 
the power consumption in kilo watt hour (kWh) had been measured in an hour resolution.

Figure 1 shows the entire 8760 time-steps of electricity consumption data plot taken at hourly intervals in a 
year. The magnitude is the electricity consumption measured in kWh at any given hour.

The monthly average values of electricity consumption for each month are displayed in Table 2.
In the dataset, the monthly electricity consumption is showing a regular weekdays-weekend pattern in which 

higher consumption readings were recorded during the weekdays while lower readings were recorded in the 
weekends. From the figure of daily average consumption, we can see that in certain days, the minimum hourly 
reading marked lower than the rest of the days. A daily and weekly trend that is like actual electricity consumption 
is shown by the exploratory analysis of the dataset.

LSTM network for prediction
The primary goal of this study was to use an LSTM regression network to forecast future electricity use. The 
proposed framework for this section of the system is shown in block form in Fig. 2, along with input and output 
modules, data pre-processing, an LSTM network, and a module for model optimization. The anticipated power 

Figure 1.  The electricity load profile of dataset for the 8760 h.

Table 2.  Average electricity consumption.

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

1189.23 1166.03 1190.21 1182.77 1163.78 1137.14 1111.31 1132.36 1114.51 1143.15 1191.02 1155.29

Figure 2.  Proposed Framework for the Forecasting Model.
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consumption sequence data for a period of time is the output data while the input data is the sequence for a 
certain period of predicted electricity consumption.

LSTM algorithm is particularly built to avoid the problem of long term dependency. Although some other 
machine learning algorithms can also process time series data; however, those algorithms cannot manage time 
series data with huge delay because of the disappearance of gradient. The LSTM is an advanced neural network 
algorithm that has practically the default behaviors to remember information for long periods of  time16. LSTM 
regression network was defined prior being trained. The model was implemented in TensorFlow Keras in Python 
which provides a high-level API for implementation of Deep Neural Networks. The main objective of the LSTM 
for a given time series is to find a function f as in Eq. (1):

This calculates a function that, using p lags of the same energy consumption, explains the current energy 
consumption data. For the LSTM model to begin learning, we transformed the time series into X and Y matrices. 
Then, we reorganized our data into a format that an LSTM algorithm could use as input. It has the form of 
[samples, time-steps, input-features] and a 3-dimensional tensor.

The time step is the point of observation in the samples, which is equivalent to the amount of time steps we 
run our recurrent neural network. In our case, each data sample input into LSTM algorithm represented sixty 
time steps and contained a single feature of electricity consumption at that time step. We normalized the data 
as a pre-processing step in a range between 0 and 1 making the mean of data as zero and standard deviation as 
one. The data standardization is necessary to prevent the training from diverging and make the model better fit. 
In this algorithm 90% of the data was used in model training and 10% of the data was used as test set for model 
evaluation.

Model optimization
Objective function
Our objective function is to maximize the R-squared and conversely minimize the mean absolute loss. R-squared 
is also called coefficient of determination which is a measuring metrics for a supervised regression algorithm 
that measures how well our regression line fits our data. It is the percentage of the dependent feature’s variance 
that the independent feature explains.

An R-squared value of 1 shows a best fit, and an R-squared value of 0 shows a failure in modelling the data 
by the  algorithm17.

Optimizer
The weights of each epoch are changed when a deep neural network model is being trained in order to reduce 
training loss. In a neural network, the optimizer function is in charge of changing the weights and learning 
rate attributes, which produces a maximum overall accuracy and a minimal loss. Millions of parameters are 
typically present in deep neural network models. As a result, choosing the appropriate weights is a difficult 
assignment for the model. The neural network model’s weights and learning rate can be updated using a variety 
of optimizers. The program will determine the best fit optimizer to use, though. The optimizer is used to speed 
the deep learning training process.

Hyper parameters
Since many hyper-parameters affect how well a neural network performs, designing one is a difficult task that 
mostly depends on the depth of the designer’s experience. The following levels correlate to the hyper-parameters 
that were taken into consideration when creating an effective neural network structure.

Level I: The number of neurons in hidden layers.
The performance of neural networks is significantly influenced by the number of neurons in the hidden layers.
Level II: The number of hidden layers.
The number of concealed layers is a second hyper-parameter that must be taken into account and is also 

crucial. The range of representative hidden layer numbers was set to 1 to 10. As the neural network’s depth 
increased, its abilities grew stronger. However, if the network contains too many layers, it could lead to overfitting.

Level III: Activation function.
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The challenges discussed in this work that cannot be solved by a linear function are solved by adding nonlinear 
elements using an activation function. In the experiment, several activation functions were selected for our 
regression model.

Based on the foregoing, it can be concluded that the hyper-parameters have a combined impact on the 
neural network’s performance and cannot be considered independently. The starting point for our work was the 
optimization phase’s settings. Till we obtained a minimum loss in the network, the model was further tweaked. 
In addition to these hyper parameters, we selected a number of epochs as the training duration by conducting 
numerous experiments. Dropout and other variables were also used and given appropriate values.

Experiment and results
Overview
This section presents the conducted experiments and all the outcomes of the experiments. In Section "LSTM for 
Forecasting" includes the results of the performance when running the LSTM forecasting algorithms.

LSTM for forecasting
Model training
The training of LSTM model for forecasting future power consumption was done in a setting, that is, 90% of the 
dataset was trained and then tested on the last 10%. The training set was further split in training and validation set 
that was helpful and used as a preventive measure against over fitting. Several optimizers that have been specified 
in the algorithm in several experiments for optimizing the algorithm, are tabulated in Table 3.

Forecast future power consumption
After we have finalized and successfully trained our model, the power consumption values of the future time 
steps were then forecasted by using the model Predict() class in Keras model. In LSTM, the prediction of next 
time step value occurs one at a time and update the LSTM network at each prediction. The first prediction is 
made using the last observation of training. Subsequently, the previous predicted values were being used as 
input for next prediction steps. Figure 3a–f) shows the training data plots with forecasted values for multiple 
settings of hypermeters.

Comparison of test data with forecasted values
The forecasted values obtained has then been plotted against the test data for different settings of hypermeters 
as shown in Fig. 4(a–f).

Optimizations result
As discussed earlier our objective function is to maximize the R-squared and conversely minimize the mean 
absolute loss. The accuracy that each setting obtained in terms of higher R-Squared and lower errors is reported 
in Table 4 below.

Conclusion
In this paper, we have primarily addressed the two significant issues of model optimization and electricity 
consumption forecasts. Future forecasting has been done using the LSTM based time series approach. The 
optimization was used to improve the algorithms’ accuracy while, conversely, reducing their loss. We generated 
data on the amount of electricity consumed by a hospital facility and tested our suggested methodologies on 
actual data. The findings gained demonstrated that the strategies were successful with both types of data. On 
actual data, the trend in electricity consumption can be accurately predicted. Several model optimizers enhanced 
the suggested methods’ performance as well. In summary, researchers are now concentrating on discovering 
methods that could model their data and produce an accurate forecast in accordance with their application and 
limits, whether it be short-, medium-, or long-term load projections. This study will help researcher to find 
accurate analysis about future consumption of electricity. By using optimizers we gained good results and get 
improved algorithm accuracy. Our objective function is to maximize the R-squared and conversely minimize 
the mean absolute loss and gained 95% accuracy rate. This research can be enhanced by using large datasets of 
different organizations in order to get more accurate results.

Table 3.  Optimizers used in several settings.

Setting Optimizer

Setting1 SOG

Setting2 Nadam

Setting3 Adadelta

Setting4 Ftrl

Setting5 RMSprop

Setting6 Adam
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Figure 3.  (a) Training data and forecasted values in step-1 setting. (b) Training data and forecasted values in 
step-2 setting. (c) Training data and forecasted values in step-3 setting. (d) Training data and forecasted values 
in step-4 setting. (e) Training data and forecasted values in step-5 setting. (f) Training data and forecasted values 
in step-6 setting.
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Figure 3.  (continued)
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Figure 4.  (a) Test data and forecasted values at step-1 setting. (b) Test data and forecasted values at step-2 
setting. (c) Test data and forecasted values at step-3 setting. (d) Test data and forecasted values at step-4 setting. 
(e) Test data and forecasted values at step-5 setting. (f) Test data and forecasted values at step-6 setting.
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Figure 4.  (continued)

Table 4.  Objective function results.

Cost function Step-1 Step-2 Step-3 Step-4 Step-5 Step-6

R-2  − 5% 14% 46% 49% 93% 95%
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Data availability
The datasets generated during and/or analyzed during the current study are available in the Shahid-Fakhri/
Electricity-Consumption repository, [http:// github. com/ Shahid- Fakhri/ Elect ricity- Consu mption].
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