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Application of back propagation 
neural network in complex 
diagnostics and forecasting loss 
of life of cellulose paper insulation 
in oil‑immersed transformers
M. K. Ngwenyama 1,2* & M. N. Gitau 1,2

Oil‑immersed transformers are expensive equipment in the electrical system, and their failure would 
lead to widespread blackouts and catastrophic economic losses. In this work, an elaborate diagnostic 
approach is proposed to evaluate twenty‑six different transformers in‑service to determine their 
operative status as per the IEC 60599:2022 standard and CIGRE brochure. The approach integrates 
dissolved gas analysis (DGA), transformer oil integrity analysis, visual inspections, and two Back 
Propagation Neural Network (BPNN) algorithms to predict the loss of life (LOL) of the transformers 
through condition monitoring of the cellulose paper. The first BPNN algorithm proposed is based on 
forecasting the degree of polymerization (DP) using 2‑Furaldehyde (2FAL) concentration measured 
from oil samples using DGA, and the second BPNN algorithm proposed is based on forecasting 
transformer LOL using the 2FAL and DP data obtained from the first BPNN algorithm. The first 
algorithm produced a correlation coefficient of 0.970 when the DP was predicted using the 2FAL 
measured in oil and the second algorithm produced a correlation coefficient of 0.999 when the LOL 
was predicted using the 2FAL and DP output data obtained from the first algorithm. The results show 
that the BPNN can be utilized to forecast the DP and LOL of transformers in‑service. Lastly, the 
results are used for hazard analysis and lifespan prediction based on the health index (HI) for each 
transformer to predict the expected years of service.

Keywords 2-Furaldehlyne (2FAL), Back propagation neural network (BPNN), Degree of polymerization 
(DP), Loss of life (LOL), Transformer health index (HI)

An electrical transformer is a critical component of electricity transmission and distribution networks. An oil-
immersed transformer is the most expensive equipment in the electrical system, and its failure would lead to 
widespread blackouts and catastrophic economic  losses1,2. Therefore, it is vital to perform routine maintenance 
and continuous monitoring of electrical transformers, particularly those employed at critical locations. Several 
massive electrical transformers that have been in service in recent years have been quite  ancient3. These very 
ancient units are still in use, owing predominately to economic constraints. Presently, mankind has become 
increasingly reliant on the provision of power, imposing strain on the stability, availability, and cost-effectiveness 
of power  supply4. The trouble-free operation of electrical transformers is a crucial condition for electrical system 
reliability and security. However, among the primary reasons for the failure of aging transformers  in5,6, the 
mechanical integrity of the units to withstand stress caused by short-circuit currents can deteriorate dramatically 
with the degrading of insulation material. As a result, it is critical to thoroughly assess the aging state of the 
insulation material. The withering and lifespan duration of an oil-immersed transformer is determined by the 
solid insulation and the level of the withering of the insulating  paper7–10. Oil has a strong insulating property 
while also operating as a cooling medium via natural or induced circulation. The oil-impregnated paper acts as 
an electrical insulator between windings and a mechanical barricade between individual windings and winding 
layers. As a result, the paper serves a major vocation in paper-oil insulation. Poor paper integrity causes early 
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insulation deterioration, which potentially contributes to transformer collapse following a winding short circuit, 
for  instance11,12.

Presently, the approaches for evaluating electrical transformers are separated into two categories: online 
supervision and offline supervision. With the evolution of the units, online system supervision has become 
more prevalent. While the transformers are in operation, online supervision approaches may be utilized to 
inspect and assess operational efficiency, evaluation, emergency warning action, and establish effective 
maintenance and repair  forecasts13,14. Most significantly, using analysis, these online supervision systems can 
estimate the residual expected lifespan. However, monitoring approaches in this discipline are relatively recent. 
Research and innovation studies are constantly improving, although, it is still a challenge to determine the 
residual life of an electrical transformer since residual-life calculations are dependent on a variety of conditions. 
According to present requirements, the structural lifespan of an electrical transformer is restricted to the 
duration of the insulation paper. Deterioration of an insulation paper can be diagnosed using the degree of 
polymerization (DP), Furan analysis (FA), and CO2/CO ratio  analyses15,16. DP analyses measure the physical 
capability of paper by calculating the cellulose degree. However, DP analyses and other tests fail to predict 
the operational lifespan of the transformer since numerous other factors influence the insulation degradation 
 process17,18. Accurate detection and mining of certain dissolved gases in dielectric transformer oil has become the 
fastest-growing procedure in the diagnosis of transformer faults. Insulation breakdown occurs over time and 
is affected by heat, humidity, and oxygen concentration. Sophisticated oil conservation systems can reduce 
humidity and oxygen impacts on insulation  breakdown19,20. The main determining factor in withering is the 
insulation temperature. Consequently, in practice, the extent of the cellulose paper withering is influenced by 
the transformer’s hotspot temperature. Tensile strength and DP are measured to determine the mechanical 
qualities of cellulose  paper21. These characteristics are employed to assess when the cellulose paper insulation 
reaches the end of its dependable life. The cellulose paper insulation end-of-life requirements are commonly 
 proposed22 to have DP values of 150–250; below 150, the cellulose paper is considered to be mechanically weak. 
The assessment of paper insulation for its DP value requires the extraction of a few sheet strips of paper from 
the investigated  transformers23,24. However, the process remains challenging. Oil samples are utilized as an 
alternative. The procedure can conveniently be carried out during transformer maintenance, service, or repairs 
since it is usually not practical (and often dangerous to the transformer) to obtain the cellulose paper sample 
from a de-energized, in-service transformer. It has been demonstrated  in25–28, that the amount of 2-Furaldehlyne 
(2FAL) present in oil (the most important component of cellulose paper degradation) is significantly related 
to the DP of the cellulose paper within the transformer. The levels of 2FAL in oil correspond to the typical 
degradation of the cellulose paper. By measuring the quantity and types of furans present in a transformer oil 
sample, the cellulose paper insulation overall DP can be inferred with a high degree of confidence. The types 
and concentration of furans in an oil sample can also indicate abnormal stress in a transformer, whether intense, 
short-duration overheating or prolonged, general overheating. Therefore, estimating their residual lifespan is 
critical to prevent transformers from being shut down prematurely during  service29,30. Table 1 illustrates the furan 
concentration thresholds used to grade the transformer condition. The value of DP and the amount of furan can 
be used to determine the condition of cellulose paper.

The furan test can simply determine furan from oil sampling on an in-service transformer. As demonstrated in 
Table 2, the quantity of furan concentration contained in the cellulose paper is used to calculate the transformers’ 
service life in years.

Several DP and loss of life (LOL) techniques for electrical transformers have been proposed recently, 
 in33,34, however, the current standards and approaches possess limitations, such as inaccurate estimations 
and inconsistent results for similar oil samples. These challenges must be rectified to have an efficient lifespan 
prediction scheme. Computational techniques have also been utilized to address these challenges. DGA has 

Table 1.  Furan concentration in parts per million (ppm)31.

Furan concentration (ppm) DP value Significance

0–0.1 1200–700 Healthy transformer

0.1–1.0 700–450 Moderate degradation

1–10 450–250 Extensive degradation

 > 10  < 250 End-of-life criteria

Table 2.  The age profile of cellulose paper based on  furan32.

Furan concentration (ppm) Service life (years)

0–0.1  < 20

0.1–0.25 20–40

0.25–0.5 40–60

0.5–1.0  > 60

 > 10 –
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been conducted utilizing wavelet networks (WN)35,36, expert systems (ES)37, adaptive neuro-fuzzy inference 
system (ANFIS)38, artificial immune networks (AIN)39, support vector machines (SVM)40, and fuzzy logic (FL)41. 
Although the results for LOL of transformers presented in this work are decent, it is essential to promote the 
proposed approach to enhance LOL prediction accuracy to provide dielectric testing facilities and transformer 
manufacturers with reliable alternatives to existing techniques. Table 3 presents a comparative study of the recent 
research works and the proposed algorithm for forecasting LOL of cellulose paper insulation.

Paper contribution
In this work, an elaborate diagnostic approach is proposed to evaluate twenty-six different transformers in-service 
to determine their operative status. The solid insulation evaluation process is a reliable practice to assess and 
forecast the DP and LOL as it provides generous information in inspecting the transformer condition. The 
contributions of the current research study are as follows and demonstrated in a block diagram as shown in Fig. 1.

• DGA is utilized to obtain 2FAL data from oil samples received from all transformers under investigation.
• A BPNN algorithm is proposed to forecast the DP using 2FAL concentration measured from oil samples 

using DGA.
• A second BPNN algorithm is proposed to forecast the transformer LOL using the 2FAL and DP data obtained 

from the first BPNN algorithm.
• Lastly, the results are used for hazard analysis and lifespan prediction based on the health index (HI) for 

each transformer to forecast the expected years of service as per the IEC 60599:2022  standard47 and CIGRE 
 brochure48.

According to current research works, MeOH is commonly used to analyze cellulose paper in oil transformers. 
The experimental investigations reported and addressed  in49–52 have revealed that MeOH is a potential 
degradation indicator for all cellulose-based materials and may be used in many types of mineral oil. There is a 
significant relationship between DP and MeOH formation, as well as earlier diagnosis of cellulose degradation 
than 2FAL concentrations, supporting published works. However, at high temperatures, MeOH concentrations 
tend to stabilize while only 2FAL concentrations keep on  developing53. Nonetheless, it is critical to recognize that 
early detection (MeOH) is critical for effective monitoring and mitigation measures at the appropriate time. In 
this work, the fact that 2FAL compounds are constantly produced, even at a later stage than MeOH , lends further 
weight to employing 2FAL data to forecast the transformer LOL utilizing the proposed BPNN algorithms since 
they can learn and train continuously growing 2FAL concentrations without experiencing overfitting. The results 
obtained using the proposed approach will be used to decide whether to repair, monitor, service, or scrap the 
transformer under  investigation10,54.

Table 3.  Summary of recent research works and proposed algorithm.

Refs. Years Proposed technique Contribution
42 2021 Regression modeling The study estimated DP utilizing the furfural marker at different oil-to-pressboard ratios and oil change statuses

43 2022 Artificial Neural
Network (ANN) The study estimated furans by analyzing temperature, carbon dioxide, carbon monoxide, and moisture to estimate DP

44 2022 Empirical modeling The study estimated DP utilizing methanol (MeOH) concentrations obtained at low temperatures. The relative error was 7%

45 2023 ANFIS, Roger’s
ratio approach

A hybrid Rogers ratio technique-based ANFIS was proposed to detect transformer faults. The training was carried out by 
employing the gas ratios presented by the IEEE C57-104 and IEC 60599 standards

46 2024 Multi-classification
model

The study analyzes DGA by using machine learning (ML) techniques, adherence to IEC 60599:2022, and Eskom 
(Specification—Ref: 240-75,661,431) standards

Current study 2024 Back Propagation
Neural Network (BPNN) Presented in section “Introduction” (Paper contribution)

Figure 1.  Contribution stages block presented in a block diagram.
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The currently available capabilities and limitations of the proposed BPNN algorithm in comparison to other 
types of learning algorithms are presented in Table 4. The performances of the learning algorithms are evaluated 
according to how well they can generalize the relationship between vibration parameters, damage locations, and 
severities across a range of input and output variable  counts55.

For future work, the authors will evaluate MeOH and 2FAL concentrations using artificial intelligence 
algorithms. The conclusions about which data produces accurate results using the algorithms presented in Table 3 
will be drawn from which data produces underfitting and overfitting during  training59.

Paper organization
The rest of the work is structured as follows: Section “Methods used to investigate transformers” outlines the 
methods used to investigate transformers in-service. Section “Results and analysis” provides a discussion 
of the results and analysis of the investigated transformers. Section “Discussion” provides a discussion and 
recommendations, and the paper is concluded in section “Conclusion”.

Methods used to investigate transformers in‑service
The practical diagnostic approach for estimating the current status and remaining operating lifespan of an 
electrical transformer in terms of expected End of Life (EOL)60 is discussed in this Section. Four different 
tactics for analyzing data from on-site testing and estimating using algorithms were combined to develop the 
diagnostic technique. Oil tests were combined for estimating dissolved gases and oil quality, DP calculations 
based on indirect measurements of dissolved 2FAL in transformer oil, the HI approach for processing data 
collected through visual inspection, history, and test results, and risk of failure calculation based on the  HI61,62. 
These techniques were utilized to determine whether transformers should be repaired, closely monitored, 
maintained, or  scrapped63,64. Twenty-six specific transformers utilized in distribution substations in South Africa, 
Mpumalanga, were exposed to the proposed diagnostics. The diagnostics were divided into five phases, which 
are described  below25,65–68:

• Assessment of the transformer’s current condition: involves visual inspection and all DGA and chemical tests 
conducted on transformer oil.

• Gathering historical data: involves gathering information from prior faults, repairs, and maintenance. 
Obtaining data for the transformer’s load history and analyzing yearly test reports.

• Algorithm analysis: the outcomes of each test are evaluated and applied to various algorithms to gather more 
data on the technical status of the transformers, as well as to detect hidden issues and abnormalities.

• Application/Generalization: all data obtained through various tests and algorithms is generalized and 
analyzed to obtain more detailed knowledge about the transformer’s present condition. The majority of the 
tests usually yield comprehensive data for individual transformer parts.

• Conclusions, predictions, and proposals: conclusions are reached and predictions are provided regarding the 
likelihood of failure, EOL of the transformers, and dependability according to the outcomes of diagnostic tests 
and procedures used. Proposals are provided to prioritize maintenance for the most degraded transformers 
or to discard them if the end of life has passed. Figure 2 demonstrates a block diagram of the five phases 
utilized in technical diagnosis.

Table 4.  Capabilities and limitations of the BPNN in comparison to other learning algorithms that are 
currently available.

BPNN [current study] RBFN56 PNN57 CPNN58

Application
scope

Classification
Regression

Classification
Regression Classification Classification

Classification
process

Minimize sum squared
errors by updating
weights

Relies upon the
BPNN process Bayesian decision rule Uses clustering methods

and PNN process

Capabilities

Simple application
to predict the patterns
Does not require any
statistical features in
the learning processes
Easy to identify the
magnitude of attributes
based on weights
A variety of applications
are available

Simpler format of
Gaussian function
Radial basis function
nodes can be substituted
with different functional
forms
Performs relatively
well in both smaller
and larger datasets

Simple architecture (no backpropagation)
Relatively good accuracy
in classification problems
Insensitive to noise
points

A smaller network size than ordinary PNN 
can avoid saturation of the Parzen window 
which leads to misclassification
May be more applicable
because it provides knowledge of the 
relative importance between explanatory 
variables
Fast training time

Limitations
Easily get stuck in local minima, resulting in 
a suboptimal solution
Prone to overfitting
and underfitting

Constructing
network architecture
is complicated
Long training
time
No sufficient
observations

More computationally
than BPNN (pre-stored
pattern neurons)
Saturated Gaussian can
lead to misclassification

May not provide higher prediction accuracy 
than PNN for discrete choice data
Varied by several clusters determined in 
k-means clustering
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The data gathered from the transformer’s historical events, conducted tests, as well as visual inspection is 
utilized to forecast imminent failures and EOL of each transformer, and according to these factors, a decision 
is made to prioritize transformers for repair, maintenance, or replacement if a transformer has reached its 
 EOL69. Figure 3 demonstrates the primary descriptive framework of the approach utilized, which relies on HI 
 calculations70,71.

The inspected transformers were manufactured throughout a variety of periods, and some of them had been 
in service for more than 30 years. The rated power ranged from 1250 kVA to 3.2 MVA, and the primary and 
secondary voltages were 11 kV, 6.6 kV, and 400 V, respectively. Transformer designs changed based on the year 
they were manufactured. Several transformers had undergone maintenance over their existence. The cooling 
system designs of transformers ranged from Oil Natural Air Natural (ONAN); Oil Natural Air Forced (ONAF); 
Oil Forced Air Forced (OFAF); Oil Natural Water Forced (ONWF); and Oil Forced Water Forced (OFWF)72,73. 
Table 5 contains technical information on the transformer group under  consideration72.

A diagnosis procedure was developed to estimate the present status of all transformers. The following tests 
and analyses were conducted on all transformers.

Transformer oil diagnostics

• Water content in transformer oil was measured per IEC 60814 Oil-impregnated paper and  pressboard74,75.
• The breakdown voltage of transformer oil was measured per IEC 60156 Insulating  liquids76,77.
• The level of acidity present in transformer oil was measured per IEC  6202178,79.
• Analysis of corrosive sulfur in transformer oil content using ASTM D1275-15 standard testing procedure 

for corrosive sulfur in electrical insulating  fluids80.
• Estimating the water content in insulating paper using the IEC 60814  standard81,82.

Figure 2.  Phases for technical diagnosis.

Figure 3.  Predicting imminent failures and EOL based on HI and historical data.
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• DGA of the transformer oil using IEC 60599  standard83–85.

Visual inspection assessments were performed on all accessible transformer components

• Main  tank86.
• Tap  changer87,88.
• Oil  conservator89.
• Breather90.
• Cooling  tubes91.
• Buchholz  Relay92.

Analysis of the data consisted of several methods for assessment
Investigation of transformer present state about oil tests and DGA findings:

• Chemical assessments of transformer oil were performed to establish some of its properties that are critical 
for the mechanical performance of the unit, which covered the following: Chemical properties: (i) water 
content, (ii) corrosive sulfur, and (iii) acidity  number93; Electrical properties: (i) dielectric strength, (ii) 
specific resistance and (iii) dielectric dissipation factor (tan δ)94,95. Each of these properties influences the 
integrity and reliability of transformer oil and its insulating characteristics. In terms of chemical properties, 
high water concentration in transformer oil may result in lower dielectric strength. The presence of corrosive 
sulfur in transformer oil creates an acidic environment in the oil, causing accelerated degradation of the 
cellulose paper and also the oil to become more acidic over  time96. The quantity of acid present in the 
transformer is a critical signature that determines transformer oil  integrity97,98. Electrical properties consist 
of (i) transformer oil dielectric strength—which signifies the maximum test voltage that the oil will sustain as 
an insulation material; (ii) specific resistance—which illustrates the insulation characteristics of transformer 
oil; and (iii) dielectric dissipation factor (tan δ)—indicates the quality of the transformer oil as an insulation 
material and the level of losses when voltage is applied across  it99–101.

• Electrical transformers emit decomposition gasses when in service, which are primarily produced from 
organic insulation. The gas creation process is caused by thermal or electrical challenges, as well as the 

Table 5.  Technical data of inspected transformers.

Index Serial number
Rated power
and voltage Manufactured year

T1 30,661,407/01 1250 kVA, 11 kV/400 V 1985

T2 30,661,409/01 1250 kVA, 11 kV/400 V 1987

T3 30,661,410/01 1250 kVA, 11 kV/400 V 1988

T4 30,661,404/01 1250 kVA, 11 kV/400 V 1984

T5 30,661,408/01 1250 kVA, 11 kV/400 V 2000

T6 30,661,411/01 1250 kVA, 11 kV/400 V 1984

T7 30,661,415/01 1250 kVA, 11 kV/400 V 2003

T8 30,661,405/01 2500 kVA, 6.6 kV/11 kV 1986

T9 30,661,413/01 2500 kVA, 6.6 kV/11 kV 2000

T10 30,661,401/01 2500 kVA, 6.6 kV/11 kV 2002

T11 30,661,402/01 2500 kVA, 6.6 kV/11 kV 1985

T12 30,661,418/01 2500 kVA, 6.6 kV/11 kV 1987

T13 30,661,403/01 3.2 MVA, 11 kV, 400 V 1987

T14 30,661,419/01 2500 kVA, 6.6 kV/11 kV 1987

T15 30,661,421/01 2500 kVA, 6.6 kV/11 kV 1987

T16 30,661,431/01 3.2 MVA, 11 kV, 400 V 2001

T17 30,661,412/01 1250 kVA, 11 kV/400 V 2001

T18 30,661,424/01 1250 kVA, 11 kV/400 V 1999

T19 30,661,425/01 1250 kVA, 11 kV/400 V 2003

T20 30,661,423/01 1250 kVA, 11 kV/400 V 2003

T21 30,661,420/01 2500 kVA, 6.6 kV/11 kV 1998

T22 30,661,416/01 2500 kVA, 6.6 kV/11 kV 1987

T23 30,661,441/01 3.2 MVA, 11 kV, 400 V 1983

T24 30,661,421/01 3.2 MVA, 11 kV, 400 V 2003

T25 30,661,417/01 3.2 MVA, 11 kV, 400 V 1985

T26 30,661,422/01 3.2 MVA, 11 kV, 400 V 1985
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decomposition of transformer oil or cellulose. This might be due to regular transformer operation or an 
emergency with the unit in question. A portion of the produced gasses dissolves in the transformer  oil102,103. 
DGA is used for evaluating different types of gases in transformer oil and then performing transformer 
diagnostics. This approach is effective for detecting specific defects (thermal or electrical) and assessing 
transformer  operation104–106. There are several techniques for interpreting the DGA. In most cases, a 
combination of these techniques is utilized to identify the cause of gasses. These approaches include 
identifying key gases ( H2 , CH4 , CO ,  CO2,  C2H4,  C2H2, and C2H6 ) as well as their quantities in oil. An increase 
in the amount of several gases might indicate an issue in the transformer. If this is the case, the gas ratio 
should be established. Then, to address the issue, an interpretation technique for gas ratios provided in IEC 
60599 might be applied. Alternatively, the proposed approach could potentially be utilized for interpreting 
the data. The values of the obtained gas ratios based on these techniques indicate a specific problem in the 
performance of the  transformer107. In summary, the proposed approach has been employed in this work, 
and it is a good precise approach for transformer diagnosis. It could be utilized as well for periodic testing, 
with the findings compared over time to monitor the level of gas creation and gauge the actual condition of 
the  transformer1,3,4,23.

Analysis of the condition of the transformers through BPNN algorithms

• This analysis involved two BPNN algorithms for determining the LOL of transformers based on collected and 
measured data. The first BPNN algorithm proposed is based on forecasting the DP using 2FAL concentration 
measured from oil samples using DGA, and the second BPNN algorithm proposed is based on forecasting 
transformer LOL using the 2FAL and DP data obtained from the first BPNN algorithm. To acquire a complete 
understanding of the state of the transformer, the data based on the BPNN algorithm with weighting 
coefficients is applied, and the LOL is  determined108–110. Figure 4 demonstrates the analysis and results of HI 
components.

Several studies have used the BPNN  approach60,72 to anticipate numerous transformer states, such as the 
diagnosis of incipient defects using  DGA111. In this work, BPNN algorithms are presented to forecast the 
remaining DP utilizing 2FAL concentration. A databank of 100 samples is utilized to construct the proposed 
BPNN algorithms using 2FAL as an input and DP as an output. Analysis of the data collected was changed 
into descriptive data ranging from A “Excellent” to E “Critical”  condition112,113. DP of cellulose  paper114,115 was 
used to estimate the remaining life of the transformer. An accurate estimate of DP to 2FAL was achieved by 
implementing an algorithm with a  BPNN116,117. The BPNN algorithms were developed using several transformers 

Figure 4.  Analysis of LOL.
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and oil samples collected for lab testing. The algorithms were evaluated using cellulose paper samples extracted 
from transformers that had been removed from service for maintenance and retrofit. Since each transformer has 
an independent voltage level and capacity, the volume concentrations of dissolved gases in oil vary. Therefore, 
normalization of the input DGA data was employed to remove the discrepancy. In this work, the relative portion 
of the oil samples was adopted as the input vectors, which is shown in (1):

Xi denotes the proportion of volume concentration of each gas contained in the oil data. Equation (2) was 
developed to determine DP using experimental data acquired from transformers well-insulated with standard 
Kraft paper:

Equation (3) was developed to determine DP using experimental data from Kraft cellulose paper as well as 
hermetical aging tests performed under high-temperature conditions and the degradation of a polymer main 
chain using (4):

Using (5), the DP can be used to forecast the remaining lifespan of the transformer at the time the oil sample 
was collected. This equation is based on a single variable, specifically the expected DP of cellulose paper.

The BPNN algorithm was adopted in this study due to its capacity to self-learn, simulate non-linear issues, 
and provide output that is not confined to the input feed, which is important for addressing the issue of cellulose 
paper for transformer  manufacturers118,119. Figure 5a illustrates a conceptual representation of the proposed 
BPNN algorithm for estimating DP. It contains an input layer, hidden layers as required, and an output layer. 
The system works similarly to a biological neuron, receiving stimuli, interpreting them, and responding with an 
output. The input layer nodes receive input data and transfer it to the hidden layer 1 nodes via interconnected 
connections. When data are transported from input nodes to subsequent nodes, they are multiplied with weights 
and sent to the relevant layer using a transfer function. Similarly, it is forwarded to the output layer, where 
the target vector is used to compute the error. To generate the precise weighted combination of input data for 
target vector prediction, weights are altered based on this error. Using an artificial BPNN algorithm has several 
advantages over more conventional models. It learns the complexities of nature without being explicitly translated 
into mathematical form. The 2-hidden layers were used for two reasons: (i) the model performs efficiently using 
the BPNN algorithm, despite the extremely nonlinear input, and (ii) it is unlikely to experience overfitting. The 
learning process of a neural network (NN) is an iterative process in which the calculations are carried out forward 
and backward through each layer in the network until the loss function is minimized. This is illustrated in Fig. 5b.

The proposed algorithms use the input (2FAL) and the targeted output (DP) supplied to the BPNN network 
to generate the network output target of a new dataset. Figure 6 shows a detailed flowchart utilized for the design 
of the proposed BPNN algorithms. The process of designing the BPNN algorithms is divided into three phases: 
training, testing, and  validation120–122. The data is prepared using the following steps:

• The preparation of the data ensures that it is error-free, consistent, and has no missing values before it is 
fed into the BPNN algorithm. These can have an impact on the performance and accuracy of the algorithm, 
leading to unexpected outcomes.

• The data is modified to match inside the suitable BPNN range. The values are altered to have comparable 
magnitudes and distributions. This scaling allows the BPNN to learn more quickly and effectively while also 
avoiding numerical difficulties. To reduce noise creation, normalization, and standardization is used to rescale 
input and output variables before training the BPNN  algorithm123,124.

• The data is classified based on labels, classes, or categories and represented numerically using binary encoding 
for the BPNN to understand. Encoding also aids in reducing the dimensionality and complexity of data. After 
the data has been cleaned, scaled, and encoded, it is divided into separate sets using k-fold cross-validation 
for training, testing, and validation. This helps to analyze and enhance the BPNN algorithm while avoiding 
overfitting and underfitting.

• In situations when the BPNN algorithm experiences a shortage of data, data augmentation is employed to 
improve the size and diversity of the data. Data augmentation involves making numerous transformations 
and adjustments to existing data, by creating modified copies of a dataset using existing  data125,126.

• Lastly, data visualization is employed to further study and comprehend the data. Data visualization entails 
producing graphical interpretations of data, such as charts, graphs, or diagrams. Data visualization aids in 

(1)X i =
Xi∗

∑5
j=1 Xi∗

(2)DP =
log102FAL − 1.51

−0.0035

(3)DP =
2.6− log102FAL

0.0049

(4)DP =
1850

2FAL
+ 2.3

(5)Lifeconsumed = 20.5× ln

(

1100

DP

)
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identifying patterns, trends, outliers, or correlations in data, as well as providing insights into the BPNN 
algorithm’s performance.

BPNN training
During the BPNN training stage, the network is fed data comprising the 2FAL concentrations and the transformer 
DP samples as the targeted output. The training stage is essential in the development of the proposed BPNN 
algorithm. The network dimension, training functionality, adoption learning functionality, number of layers, 
as well as transfer functionality, are all aspects that have the potential to affect BPNN network  efficiency127. 
Moreover, this stage can provide several difficulties, such as overfitting and  underfitting128. This happens when 
an algorithm is trained on a large scale of data as it begins to learn from errors and noise in the input data set. 
Furthermore, testing using test data that has a high variance. The algorithm then fails to appropriately classify 
the data due to too many details and noise, and it leads to bad performance of the network. Stopping the 

Figure 5.  (a) Topology of created BPNN for estimation of DP; (b) Learning process of a NN.
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network early has been utilized to prevent network overfitting and  underfitting129. The optimal BPNN settings 
with the maximum precision, which is equivalent to the correlation coefficient (R), were obtained by modifying 
the number of hidden layers, the number of neurons, as well as the transfer  functionality108,130. In this work, 
a two-layer system with 10-hidden layers and a 1-output layer was adopted for both BPNN algorithms. The 
proposed BPNN algorithm was developed using a databank containing 100 data sets, of which 70 were utilized 
for training and 30 for testing and validation. While a 1-hidden layer is sufficient for nonlinear modeling, a system 
with 2-hidden layers outperforms systems with 1-hidden layer in terms of the number of iterations, precision, 
and complexity. Furthermore, the 2-layer system helps solve the challenge of slow learning  rates73.

BPNN testing
During BPNN testing, an unknown dataset is added to the network to evaluate the efficiency of the trained 
network. At this stage, the BPNN network is evaluated using linear regression modeling. The R is determined 
to analyze the relationship between the BPNN network outputs and the intended output. A successful network 
will have an R-value close to 1, indicating that there is a notable relationship between the BPNN network output 
and the targeted output. The overall efficiency of the BPNN network is expressed by the value of R and the best 
BPNN network is identified based on its closest relationship value to  168,95. The Levenberg–Marquardt (LM) 
training  approach64,65 was used since it is recommended as the preferable supervised algorithm in the MATLAB 
environment due to its fast training  rate116. Figure 7a,b show the coding of the two algorithms. Figure 8 shows 
the modeling configuration that predicts DP using only 2FAL concentration. Figure 9 shows the Mean Square 
Error (MSE)94 plot of the first BPNN algorithm. The three curves represent the change in the MSE with epochs for 
training, validation, and testing. However, the best algorithm was reached at epoch 19 as marked by the vertical 
dash line. It proves that the network achieved better results during the training stage compared to the testing 
stage because the desired outputs of the test data are always unknown to the network. No significant overfitting 
occurred with this iteration. The characteristics of both the validation and test curves are similar. The remarks 
above indicate acceptable results for the network.

Figure 10 shows the regression analysis of the NN modeling of the training, validation, test, and complete 
datasets presented in this study. The training dataset consists of 100 data points (i.e. 70% of total data points 
for training), while the validation and test datasets have 30 data points (i.e. 15% each). It can be observed that 
the algorithm produces a correlation coefficient of 0.970 for the training, 0.956 for the validation, 0.944 for the 
testing, and an overall correlation of 0.965 when the DP is predicted using the 2FAL measured in oil. From 
Fig. 10, it is observed that the four linear fit lines were achieved (Eqs. 6–9) in the form y = a.x + b , where x and 
y are observed and predicted peak ground acceleration (PGA), respectively, which are listed below:

(6)y = 0.970.x + 30

Figure 6.  Proposed BPNN flowchart.
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Figure 11 shows the error histogram for our NN modeling showing most of the larger positive and negative 
values are near the zero-error line (shown by an orange thick line), which suggests the error distribution of the 
NN modeling is good. Thus, the algorithm is well trained.

(7)y = 0.956.x + 58

(8)y = 0.944.x + 34

(9)y = 0.965.x + 34

Figure 7.  (a) BPNN coding to obtain DP using 2FAL; (b) BPNN coding to forecast LOL using DP and 2FAL.

Figure 8.  The BPNN configuration for DP estimation.
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Figure 12 illustrates the algorithm setup for forecasting LOL based on predicted DP and measured 2FAL. 
Figure 13 shows the MSE plot of the first BPNN algorithm. The network produces a substantial MSE at first, 
however, it decreases as the training advances to 5 epochs. As demonstrated in Fig. 13, the best validation 
performance of the second BPNN algorithm occurred at 5 iterations, as shown by the vertical dash line. This 
iteration shows a minor overfitting. The characteristics of both the validation and test curves are slightly different; 
however, the remarks above indicate acceptable results for the network.

Figure 14 shows the second proposed BPNN algorithm performance plot, and the regression analysis of the 
NN modeling for our training, validation, test, and complete datasets. The training dataset consists of 100 data 
points (i.e. 70% of total data points), while the validation and test datasets have 30 data points (i.e. 15% each). 
It can be observed that the algorithm produces a correlation coefficient of 0.999 for the training, 0.999 for the 
validation, 0.999 for the testing, and an overall correlation of 0.999 when the prediction of transformer LOL 
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concerning 2FAL generated and the amount of DP present produced. From Fig. 14, it is observed that the four 
linear fit lines were achieved (Eqs. 10–13) in the form y = a.x + b , where x and y are observed and predicted 
PGA, respectively, which are mentioned below:

(10)y = 0.999.x + 0.016

(11)y = 0.999.x + 0.007

(12)y = 0.999.x + 0.055
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Figure 11.  Error histogram of the first BPNN algorithm.

Figure 12.  The BPNN configuration for LOL forecasting.
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Figure 15 shows the error histogram for our NN modeling showing most of the larger positive and negative 
values are near the zero error line (shown by an orange thick line), which suggests the error distribution of the 
NN modeling is good. Thus, the algorithm is well trained. Figure 16 is given as some results of trained neurons, 
and the overall amount of gas dissolved in the oil, which is the average of all gas amounts recorded.

Table 6 summarizes the analytical settings used in the proposed BPNN algorithms. The MSE, R, and 
computation time for the two algorithms are contrasted in Table 7. The second algorithm outperforms the first 
algorithm in terms of R. Due to the large quantity of data to train, the second approach takes a bit more time to 
compute than the first algorithm. However, because the simulation is done offline, the computation time cannot 
be used to determine the optimum  algorithm44. Consequently, after considering all simulation data, it is proven 
that the second algorithm has an exceptional capacity to accurately forecast transformer  LOL131.
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Figure 14.  BPNN performance results for forecasting LOL from 2FAL and DP.
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Figure 16.  Measured total gas dissolved (TGD).

Table 6.  BPNN algorithm settings.

Sample 2FAL

Data division Random

Training Levenberg–Marquardt

Performance Mean Square Error

Calculations MEX

Table 7.  Comparison of the two proposed BPNN algorithms.

Index MSE R Computation time Rank

BPNN 1 2.7841 ×  103 0.965 23.4 2

BPNN 2 4.9758 ×  102 0.999 26.2 1

Table 8.  HI coefficients and grades.

Index Specifications t Grades λ

1 DGA 15 A, B, C, D 4, 3, 2, 1……

2 Load history 6 A, B, C, D 4, 3, 2, 1……

3 Temperature and
hotspots 4 A, B, C, D 4, 3, 2, 1……

3 Oil integrity 15 A, B, C, D 4, 3, 2, 1……

5 Furans 9 A, B, C, D 4, 3, 2, 1……

6 Cellulose paper 5 A, B, C, D 4, 3, 2, 1……

7 Water content in
cellulose paper 5 A, B, C, D 4, 3, 2, 1……

8
Main and
conservator
tank condition

4 A, B, C, D 4, 3, 2, 1……

9 Tap changer 5 A, B, C, D 4, 3, 2, 1……

10 Cooling system and
Explosion vent 3 A, B, C, D 4, 3, 2, 1……

11 Buchholz relay condition 6 A, B, C, D 4, 3, 2, 1……

12 Rust 4 A, B, C, D 4, 3, 2, 1……

13 Oil leakage and level 2 A, B, C, D 4, 3, 2, 1……

14 Grounding system 2 A, B, C, D 4, 3, 2, 1……

15 Paint 8 A, B, C, D 4, 3, 2, 1……

16 Working clearance 7 A, B, C, D 4, 3, 2, 1……
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Transformer lifespan estimates were performed using the calculated HI coefficient. The HI coefficients and 
grades are presented in Table 8. The integrity of the transformer was specified as its capacity to withstand minimal 
loads and pressures while preserving its functional specifications over time. Transformer condition reliability 
can be calculated using (14):

where t is the time in years, and � = f (HI)
When a transformer is operating normally, without external or sudden issues that might cause failure, all parts 

of the equipment deteriorate at a constant rate, which is usually specified by its working years and the current 
condition of all the parts. To account for all of the transformer’s parts that have an impact on its condition over 
extended periods, and years, the HI is included in the calculation of the transformer’s durability. The formula 
used to determine the failure rate is given in (15):

where parameter A = f (t, γ ) . Parameter A is calculated by using (16):

where t is the years of service of the transformer; γ is coefficient 1, 2, 3, and 4 depending on the degrading 
curve (γ = 1 if the transformer is relatively new and it is in the zone of sudden failures; γ = 2 if the transformer is 
working normally but its designed working years are unknown; γ = 3 when the transformer has already exceeded 
its initially planned years of service; γ = 4 when the transformer is a risk); and te is the expected working years of 
the transformer. All calculations were performed with te = 61 years. Durability was used to calculate the risk of 
failure. Transformer durability and risk of failure statistics are shown in the estimated years that the transformers 
will operate reliably.

Results and analysis
The outcomes of all conducted experiments and proposed BPNN algorithms are reported for all evaluated 
transformers, ranging from T1 to T26. The data were collected using transformer oil sampling and DGA. 
Sampling was performed to predict the water concentration in cellulose paper based on chemical analysis for 
oil integrity. Data was obtained using visual inspections as well as the past events of the transformer, which was 
investigated during the testing process. The outcomes of the proposed BPNN algorithms were established on 
HI estimations, predicted transformer lifespan based on estimated DP via the BPNN, and durability and risk 
of failure estimates based on the HI. The results gathered from all conducted checks and analyses on all studied 
transformers were consolidated.

Transformer oil measurements and test data
DGA of the transformer oil
Table 9 illustrates a description of the investigated gases discussed in the study and Table 10 shows the 
measurements of dissolved gases detected and recorded in oils of the evaluated transformers.

Chemical analysis of transformer oil
Figures 17, 18, 19 and 20 illustrate the chemical and electrical properties of the evaluated oil data.

Data collected through visual inspection
Main tank
Table 11 provides an overview of the information gathered from visual inspections of the main tanks of all the 
transformers under investigation.

(14)Ri(t) = e−�t

(15)� =
1−HI

A2

(16)A =
te − t

y

Table 9.  Description of gases.

Gas detected Description

C2H2 Acetylene

C2H6 Ethane

C2H4 Ethylene

CH4 Methane

CO Carbon monoxide

CO2 Carbon dioxide

H2 Hydrogen

O2 Oxygen
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Tap changer
Table 12 provides an overview of the information gathered from visual inspections of the tap changers of all the 
transformers under investigation.

Oil conservator
Table 13 provides an overview of the information gathered from visual inspections of the oil conservators of all 
the transformers under investigation.

Breather
Table 14 provides an overview of the information gathered from visual inspections of the breathers of all the 
transformers under investigation.

Table 10.  Measured gases in ppm from DGA for investigated transformers.

Index H2 CH4 C2H2 C2H4 C2H6 CO CO2 O2

T1 6 3 0.5 10 9 53 722 NA

T2 6 3 0.5 2 18 86 756 NA

T3 6 3 7.5 17 3 70 687 NA

T4 8 3 9 21 3 83 703 NA

T5 8 3 116.4 3 5 103 945 NA

T6 6 3 57.8 6 5 75 798 NA

T7 6 15 4 5 3 68 766 NA

T8 6 7 3 5 3 55 821 NA

T9 8 5 0.6 5 3 66 939 NA

T10 9 3 0.5 16 3 67 963 NA

T11 8 13 0.5 11 2 49 872 NA

T12 8 3 0.5 6 3 33 537 NA

T13 7 3 0.5 15 2 39 671 NA

T14 6 3 11.3 64 4 41 825 NA

T15 6 2 9 31 3 40 899 NA

T16 6 2 12.5 17 4 91 891 NA

T17 6 5 21.6 4 6 73 567 NA

T18 8 2 11 18 5 29 731 NA

T19 8 3 0.7 13 4 31 723 NA

T20 6 3 0.6 3 3 52 901 NA

T21 6 1 0.6 12 3 31 875 NA

T22 6 1 0.8 41 3 57 633 NA

T23 6 3 0.5 33 2 65 800 NA

T24 7 3 0.5 2 5 111 804 NA

T25 7 4 2 5 6 89 540 NA

T26 8 11 6.3 19 5 37 981 NA

Figure 17.  Water concentration (mg/kg).
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Cooling tubes
Table 15 provides an overview of the information gathered from visual inspections of the cooling tubes of all 
the transformers under investigation.

Buchholz relay
Table 16 provides an overview of the information gathered from visual inspections of the Buchholz relays of all 
the transformers under investigation.

Results obtained through applied analysis of collected data
DGA of the transformer oil and oil analysis
Table 17 provides an overview of the conclusions drawn from the analysis of the data.

Figure 18.  Breakdown voltage (kV).

Figure 19.  Acid content (mgKOH/g).

Figure 20.  Water concentration in cellulose paper (%).
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Table 11.  Defects identified during visual inspections of main tanks.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Exterior of unit 9 T2, T3, T4, T5, T6, T9, T10, T11, T12, T14, T15, T18, T19, T22, T23, T24, T25

Proper grounding 15 T3, T4, T5, T6, T16, T17, T19, T20, T22, T25, T26

Rust 26 –

Seals 5 T1, T2, T3, T4, T5, T6, T9, T10, T11, T12, T13, T15, T16, T17, T18, T19, T20, T21, T22, T25, 
T26

Oil level, leakage,
thermometer and
drain valve

17 T8, T9, T10, T16, T17, T19, T20, T21, T23

Paint 21 T9, T10, T11, T12, T13, T26

Working clearance 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, 
T21, T22, T23, T24, T25, T26

Table 12.  Defects identified during visual inspections of tap changers.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Oil leakage 1 T1, T2, T3, T5, T6, T7, T8, T9, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, 
T23, T24, T26

Loose connections 4 T2, T3, T4, T5, T6, T7, T8, T9, T11, T12, T13, T14, T16, T17, T18, T19, T20, T22, T23, T24, 
T25, T26

Covers 5 T1, T2, T3, T4, T5, T6, T9, T10, T11, T12, T13, T15, T16, T17, T18, T19, T20, T21, T22, T25, 
T26

Proper operation 4 T2, T3, T4, T5, T6, T7, T8, T9, T11, T12, T13, T14, T16, T17, T18, T19, T20, T22, T23, T24, 
T25, T26

Working clearance 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, 
T21, T22, T23, T24, T25, T26

Table 13.  Defects identified during visual inspections of oil conservator tanks.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Rust 11 T1, T8, T9, T10, T11, T12, T13, T14, T17, T18, T19, T20, T21, T22, T23

Seals 5 T1, T2, T3, T4, T5, T6, T9, T10, T11, T12, T13, T15, T16, T17, T18, T19, T20, T21, T22, T25, 
T26

Oil leakage 17 T8, T9, T10, T16, T17, T19, T20, T21, T23

Paint 21 T9, T10, T11, T12, T13

Working clearance 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, 
T21, T22, T23, T24, T25, T26

Table 14.  Defects identified during visual inspections of breathers.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Silica gel color 25 T22

Breathing holes 1 T1, T2, T3, T4, T5, T6, T9, T10, T11, T12, T13, T15, T17, T18, T19, T20, T21, T22, T25, T26

Cap oil level 24 T22, T26

Cracks 3 T1, T2, T3, T4, T6, T7, T8, T9, T10, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, 
T24, T25, T26

Working clearance 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, 
T21, T22, T23, T24, T25, T26
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Table 15.  Defects were identified during visual inspections of cooling tubes.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Rust on cooling tubes 26 –

Rust on cooling fans 26 –

Oil leakage on tubes & valves 26 –

Missing tubes & coolers 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, 
T19, T20, T21, T22, T23, T24, T25, T26

Missing fans 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, 
T19, T20, T21, T22, T23, T24, T25, T26

Table 16.  Defects identified during visual inspections of Buchholz relays.

Inspected
defect

No. of transformers
with defects Transformers without noted defects

Missing magnetic oil level indicator 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, 
T26

Faulty magnetic oil level indicator 3 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T26

Missing oil temperature indicator 1 T1, T2, T3, T4, T5, T6, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26

Faulty oil temperature
indicator 0 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, 

T26

Table 17.  Summary of the DGA and oil test analysis.

Index DGA results Oil test results

T1 No fault detected Normal

T2 No fault detected Normal

T3 Fault was detected with low partial discharges and
overheating with temperature below T < 300 °C Acid content high

T4 No fault was detected. High quantities of methane CH4,
caution is needed Acid content high

T5 No fault detected Normal

T6 No fault detected Normal

T7 No fault detected Normal

T8 No fault was detected. High quantities of methane CH4,
caution is needed Acid content high

T9 No fault detected Normal

T10 Fault was detected with low partial discharges and
overheating with temperature below T < 300 °C Acid content high

T11 Fault was detected with low partial discharges and
overheating with temperature below T < 300 °C Acid content high

T12 No fault detected Normal

T13 No fault detected Normal

T14 No fault detected Normal

T15 No fault detected Normal

T16 No fault detected Normal

T17 No fault detected Normal

T18 No fault detected Normal

T19 No fault detected Normal

T20 No fault detected Normal

T21 No fault detected Normal

T22 No fault detected Normal

T23 No fault was detected. High quantities of methane CH4,
caution is needed Acid content high

T24 No fault detected Normal

T25 Fault was detected with low partial discharges and
overheating with temperature below T < 300 °C Acid content high

T26 No fault detected Normal
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Health Index (HI)
Figure 21 illustrates the outcomes of the HI calculations that were performed using the algorithms proposed 
in in study.

Table 18 shows the estimated years of operation for each transformer according to the calculated HI. It was 
estimated that six transformers would last more than 15 years. There were no transformers discovered to have 
near EOL or EOL materials. Small to medium-sized defects that can be resolved to stop serious failures were 
discovered in every transformer. The service and maintenance of seven transformers were given priority.

Calculated degree of polymerization
Table 19 displays the compiled results for all transformers, and Figure 22 displays the estimated DP for all 
units using the proposed BPNN algorithms. The results demonstrate that none of the units was discovered to be 
approaching the end-of-life category, and all tested units meet the standard aging domain of cellulose  paper132.

To improve estimation precision and diagnose defect types, diagnostic techniques must be classified based on 
their susceptibility and monitoring capabilities against defects and insulation deterioration. Table 20 summarizes 
routine and diagnostic analysis according to their capacity to discover defects. According to IEEE C57.104133, 
DGA alone is capable of diagnosing 70% of typical defects, however, additional evaluations are required to 
identify mechanical defects.

To improve dependability, significant industry regulations and improved research, such as CIGRE, IEEE, 
and IEC, have been applied to specific procedures for evaluating and analyzing test results. These quantitative 
and diagnostic procedures can assist maintenance professionals in interpreting test results and recommending 
key transformer characteristics that ought to be monitored. These procedures can assist utilities in preventing 
unforeseen breakdowns and offer a rationale for plant managers for the replacement of unreliable aging 
transformers through accurate forecasts. This work offers an overview of current testing as well as transformer 
condition assessment strategies. This is a discipline whereby a great deal of research is being conducted to better 
comprehend the features of various tests and to develop improved techniques for integrating test results to 

Figure 21.  Calculated HI for transformers T1–T26.

Table 18.  HI values and expected years of service.

Health index (%) Condition Expected years of service No. of transformers

85–100 Excellent  > 15 5

70–85 Good  > 10 14

50–70 Fair  < 10 7

30–50 Poor  < 3 0

0–30 Critical End of Life 0

Table 19.  Evaluation of DP and cellulose paper properties.

Concentration (ppm) Condition No. of transformers

600–800 Normal aging rate 26

360–600 Accelerated aging rate 0

300–360 Excessive aging rate 0

200–300 High risk of failure 0

 < 200 End of life 0
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monitor the state of this costly and vital equipment. As the number of units of assets ages, the relevance of these 
strategies appears to increase even more.

Discussion
Electrical transformers are essential to the electrical system, and detecting latent defects immediately can help 
prevent more significant issues. This work tackled the issue of predicting and identifying electrical transformer 
defects using DGA data samples that result from low-occurring transformer issues. The capability to monitor 
equipment degradation opens up possibilities of reducing costs related to repairs and maintenance while also 
avoiding a variety of unexpected events. This will enable long-term studies on invested materials as well as a 
reduction in the initial energy required to design new units. The twenty-six electrical transformers, which were 
the topic of complex evaluations and inspection, were addressed and classified into different classes based on 
their HI, DP, DGA, and P (risk of failure). These classes involved scheduled maintenance and repair. The HI 
observations showed that the units had a significant amount of residual life and the technical capability of 
being in operation for extra years. As a consequence, none of the transformers required to undergo repair. The 
findings demonstrate that the transformers T1, T2, T5, T6, T7, T8, T9, T12, T13, T14, T15, T16, T17, T18, T19, 
T20, T21, T22, T24, and T26 are operating normally, thus no preventative action required at this stage. Methane 
levels in T4, T8, and T25 were approaching alert limits and were planned to undergo further diagnostics and 
monitoring. DGA discoveries in transformers T3, T10, T11, and T25 led to the diagnosis of an electrical fault 
and were planned to undergo visual inspection and testing. Transformers T3, T5, and T17 produced positive HI 
and DP findings, however, the DGA and R results indicate that cautious/or further diagnostics are required and 
the units were scheduled for moisture purification and resampling for safety and economic purposes. Table 21 
summarizes the findings of the complex inspections and evaluations of the twenty-six electrical transformers 
surveyed, with color-coded data.

In this study, the approaches together supplied more detailed knowledge on the condition of each transformer 
as well as its expected lifespan. As per the 2FAL results obtained from the oil data, each transformer had minimal 
insulation degradation as well as a significant DP. However, their expected lifespans over the years of operation 
differed, and according to the HI, eighteen units performed admirably. Table 22 illustrates comparisons derived 
from all diagnostic techniques applied. The actions that must be implemented when utilizing DP data to assess 
the condition of the transformer to implement safety precautions are listed in Table 23.

Figure 22.  Estimated DP for transformers T1–T26.

Table 20.  Comparison between online, routine, and diagnostic analysis for transformer condition.

Diagnose
name

Online
monitoring

Routine
analysis

Diagnostic
analysis

Defects detection types

Electrical Mechanical Thermal

DGA X X X X X

Oil sampling X X X X

Furan sampling X X X X

DP assessment X X

Partial discharge (PD)
diagnostic X X X

Cellulose analysis X X X X X

Chemical analysis X X X X X

Leakage reactance X X

Insulation resistance X X

Winding resistance X X

Sweep frequency response analysis (SFRA) X X X

HI X X X

Visual inspection X X
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Conclusion
In this work, twenty-six electrical transformers were put through diagnostic and monitoring assessments. 
The proposed approach integrated DGA, transformer oil integrity analysis, visual inspections, and two BPNN 
algorithms to predict the LOL of the transformers through condition monitoring of the cellulose paper and the HI 
approach for prioritizing units for repair, maintenance, or replacement. The findings of the proposed diagnostic 
procedures were acquired and investigated, and a list of transformers was proposed for repair, maintenance, and 
continuous supervision.

Based on the diagnostic approach proposed in this study, the following conclusions were attained:

• The adoption of DGA and visual inspections on electrical transformers saves money when planning a 
maintenance schedule.

• The DGA data were used as input samples into the NN for diagnosis. The experimental findings demonstrated 
that the first BPNN algorithm could accurately forecast transformer DP. The first algorithm produced a 

Table 21.  Required action for the investigated transformers.

Action required Transformer Criteria
DGA HI DP P

Purification and
resampling

T17
T5

Fair
Fair

Fair
Fair

Good
Good

Fair
Fair

Service/maintenance T11
T25

Fair
Fair

Fair
Fair

Fair
Fair

Fair
Fair

Cautious/further
diagnostics

T3
T4
T8

T10
T18
T23

Fair
Fair
Fair
Fair
Fair
Fair

Good
Good
Good
Good
Good
Good

Excellent
Excellent
Excellent
Excellent
Excellent
Excellent

Fair
Fair
Fair
Fair
Fair
Fair

Repair T3
T4

Poor
Poor

Fair
Fair

Good
Good

Poor
Poor

Remove from
service

– –
–
–
–

–
–
–
–

–
–
–

–
–
–
––

Table 22.  Grade comparisons for the four assessments conducted.

Techniques
employed

No. of transformers

Excellent Good Fair Poor

DGA 18 6 2 0

BPNN algorithms (2FAL, DP) 18 6 2 0

Health index 5 14 7 0

Visual inspection 0 16 8 2

Table 23.  Recommendations for transformer measures based on results.

DP value Comment

 < 200 The test results show substantial cellulose paper deterioration that exceeds the critical threshold. It is highly recommended that 
the unit be removed from service immediately and visually inspected

200–250 The cellulose paper is close to or in a catastrophic state. Recommended that the unit be removed from service and properly 
examined as soon as feasible. Direct DP analysis can be performed on paper samples

260–350 The cellulose paper is nearing the end of its life. To review the state, schedule a verification and/or re-sample within 1 year

360–450 The cellulose paper is approaching its critical state. Recommend re-sampling in 1–2 years

460–600 Substantial cellulose paper degradation, however, is still far from the critical threshold

610–900 Low to moderate cellulose paper aging

 > 900 No observable deterioration of the cellulose paper
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correlation coefficient of 0.970 when the DP was predicted using the 2FAL measured in oil. It is essential to 
schedule transformer maintenance in advance to prevent failure from escalating.

• The results of the second BPNN algorithm were fed into the NN for assessment. The experimental results 
demonstrated that the second BPNN method was successful at forecasting transformer LOL. The second 
algorithm produced a correlation coefficient of 0.999 when the LOL was predicted using the 2FAL and DP 
output data obtained from the first algorithm.

• The experimental results demonstrated that the BPNN algorithms can overcome the constraints of other 
learning algorithms based on DGA due to the limited and disorganized dispersal of transformer oil data. The 
BPNN algorithm offers more effective generalization performance compared to the other learning algorithms.

• The HI findings revealed that no transformers had near-end-of-life or end-of-life materials as per the IEC 
60599:2022 standard and CIGRE brochure.

Examining the condition of the cellulose paper insulation is crucial when thinking about a transformer 
maintenance schedule. In this instance, moving the transformer to a manufacturing station for rehabilitation 
would be a more economical maintenance strategy. All previous studies have demonstrated and verified 
that MeOH appears to be an effective marker for detecting the start of cellulose paper degradation. MeOH 
concentration increases in a “logarithmic’ trend (early diagnosis of deterioration), whereas 2FAL increases in 
an “exponential” trend (diagnosis when deterioration is extreme). When the cellulose insulation is exposed to 
low temperatures and the deterioration process is fully engaged, MeOH content appears to stabilize. From this 
point on, 2FAL is considerably generated and becomes greater than MeOH . For future work, the authors will 
evaluate MeOH and 2FAL concentrations using artificial intelligence algorithms. The conclusions about which 
data produces accurate results using the algorithms will be drawn from which data produces underfitting and 
overfitting during training.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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