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Assessing the impact 
of post‑mortem damage 
and contamination on imputation 
performance in ancient DNA
Antonio Garrido Marques 1, Simone Rubinacci 2,3, Anna‑Sapfo Malaspinas 1,4, 
Olivier Delaneau 5 & Bárbara Sousa da Mota 1,4*

Low‑coverage imputation is becoming ever more present in ancient DNA (aDNA) studies. Imputation 
pipelines commonly used for present‑day genomes have been shown to yield accurate results when 
applied to ancient genomes. However, post-mortem damage (PMD), in the form of C‑to‑T substitutions 
at the reads termini, and contamination with DNA from closely related species can potentially affect 
imputation performance in aDNA. In this study, we evaluated imputation performance (i) when using 
a genotype caller designed for aDNA, ATLAS, compared to bcftools, and (ii) when contamination is 
present. We evaluated imputation performance with principal component analyses and by calculating 
imputation error rates. With a particular focus on differently imputed sites, we found that using 
ATLAS prior to imputation substantially improved imputed genotypes for a very damaged ancient 
genome (42% PMD). Trimming the ends of the sequencing reads led to similar improvements in 
imputation accuracy. For the remaining genomes, ATLAS brought limited gains. Finally, to examine 
the effect of contamination on imputation, we added various amounts of reads from two present‑day 
genomes to a previously downsampled high‑coverage ancient genome. We observed that imputation 
accuracy drastically decreased for contamination rates above 5%. In conclusion, we recommend (i) 
accounting for PMD by either trimming sequencing reads or using a genotype caller such as ATLAS 
before imputing highly damaged genomes and (ii) only imputing genomes containing up to 5% of 
contamination.

Over the past decade, there has been a fast increase of sequenced ancient  genomes1. The growing amount of 
ancient genetic data allows for a better understanding of the evolutionary history of humans and other species, 
as shown by a multitude of discoveries in recent  years2–5.

The field of ancient DNA (aDNA) research is accompanied by a unique set of challenges, namely, post-mortem 
damage (PMD) and contamination. PMD manifests as DNA fragmentation, and pronounced C-to-T deamina-
tion at the ends of DNA  fragments6, that accumulate over time due to the absence of DNA repair mechanisms 
following an organism’s death. PMD can complicate sequencing and lead to erroneous genotype  calls7. A strategy 
to mitigate C-to-T deamination is the application of a uracil-DNAglycosylase (UDG) and endonuclease VIII 
treatment during laboratory  preparation8,9. UDG is an enzyme that recognizes and removes uracil residues 
arising from the deamination of  cytosine10. The removal of uracil by UDG creates abasic sites, which are then 
recognized and cleaved by an endonuclease VIII. By actively targeting and removing uracil from aDNA, this 
treatment minimizes the incidence of post-mortem C-to-T deamination, thereby enhancing the accuracy of 
subsequent analyses.

Despite meticulous procedures intended to prevent  contamination11–13, it is hard to avoid and sources of 
contamination can range from unintentionally introduced human DNA during sample extraction or laboratory 
 processing14–16, to the persistent presence of DNA from microbial and environmental  sources17. Microbial and 
environmental contamination are responsible for the underrepresentation of endogenous DNA. The competitive 

OPEN

1Department of Computational Biology, University of Lausanne, Lausanne, Switzerland. 2Division of Genetics, 
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 3Program 
in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 4Swiss Institute 
of Bioinformatics, University of Lausanne, Lausanne, Switzerland. 5Regeneron Genetics Center, Tarrytown, NY, 
USA. *email: barbara.mota@unil.ch

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56584-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6227  | https://doi.org/10.1038/s41598-024-56584-3

www.nature.com/scientificreports/

amplification of this non-target DNA results in the ancient DNA of interest to become overshadowed and to 
numerous genomic positions being either weakly covered or entirely devoid of sequencing reads. While we can 
practically remove all microbial and environmental contamination by mapping the sequenced reads, contamina-
tion with DNA from the same or closely-related species cannot be fully eliminated. Even at minimal levels, this 
type of contamination can skew downstream analyses, leading to potentially erroneous conclusions. As such, 
contamination estimation is a standard quality control step in aDNA studies. Genomes with a contamination 
level exceeding 5% (an adhoc threshold used in several studies, e.g., Allentoft et al.18 and Nakatsuka et al.19) are 
often discarded, resulting in the loss of potentially informative data.

Both PMD and contamination contribute to reduced genome coverage. On the one hand, PMD produces 
shorter DNA fragments with reduced mappability, and the deaminations introduced by PMD can increase 
discrepancies relative to the reference genome, making the fragments harder to  map20,21. On the other hand, 
microbial contaminant DNA tends to be several times more abundant than the endogenous DNA that is under 
study, resulting in low amounts of the latter and, consequently, low depth of coverage.

A standard approach to address the challenge of low coverage in ancient genomes is pseudo haploidization. 
This method involves selecting one single read to represent a haploid genotype at each genomic  position13. 
However, this method carries inherent risks such as under-estimation of allele frequencies and may inadvertently 
introduce a bias towards the reference  genome22–24.

A different approach is genotype imputation. This is a method that makes use of statistical models to infer 
missing genotypes in a target sample, guided by a reference panel of  haplotypes25. Given the nature of ancient 
genomes, one should apply low-coverage WGS (whole-genome sequencing) imputation  methods26–28. In this 
case, genotype likelihoods (GLs) are the input data for imputation. These GLs are the probabilities of finding 
certain genotypes based on the available sequencing data, and can thus encode the uncertainty inherent to low-
coverage ancient genomes.

While primarily used for present-day low-coverage genomes, recent studies have demonstrated the 
effectiveness of genotype imputation of ancient  genomes29–31. In particular, imputing shotgun-sequenced non-
African ancient genomes with at least 0.5 × coverage yields accurate results. For in-solution capture (1240  K32–34) 
sequenced genomes, which constitute the majority of publicly available ancient genomes, imputation accuracy 
tends to be lower and better results are attained at the capture sites, i.e., the 1240 K SNPs, and for coverages 
above 2 × at these  sites31. Nevertheless, while this approach addresses the low-coverage problem in aDNA, it is 
unclear how contamination and PMD affect imputation and whether we could use imputation to tackle these 
challenges as well. Although it was shown that imputation can have a corrective effect on deaminated  sites31, it 
is not clear to what extent PMD affects imputation performance, and hence what the best practices are regarding 
pre-imputation PMD filtering. Some studies opted to exclude potentially deaminated positions before imputing 
ancient  genomes29,30. But, since the PMD-inflicted SNPs are transitions that constitute around two thirds of all 
SNPs in  humans35, excluding such positions altogether leads to loss of information that can potentially affect the 
imputation output. Moreover, to our knowledge, there has been no research on the impact of contamination on 
imputation. Thus, a description of imputation impact on contaminated sites and vice-versa is lacking.

In this study, we aim to i) assess whether imputation performance can be improved by using a genotype caller 
specifically designed to account for PMD and ii) study the impact of contamination levels on imputation and vice-
versa (i.e., can genotype imputation “correct” contaminated positions so as to retrieve the original genotypes?). 
To address these aims, we performed simulations to mimic the properties of ancient DNA. We achieved this by 
downsampling high-coverage ancient genomes to low coverage, and then performing imputation experiments. 
When investigating the effect of PMD, we compared two imputation pipelines: a combination of  GLIMPSE28 
with GLs generated with either (i)  bcftools36, a widely used genotype caller, or (ii)  ATLAS37, a genotype caller 
designed to explicitly take into account PMD when generating the calls. To determine how contamination affects 
imputation, we artificially contaminated an ancient genome with varying amounts of sequencing reads coming 
from present-day genomes. In the following sections, we show that, while taking PMD into account prior to 
imputing has a noticeable impact in the presence of high deamination rates, it does not substantially improve 
imputation performance in other cases. Furthermore, we demonstrate that contamination can drastically reduce 
imputation accuracy, rendering imputed genotypes unreliable.

Results
Methodology for comparing imputation accuracy of ancient genomes using distinct genotype 
callers
To assess the impact of PMD on imputation accuracy, we imputed two sets of GLs that we called using either (i) 
ATLAS or (ii) bcftools, and compared these to validation datasets through non-reference discordance (NRD) 
estimates and principal component analysis (PCA), focusing on SNPs differently imputed across the two datasets. 
ATLAS, specifically designed for aDNA, infers PMD patterns and recalibrates base quality scores. In contrast, 
bcftools serves as a conventional genotype caller providing a comparative dataset. We performed these imputation 
experiments using seven high-coverage ancient genomes of diverse origins and varying PMD rates (Table S1, 
Supplementary Figures S1 and S2). We downsampled these genomes to emulate low-coverage (1x) conditions, 
and used the high-coverage genomes as validation (Fig. 1A). We generated three validation datasets: (i) by call-
ing genotypes with ATLAS (“ATLAS validation”), (ii) by calling genotypes with bcftools (“bcftools validation”), 
and (iii) by intersecting the two previous genotype sets so as to only keep concordant sites between the two 
(“validation concordant”). However, we mostly relied on the validation concordant set due to inherent difficul-
ties in establishing a ground truth for ancient genomes (Supplementary Figure S3). To better disentangle the 
effects of PMD from other factors affecting imputation performance, we also simulated low-coverage diploid 
chromosomes with  gargammel38 with varying amounts of PMD that we subsequently imputed. We used as a 
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template a present-day genome from  Turkey24,39. Afterwards, we performed genotype imputation on the two 
sets of genotypes likelihoods using GLIMPSE v1.1.128, a genotype imputation tool for low-coverage WGS data. 
To evaluate imputation performance, we compared our results with the three different validation datasets using 
the NRD metric, defined as NRD = (eRR + eRA + eAA) / (eRR + eRA + eAA + mRA + mAA), where ’e’ and ’m’ 
represent the number of errors and matches, respectively, while ’R’ and ’A’ stand for reference and alternative 
alleles, respectively. We calculated NRD on all the 1000 Genomes bi-allelic  SNPs40, on the intersection of the 
1000 Genomes and 1240 K bi-allelic  SNPs32–34, and on a set of 2.8 M SNPs (see Methods section). Restricting 

Figure 1.  Schematic representation of the methodology. (A) Outline of the approach used to evaluate the effect 
of two different genotype callers on the imputation accuracy of ancient genomes. (B) Methodology followed to 
gauge the impact of contamination on genotype imputation of ancient genomes.
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to the 2.8 M SNPs, we also performed PCA using  smartPCA41,42 to visualize and measure where imputed sam-
ples are positioned relative to their validation concordant set across the first 10 principal components (PCs). 
The PCA components were calculated using worldwide present-day genomes from  SGDP43 and we projected 
the ancient data onto these. For each ancient individual, we projected four datasets: (i) validation concordant, 
(ii) identically imputed genotypes when using the two GLs sets (“imputed concordant”), and the differently 
imputed genotypes across the two GLs datasets computed with (iii) ATLAS (“ATLAS imputed discordant”) and 
(iv) bcftools (“bcftools imputed discordant”). Finally, for each individual sample, we calculated the Euclidean 
distance to their validation and adjusted by the corresponding eigenvalue of each PC with a focus on the subset 
of SNPs that are discordant.

Memory and time requirements of ATLAS and bcftools to generate genotype likelihoods
To assess the computational efficiency of genotype calling with either ATLAS or bcftools, we measured running 
times and memory usage when computing GLs for the 1× downsampled and the high-coverage genomes 
(Supplementary Figure  S4). We observed that ATLAS required considerably longer running times. For 
chromosome 1 and the downsampled genomes, ATLAS took approximately 48 times more time than bcftools, 
averaging ~ 1.6 h per sample, while for the high-coverage genomes, ATLAS took ~ 5.9 h, that is, 17 times more 
time than bcftools. Genome-wide, ATLAS also required substantially more memory resources, using around 45 
times the memory allocation of bcftools with an average of ~ 182 Gb per sample for the downsampled genomes, 
and ~ 3200 Gb for the high-coverage genomes (768 times more memory than bcftools for the same genomes). 
It should be noted, however, that generating GLs with ATLAS entails three steps instead of one, as is the case 
of bcftools: (i) splitting of single-end read groups according to read length, and merging of paired-end reads 
if present, (ii) generating empirical estimates for PMD, which are then used to refine the calling step, and (iii) 
genotype calling.

Impact of taking PMD into account on imputation accuracy
Accounting for PMD improves imputation performance in highly damaged individual samples
When restricting to identically imputed genotypes using ATLAS and bcftools GLs, that is, the imputed concord-
ant set, we observed that these data were placed on the PCA space close to present-day individuals from the same 
continents, as expected. Furthermore, these datasets co-localised with their respective validation (validation 
concordant) (Fig. 2A). We found that the imputed ATLAS discordant data was closer to the validation for all 
individual samples except  NE144 (9.6% PMD), as depicted in Fig. 2A, B. Different trends were observed when 
using the 1240 K SNPs (Supplementary Fig. S5), though. The biggest differences between imputed ATLAS and 
bcftools data were found for  BOT201645 (20.8% PMD, 0.51% discordant sites),  Sumidouro546 (42.0% PMD, 0.86% 
discordant sites),  Yana47 (13.9% PMD, 0.92% discordant sites), and  ela0148 (3.0% PMD, 1.67% discordant sites). 
This disparity is particularly noticeable for Sumidouro5, that exhibits the highest PMD rate (42.0%), and whose 
discordant imputed ATLAS genotypes are considerably closer to the validation. In the case of  Yamnaya45 (18.8% 
PMD, 0.26% discordance sites), the two discordant datasets were similarly close to their validation (weighted 
Euclidean distances of 0.40 vs. 0.42 for ATLAS and bcftools discordant data, respectively). In conclusion, the 
discordantly imputed bcftools GLs tend to be more different from the validation, and thus less accurate than the 
imputed ATLAS GLs. However, the proportions of the discordantly imputed SNPs were relatively low, ranging 
between 0.26% and 1.67%, indicating a high level of similarity between the two imputed datasets. A PCA of 
the same data without splitting the imputed datasets into concordantly and discordantly imputed SNPs can be 
found in Supplementary Figure S6.

An examination of the imputation error rates allows for a deeper understanding of how imputation is affected 
by distinct genotype callers. We computed NRD and other error rates using three validation sets obtained from 
the high-coverage genotypes: i) bcftools calls, ii) ATLAS calls and iii) validation concordant (intersection of 
i) and ii)). We computed NRD for three different sets of SNPs: (i) the same SNPs as in the abovementioned 
PCA analysis (2.8 M SNPs) (Fig. 2C–E, for more detailed error rates see Table S2), (ii) the intersection of the 
1000 Genomes and 1240 K bi-allelic SNPs all sites (Supplementary Figure S5C–E), and (iii) all sites in the 
1000 Genomes panel (Supplementary Figure S5F–H). At first sight, the (2.8 M SNPs) NRD results corroborate 
the previous observations regardless of the validation dataset. Imputation using ATLAS GLs resulted in lower 
NRD for ela01, Yana and Sumidouro5, while the opposite was seen for NE1. We caution that the NRD values 
calculated at all 1000 Genomes SNPs yielded the opposite trend for ela01. For  SZ149, Yamnaya and BOT2016, 
the two imputed datasets had approximately the same NRD values, ~ 1.23%, ~ 0.85% and ~ 1.58%, respectively. 
While such a result was expected for SZ1, given that its libraries were UDG-treated and hence no gain in 
accuracy was expected with ATLAS, PMD is prevalent in the Yamnaya and the BOT2016 genomes (18.8% and 
20.8% PMD, respectively) and we would expect ATLAS to have a considerable impact. Therefore, using one 
or the other genotype caller prior to imputation did not systematically affect imputation performance given 
PMD rates as expected. This suggests that there are other factors affecting GLs computation and/or imputation 
that ultimately impact imputation performance in a non-trivial way. Nonetheless, Sumidouro5 represents the 
clearest example of how using ATLAS to generate GLs prior to imputation can result in higher imputation 
accuracy, which is particularly visible when using the ATLAS validation dataset as the ground truth. In this case, 
imputed ATLAS GLs yielded 1.03% NRD, two times smaller than the NRD for imputed bcftools GLs (2.08%). 
Furthermore, in the case of Sumidouro5, we verified that combining trimming five base pairs at the reads ends 
with bcftools calling led to similar improvements in imputation performance as using ATLAS-generated genotype 
likelihoods. However, trimming 10 base pairs resulted in loss of information that negatively impacted imputation 
performance, with genome coverage dropping from 1× to 0.54× compared to 0.76× in the case of trimming five 
base pairs (Supplementary Figures S7, S8 and Table S3).
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Transition substitutions proportions tend to increase in discordantly imputed variants
To determine whether the differences between the two imputed datasets arose from the fact that ATLAS takes into 
account PMD upon calculating GLs, we examined whether there was an overrepresentation of transitions, i.e., 
affected by PMD, among the discordantly imputed sites. The transition base change proportion in the imputation 
reference panel was 68.7% (Table S4). In comparison, the average transition proportion for concordantly imputed 
positions across all samples aligned with this expectation. At discordantly imputed positions, we found the 
proportion of transition sites to be similar to the overall transition rate for Yamnaya, NE1 and BOT2016. There 
was a clear increase in transition representation among discordantly imputed SNPs for Yana (71.1%) and 
Sumidouro5 (73.0%). Even though there was no clear correlation between PMD and transition numbers increase, 
the largest difference was again found for Sumidouro5. For this genome, there were 2.7 times more transitions 
than transversions among the discordantly imputed sites, compared to 2.2 times in all considered sites, further 
suggesting that ATLAS aids imputation in the presence of very high PMD rates. We observed similar trends of 
transition base change proportions when considering the intersection of the 1000 Genomes and 1240 K SNPs, 
and the 2.8 M SNPs used in PCA analyses (Tables S5 and S6).

Figure 2.  Effect of two different genotype callers on imputation accuracy. (A) Two first principal components 
of principal component analysis (PCA) of present-day genomes (SGDP). The genetic data of seven ancient 
individuals were projected onto it. For each individual, the triangle shape indicates the validation concordant 
dataset, the inverse triangle represents the genotypes that were equally imputed when using ATLAS and 
bcftools genotype likelihoods (GLs) (“Imputed concordant”), and the circles and square shapes correspond 
to the positions that were differently imputed when using ATLAS GLs (“ATLAS Imputed Discordant”) and 
bcftools GLs (“Bcftools Imputed Discordant”), respectively. The continental origins of the individual samples 
are indicated on the legend. (B) Weighted Euclidean distances between the validation concordant and the 
three imputed datasets, for the seven ancient individuals. We calculated the Euclidean distances between 
the validation concordant set of each sample, and their concordant and discordant imputed genotypes. We 
measured the distances across the first 10 PCs, and subsequently weighted the distances by the eigenvalue of 
each PC. (C) Non-reference discordance (NRD) for the seven ancient individual samples when called with 
either ATLAS (blue) or bcftools (orange) prior to imputation. For each individual sample, the corresponding 
PMD values (first position at the 5’ ends of the reads) is shown below the sample names. Samples are ordered by 
increasing PMD rates. NRD was assessed using three validation datasets: (C) validation concordant, (D) ATLAS 
validation and (E) bcftools. For NRD assessment on all variants, see Supplementary Figure S5F–H.
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Inherent difficulties in assessing imputation performance of African individual samples
While Sumidouro5 and ela01 have the largest discrepancies between their imputed datasets, the reasons 
underlying those differences are clearly distinct, given that ela01 has a much lower PMD rate (3%) and thus 
we would not expect imputation to considerably benefit from ATLAS GLs. Specifically, ela01’s performance 
with ATLAS also stands out as shown by its Euclidean distance to the ground truth of 0.38, in contrast to 
1.44 with bcftools (Fig. 2B), and reduced NRD values for ATLAS (2.48%) compared to bcftools (2.71%) with 
the validation concordant (Fig. 2C). However, the NRD calculated on all 1000 Genomes positions using the 
validation concordant showed a different trend. Here, bcftools’s imputed GLs yielded a lower NRD of 4.06%, 
compared to 4.61% with ATLAS (Supplementary Figure S5F–H). The distinct characteristics of ela01 are further 
highlighted by its elevated discordance rate of 1.67% at the 2.8 million SNPs, nearly double that of most other 
samples (Table S7). Additionally, ela01 exhibits among the highest imputation error rates overall, irrespective of 
the genotype caller used (Table S2). Finally, ela01 stands out as having the lowest proportion of transition base 
changes in the discordant positions when considering all imputed SNPs (66.7% compared to 68.7% for all sites, 
Table S4). These findings suggest that evaluating imputation performance in African samples may be challenging 
due to the unique features and complexities of their genomic profiles and their ancestries being underrepresented 
in most reference panels.

Imputed simulated ancient genomes show that PMD has a negative but small impact on imputation performance 
regardless of the genotype likelihood calling strategy
Given the above-mentioned challenges in determining how PMD impacts imputation performance while using 
either ATLAS or bcftools GLs, we assessed imputation accuracy of imputed simulated ancient genomes with 
PMD varying between 0 and 50% (Supplementary Figure S9). We found that NRD increased with increasing 
PMD regardless of the genotype caller (Supplementary Figure S10 and Table S9). NRD increased from 4.97% 
at 0% PMD to 5.44% when using ATLAS GLs, while for bcftools NRD varied between 5.05% and 5.67%. For all 
PMD values, using ATLAS GLs led to smaller error rates, particularly for more damaged genomes, as expected 
(Supplementary Figure S10A). The difference in imputation accuracy between the most and the least damaged 
genomes was most pronounced at rare variants, that is, when MAF (minor allele frequency) was below 2% and 
5% for ATLAS and bcftools GLs, respectively (Supplementary Figure S10B,C).

Assessing how contamination affects imputation performance
Methodology for assessing imputation’s ability to rectify contamination in ancient genomes
To assess the potential of genotype imputation in mitigating contamination, we virtually contaminated the 
Loschbour genome, an 8000-year-old Western Hunter-Gatherer50, with present-day human DNA from a 
European Greek and an African Dinka genomes from  SGDP43, as depicted in Fig. 1B. To ensure an accurate 
representation of the impact of contamination on a typical ancient sample, the Loschbour genome was initially 
downsampled to low coverage (1×). Then, based on the desired contamination levels ranging from 1 to 90%, we 
substituted a proportionate number of reads—drawn at random—from the ancient genome with reads from the 
modern genomes. We verified that the genome was contaminated as expected by estimating contamination on 
the X chromosome using  contaminationX51 (Supplementary Figure S11). Afterwards, we computed the genotype 
likelihoods on the two artificially-contaminated samples using bcftools, and imputed them with GLIMPSE. 
In order to assess to which degree imputation rectified contamination and allowed the retrieval of the high-
coverage genotypes, we compared the contaminated samples with the original non-contaminated high-coverage 
Loschbour by calculating NRD and evaluating their relative positions on PCA whose PCs were calculated with 
present-day genomes. Finally, we verified whether contamination has a different signature at the haplotype level 
when compared to admixture. For that, we inferred local ancestry for imputed genomes that had been previously 
contaminated with Dinka DNA using three reference populations from the 1000 Genomes panel: CEU (Utah 
residents with Northern and Western European ancestry), LWK (Luhya in Webuye, Kenya) and YRI (Yoruba 
in Ibadan, Nigeria).

Imputation severely impacted by contamination
We projected the non-contaminated high-coverage Loschbour genome, the two present-day Greek and Dinka 
genomes, and the imputed 1× contaminated genomes onto the PCA built with the SGDP dataset to determine 
how far the latter were relative to the non-contaminated Lochbour genome. We observed that, as contamination 
increased, the imputed sample moved further away from the non-contaminated Loschbour (Fig. 3A). Particu-
larly, in the case of Dinka-contaminated samples, it appears that, with an increasing contamination rate, the 
samples moved progressively closer to the genetic signature of the original Dinka individual. With increasing 
contamination by present-day Greek DNA, the samples similarly deviated further from the Loschbour original 
sample, although in a less linear trajectory. However, this trend became linear when restricting the analysis to 
only the Western Eurasian populations in SGDP (Fig. 3B), as well as at higher PCs (PC7 vs. PC8 in Supple-
mentary Figure S12). The observed nonlinearity may be due to these dimensions not distinctly separating the 
Loschbour and Greek populations. In contrast, the Dinka contamination displays a linear trend as PC1 primarily 
distinguishes African versus non-African  populations52. In addition, we verified the effect of contamination rate 
on the number of heterozygous sites. As expected, a maximum number of heterozygous sites was reached at 
around 50%-contamination rate, that is, 7.5% and 6.4% for the Dinka and the Greek contaminants, respectively, 
in comparison with 3.4% at 0% (imputed uncontaminated 1 × Loschbour genome) and 5.7% (Dinka) and 4.5% 
(Greek) at 100% contamination rates, respectively (Supplementary Figure S13).

Imputation of the uncontaminated Loschbour genome downsampled to 1 × resulted in an NRD of 2.7% 
(Fig. 3C). Between 0 and 5% contamination, i.e., the typical range of tolerated contamination in aDNA studies, 
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error rates remained relatively low, with NRD rising faster when the Greek genome was the contamination source: 
at 3% contamination, NRD was 5.1% and 4.4% when contaminating with Greek and Dinka DNA, respectively. 
However, for this range, contamination with Dinka DNA had a bigger impact on the PCA (Supplementary 
Figure S14). In the presence of 5% present-day Greek DNA contamination, NRD increased to 8.4%, which became 
79.4% at 90% contamination. Similarly, samples contaminated with present-day Dinka DNA had an NRD of 6.9% 
at 5% and 85.4% at 90% contamination. The implications are that, as contamination levels rise, the reliability of 
imputed genotypes for downstream analyses deteriorates. Moreover, at higher contamination rates, contamination 
from present-day Dinka DNA seemed to have a more important detrimental impact on imputation accuracy 
relative to contamination from present-day Greek DNA. Specifically, beyond a contamination level of 20%, the 
NRD associated with Dinka contamination exceeded that of its Greek counterpart. Furthermore, squared Pearson 
correlation values (Supplementary Figure S15) highlighted that imputation of Greek-contaminated genomes 
outperformed Dinka-contaminated ones in imputation accuracy. This observation suggests that imputation 
performance was more negatively affected by higher levels of contamination coming from a more distantly related 
source. These results indicate that contamination substantially compromises genotype imputation accuracy, 
making it ineffective to rectify contamination in ancient genomes. We hypothesize that contaminant reads 
prevent the imputation model from copying from the most informative reference haplotypes, as contaminated 
genomes contain information from more than two haplotypes (four, in the case of a single contamination source).

Contamination leaves a distinct signal at the haplotype level
Admixture and contamination could leave similar genetic hallmarks, as implied by the findings that (i) similarity 
between imputed contaminated genomes and their contamination sources increased with contamination rate 

Figure 3.  Effect of contamination on genotype imputation. Principal component analysis (PCA) of present-
day genomes and projection of uncontaminated and imputed contaminated ancient genomes. The ancient 
downsampled (1×) Loschbour genome (light blue) was subjected to varying degrees of contamination, ranging 
from 1 to 90%, with DNA from a present-day Greek individual (yellow) and a present-day Dinka individual 
(red). (A) PCA of worldwide present-day populations (SGDP), represented by empty gray circles, and projection 
of all the imputed contaminated downsampled Loschbour genomes. (B) PCA of present-day Western Eurasians, 
with a focus on the Greek-DNA imputed contaminated Loschbour genomes. (C) Non-reference discordance 
(NRD) as a function of contamination levels, having the high-coverage Loschbour genome as ground truth. 
Yellow and red bars indicate Greek-contaminated and Dinka-contaminated Loschbour samples, respectively.
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and (ii) heterozygosity peaked at 50% contamination. When inferring local ancestry for imputed genomes 
contaminated with Dinka DNA, we found that haplotype tracts with an African origin were only inferred 
for contamination rates above 15%, while true admixed tracts can be found at much lower admixture levels 
(Supplementary Figure S16A, B). Furthermore, at 50% contamination rate, for instance, the tract length 
distribution was different from the expected distribution for 50% admixture levels, as exemplified with local 
ancestry inferred in an African American individual (Supplementary Figure S16C). In contrast to true admixture, 
we found an enrichment for short tracts across the genome (Supplementary Figure S16D, E), that can be 
attributed in part to imputation errors (Supplementary Figure S17). This excess in short tracts reflects that 
contamination affects all sites in an uniform fashion and not according to a recombination map as in the case 
of admixture.

Discussion
Genotype imputation has been increasingly employed in aDNA studies, unlocking downstream applications 
that were typically limited to high-coverage genomes, thus allowing to tackle even more questions. It is therefore 
essential to thoroughly understand its limitations and potential. Our study provides insights into how PMD, 
a common feature of ancient genomes, and contamination affect genotype imputation of ancient genomes. 
While we restricted our analyses to shotgun-sequenced ancient genomes, we expect that all conclusions we 
arrived at are equally valid for in-solution capture sequenced ancient genomes. Firstly, we found that taking 
PMD into account prior to imputation yielded unequivocally more accurate genotypes in the presence of 
very high PMD rates. Although imputation of ATLAS GLs led to overall lower imputation error rates, these 
constituted modest gains for most of the remaining genomes regardless of their PMD rates. This result suggests 
that imputation is robust to some level of damage. In fact, we found that PMD has a relatively small negative 
impact on imputation. As such, ATLAS’s high computational needs and extended run times may not justify 
its benefits when ancient genomes are not highly damaged. We also found that trimming five base pairs at the 
reads’ ends before using bcftools to generate GLs, which is common practice in aDNA studies, can be a more 
computationally efficient alternative to ATLAS to minimize the effect of PMD on imputation performance. 
Secondly, we showed that genomes with more than 5% contamination are inaccurately imputed. This is also 
the current threshold used to discard contaminated samples in aDNA studies. Moreover, imputation accuracy 
decreased with the increase of contamination levels in such a way that the imputed contaminated genomes were 
increasingly closer to contamination sources. Nonetheless, the contamination signature was clearly distinct from 
admixture at the haplotype level. This observation suggests that it is possible to detect and estimate nuclear DNA 
contamination using a framework built upon imputation and by exploiting disruption of linkage disequilibrium 
by contamination as in Nakatsuka et al19. Another potential future methodological development could be aimed 
at correcting PMD in ancient genome imputation, since we have shown before that imputation can correct 
deaminated sites. A full description of how and to what extent this correction works is however needed to that 
end. It also remains to be assessed how imputation varies across the genome, which can have implications for 
studies focused on particular genome regions, such as selection studies. Finally, a limitation of imputation not 
restricted to ancient genomes is the fact that present-day imputation reference panels do not contain private 
variation from under/non-represented populations. Such limitations can be mitigated by using more diverse 
reference panels and/or by assembling reference panels that include ancient genomes so as to recover variation 
that has been lost over time. However, high-coverage ancient genomes are the exception and their sample size 
is probably too small to improve imputation performance at private variants.

Methods
Datasets
Ancient genomes
We collected eight high-coverage ancient genomes from publicly available studies and reported them in Table S1. 
This table provides additional details about the origin of each sample, their coverage, and the average rate of 
PMD at the 5’ read ends. These samples offer a global representation and display varying damage rates. Certain 
samples, as indicated in Table S1, underwent a UDG-treatment to reduce PMD. SZ1 underwent partial UDG-
treatment49. Loschbour underwent partial UDG-treatment for three out of the four built libraries. The remaining 
library was not UDG-treated50. The PMD values for the remaining samples were either stated as reported in the 
original study or assessed by us. We selected seven ancient genomes for the first part of our experiment focusing 
on assessing how accounting for PMD impacts imputation accuracy, while the remaining genome, Loschbour, 
was used in the second part investigating the impact of contamination on imputation.

Simons Genome Diversity Project
We used the Simons Genome Diversity Project (SGDP)43 dataset as a reference panel to perform PCA. This 
dataset includes genomic information from 300 individuals that come from 142 populations worldwide. In 
addition, we sampled reads from two SGDP genomes (a Dinka (B_Dinka-3) and a Greek individual (S_Greek-
1)) to contaminate the Loschbour ancient genome.

1000 Genomes (imputation reference panel)
We used a version of the 1000 Genomes v5 phase 3  panel40 containing 2504 genomes resequenced at 30x, that 
was phased using  TOPMed53, excluding singletons and only keeping biallelic sites. Furthermore, we lifted over 
the reference panel from b38 to hg19 using Picard liftoverVCF (https:// gatk. broad insti tute. org/ hc/ en- us/ artic 
les/ 36003 70609 32- Lifto verVcf- Picard-), with hg38ToHg19 chain from the University of California Santa Cruz 
liftOver tool (http:// hgdow nload. cse. ucsc. edu/ golde npath/ hg38/ liftO ver/).

https://gatk.broadinstitute.org/hc/en-us/articles/360037060932-LiftoverVcf-Picard-
https://gatk.broadinstitute.org/hc/en-us/articles/360037060932-LiftoverVcf-Picard-
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/
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PMD assessment
We used the bamdamage tool from  bammds54 to estimate PMD as the rate of C-to-T misincorporations at the 5’ 
end first position. This tool enabled us to evaluate the PMD rate for 6 of the 7 samples. For the remaining sample 
(SZ1), we relied on the damage report from the published study (Table S1).

Downsampling
We downsampled all individual samples used in the study to 1× coverage using  samtools36 v1.10.

Genotype calling
We used  bcftools36 v1.10 and  ATLAS37 v0.9.9 to generate genotypes calls and genotype likelihoods at the 1000 
Genomes bi-allelic SNPs, using the human reference genome humanG1Kv37 (https:// www. ncbi. nlm. nih. gov/ 
assem bly/ GCF_ 00000 1405. 13/). The genotype likelihoods (PL field) we generated from the downsampled 
genomes constitute the input data for imputation. We used genotype calls (GT field) from the high-coverage 
genomes to produce the validation datasets.

Bcftools
To generate genotype likelihoods from the downsampled genomes via bcftools, we used the bcftools mpileup 
command with parameters -I, -E, and -a ’FORMAT/DP’ with the –ignore-RG flag enabled, followed by the bcftools 
call command with the -Aim and -C alleles parameters.

Before calling genotypes from the non-UDG treated high-coverage genomes using bcftools, we trimmed 10 
base pairs from each end of the reads using  BamUtil55 v1.0.14 to reduce the impact of PMD. Then, we performed 
five additional quality control parameters:

1) We excluded positions presenting a minimum mapping quality of 30 (-q 30) and a minimum base quality 
of 20 (-Q 20), as well as reduced mapping quality for reads featuring an abundance of mismatches with the 
parameter -C 50.

2) We removed sites not included in the 1000 Genomes accessible genome strict  mask56.
3) We filtered out sites located in regions known to contain repeat  elements57.
4) We eliminated positions exhibiting extreme values of coverage depth. For the lower threshold, positions with 

depth less than one-third of the mean or less than eight (if the one-third mean coverage fell below eight) 
were filtered out. For the upper threshold, positions exceeding twice the mean depth of coverage were also 
excluded.

5) Finally, positions with a QUAL value below 30 (QUAL < 30) were also omitted.

ATLAS
Tailored for aDNA, ATLAS infers PMD patterns and uses that information upon calling variants allowing to 
choose between different variant callers. We opted to use the Maximum-Likelihood (MLE) caller, which works 
similarly to  GATK58, with the difference that the used genotype model accounts for  PMD59. To call the genotypes 
with ATLAS, we followed the standard pipeline for the analysis of individual samples as described in https:// bitbu 
cket. org/ wegma nnlab/ atlas/ wiki/ Home. Firstly, we split single-end reads groups according to length and merge 
paired-end reads if present (splitmerge step). Afterwards, we used BAMdiagnostics in order to determine the 
maximum read length to give as input to splitmerge, estimated the empirical post-mortem damage with PMD, and 
used the MLE caller to generate genotype likelihoods. We applied this process to evaluate genotype likelihoods 
for both downsampled and high-coverage genomes.

Due to ATLAS not listing positions that are not covered by any read, we manually added those missing 
positions. This was a necessary step, because GLIMPSE v1.1.1 does not impute unlisted positions even if they 
are present in the imputation reference panel.

Genotype imputation
To impute the downsampled genomes, we used GLIMPSE v1.1.128 as follows:

1. We used GLIMPSE_chunk to segment chromosomes into chunks ranging between 1–2 Mb in size, with an 
additional buffer region of 200 kb flanking each chunk.

2. We performed imputation on the chunks using GLIMPSE_phase with the default parameters and using the 
1000 Genomes panel as a reference panel.

3. Finally, we used GLIMPSE_ligate to ligate the imputed chunks into complete chromosomes.

Imputation performance evaluation
In order to evaluate the imputation accuracy in both experiments, we used GLIMPSE_concordance from 
GLIMPSE  v260). The evaluation process was restricted to sites that had a minimum of eight reads and a genotype 
posterior probability of at least 0.9999. Using GLIMPSE_concordance, we calculated imputation errors and non-
reference-discordance (NRD). NRD is defined as NRD = (eRR + eRA + eAA)/(eRR + eRA + eAA + mRA + mAA) 
where e and m correspond to the number of errors and matches, respectively, while R and A stand for reference 
and alternative alleles, respectively. This approach is designed to exclude the number of correctly imputed 
homozygous reference allele sites (mRR), which are the majority, therefore emphasizing the significance and 
giving more weight to imputation errors at alternative allele sites. To validate our results, we used the concordant 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://bitbucket.org/wegmannlab/atlas/wiki/Home
https://bitbucket.org/wegmannlab/atlas/wiki/Home
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dataset as validation in the first experiment, and in the second experiment, we used as validation the genotypes 
called with bcftools from the high-coverage non-contaminated Loschbour genome.

Principal component analysis (PCA)
Data preparation
We generated a set of 2.8 M SNPs that we used for PCA. These SNPs are a subset of the bi-allelic SNPs from 
the 1000 Genomes panel. We obtained this set of sites by first removing rare variants (MAF < 5%). Then, we 
retained only sites that are included in the 1000 Genomes accessible genome strict mask, and lastly, we filtered 
out SNPs known to be in repeat regions. This filtering resulted in a set of 2,814,418 SNPs, which we refer to as 
the 2.8 M SNP set.

Afterwards, we identified which positions differed based on whether genotypes were computed with bcftools 
or ATLAS. To do that, we intersected the imputed SNP sets from both tools so we could compare genotypes at 
each position, and check for agreement between the tools. Specifically, from both vcf files, we extracted the GT 
(genotype) columns using bcftools query -f ’[%GT]\n’, we compared each position pairwise, and we determined 
if the imputed genotypes agreed or differed between the two sets with a python script. As for the validation 
samples, we similarly built validation datasets for each individual sample based on the positions concordantly 
identified between the two sets of genotypes called with bcftools and ATLAS on the high-coverage genomes. 
All SNP counts of concordant and discordant positions for both validation and imputed datasets are reported 
in Tables S7 and S8.

Performing PCA
For both PCA analyses, sample files in vcf format were first converted into the  PLINK61 format in order to 
subsequently convert into the required  EIGENSOFT41,42 format for  smartPCA41,42. Principal components were 
calculated using the SGDP reference panel and all samples were projected onto the resulting components with 
the lsqproject parameter enabled. In the first experiment, we restricted the PCA to the 2.8 M SNP set. The 
projected samples included the validation concordant samples, which served as the ground truth, as well as the 
sets of positions differently and concordantly imputed when genotype likelihoods were computed with either 
bcftools and ATLAS. In the second experiment, we restricted the PCA to the 1240 K SNP  set32–34 and projected 
the Loschbour ancient sample, the two present-day Dinka and Greek samples, as well as the contaminated and 
then imputed genomes. We projected the samples onto the SGDP reference panel, but also on a subset restricted 
to only the Western Eurasian populations of SGDP.

Euclidean distance
To quantify the differences between the SNP sets, we calculated an Euclidean distance between them and 
the validation concordant of the respective sample. This distance was calculated across the first 10 PCs, and 
subsequently weighted by factoring the eigenvalue of each PC.

Simulation of ancient genomes
We simulated ancient genomes with varying levels of PMD using  gargammel38. We used as input two fasta files 
containing information of SNPs from a present-day Turkish genome with identifier 06A010111 of the Turkish 
Genome Project  dataset24,39. These fasta files were previously used in the study of Koptekin et al24. We specified 
the composition of the genomes with the parameter -comp 0,0,1 to only include endogenous aDNA and ignore 
bacterial and modern human contamination. For the levels of damage, we specified the parameter -damage 0.024, 
0.36, 0.0097,X, with X being the probability of cytosine deamination. We varied this value in order to have the 
desired PMD level as specified in Table S10. All tested genomes were simulated at 1 × coverage (-c 1), while the 
validation was generated at 30 × coverage (-c 30).

To map the simulated fastq paired-reads file from gargammel, we first removed the adapters and merged the 
paired reads with  AdapterRemoval62 with the parameters –trimns –trimqualities –minlength 30 –collapse. We 
then mapped the reads with  BWA63 using the command bwa aln -l 1024.

Contamination
In order to assess the impact of contamination on imputation, we virtually contaminated an ancient European 
genome known as the Loschbour  man50. Modern human DNA samples (Table S1), one from an African Dinka 
individual and another from a Greek European individual, served as the sources of contaminant DNA. We first 
started by downsampling the Loschbour genome to 1 × coverage with samtools. Then, we computed and removed 
the corresponding proportion of reads from the ancient genome that would equate to the desired contamination 
level. As an illustration, for a contamination level of 10% with modern DNA, we initially removed 10% of the 
reads present in the ancient genome, then, we added an equivalent quantity of reads sourced from either the 
Dinka or Greek contaminant DNA.

Imputation of contaminated genomes
We imputed the ancient genomes with varying amounts of contamination following the above-mentioned 
methodology.

Contamination assessment
We assessed the level of contamination using  contaminationX51. This tool, effective for low-coverage male 
samples, is based on the unique property of the X-chromosome in males (hemizygous), where typically 
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only one DNA sequence type is seen per cell. Any deviation from this, such as observing multiple alleles at 
a given site, indicates possible contamination, post-mortem damage, sequencing or mapping errors. We first 
estimated the allele counts using  ANGSD64 with the following parameters: -b 5,000,000 -c 154,900,000 -k 1 -m 
0.05 -d 3 -e 20, and specified the correct reference allele frequency panel for the sample population with the 
parameter -h HapMap_pop. Then, we estimated the level of contamination with contaminationX, using the 
following parameters: maxsites = 1000 nthr = 4 and oneCns = 1. We only estimated contamination up to 40% 
contamination rate, as beyond this, contaminationX tends to underestimate the actual contamination level as 
previously  described51.

Effect of contamination at the haplotype level
Before inferring local ancestry, we phased the genomes with  SHAPEIT565. We used the command phase_common 
while keeping rare variants (–filter-maf 0) and made use of the version of 1000 Genomes reference panel that we 
used before and the HapMap recombination genetic maps.

We inferred local ancestry with  RFMix66 v2.03-r0 and used subsets of the 1000 Genomes panel as a reference. 
For the imputed Dinka-contaminated 1 × Loschbour genomes, we had three reference populations (YRI, LWK 
and CEU), whereas we restricted to two reference populations (YRI and CEU) when inferring local ancestry 
on two African-American (labeled as ASW) genomes, NA19703 and NA20278, from the 1000 Genomes panel.

Text quality enhancing through the use of specialized AI tools
We used AI tools, specifically ChatGPT, to improve the quality of the text in the introduction section of our 
article.

Data availability
The eight ancient individual samples analyzed in this study are publicly available and were first described in 
the following studies:  ela0148 (https:// doi. org/ 10. 1126/ scien ce. aao62 66); BOT2016 and  Yamnaya45 (https:// doi. 
org/ 10. 1126/ scien ce. aar77 11);  NE144 (https:// doi. org/ 10. 1038/ ncomm s6257);  SZ149 (https:// doi. org/ 10. 1038/ 
s41467- 018- 06024-4);  Sumidouro546 (https:// doi. org/ 10. 1126/ scien ce. aav26 21);  Yana47 (https:// doi. org/ 10. 1038/ 
s41586- 019- 1279-z); and  Loschbour50 (https:// doi. org/ 10. 1038/ natur e13673). The SGDP reference  panel43 dataset 
in plink format can be found in https:// share host. hms. harva rd. edu/ genet ics/ reich_ lab/ sgdp/ varia nt_ set/. We 
downloaded from Seven Bridges Cancer Genomics Cloud the bam files aligned to hg19 reference genome for 
two SGDP genomes, Dinka-3 and Greek-2. The 1000 Genomes v5 phase 3 panel resequenced to 30X coverage 
is available at the European Nucleotide Archive under accession code ERP114329 (https:// www. ebi. ac. uk/ ena/ 
brows er/ view/ PRJEB 31736). The fasta files we used to simulate ancient genomes come from the study of Koptkin 
et al.24 (https:// doi. org/ 10. 1101/ 2023. 11. 11. 566695).

Code availability
The scripts used to generate the data and results presented in our study are provided in this github repository. 
https:// github. com/ TozeM arques/ PMD_ Conta minat ion_ Impact_ on_ aDNA_ Imput ation
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