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Derivation of Dirac equation 
from the stochastic optimal control 
principles of quantum mechanics
Vasil Yordanov 

In this paper, we present a stochastic approach to relativistic quantum mechanics. We formulate 
the three fundamental principles of this theory and derive the Dirac equations based on them. This 
approach enables us to bring more insight into the nature of Dirac’s spinors. Furthermore, we provide 
a physical interpretation of the stochastic optimal control theory of quantum mechanics.

The connection between stochastic optimal control theory and quantum mechanics is profound, with a long 
 history1,2. Its roots can be traced back to the pioneering works of Fürth3,4, Fényes5 and stochastic mechanics 
of  Nelson6, and it is even linked to Feynman’s path integral formulation of quantum  mechanics7,8. Later in the 
1980s,  Yasue9 formulated the variational principle in stochastic mechanics, while Guerra and  Morato10 applied 
stochastic control theory. Despite its rich history, the theory continues to evolve and  expand11–14.

Stochastic optimal control theory of quantum mechanics attempts to give a realistic, objective description of 
physical events in the microphysical world aiming to bridge the gap between classical and quantum interpreta-
tions. Notably, it represents physical observables through stochastic processes instead of self-adjoint  operators15.

Unlike traditional quantum mechanics, which postulates the Schrödinger equation, this theory derives it 
from three underlying principles: 

1. Particles move as Brownian particles in four-dimensional spacetime, influenced by an external random 
spacetime  force6.

2. The stochastic movement of the particle turns its classical action integral into a stochastic variable.
3. Nature tries to minimize the expected value for the action, in which the particle’s velocity is consider to be 

a control parameter of the optimization.

The principles formulated above are not new in this paper. However, attributing them to a single author would 
not be correct, as they have developed over time with contributions from various  scientists9,10,12,16,17.

Building on these fundamental principles, the theory allows us not only to derive the Schrödinger equation 
but also to explain the Born rule and the operator substitution  rule12.

There are a variety of approaches 18 to the derivation of the Dirac equation, but none of them is based on sto-
chastic optimal control theory. Although there have been other investigations that aim to construct a stochastic 
optimization theory for relativistic quantum  mechanics12,19–22, none of them have succeeded in deriving the 
Dirac equation or in explaining the nature of the Dirac spinor. In this paper, we extend the stochastic optimal 
control theory of quantum mechanics to also derive the Dirac  equation23 and to provide new insights into the 
nature of Dirac’s four-component spinor ψ.

where γ µ are 4x4 Dirac matrixes with anticommutation rules: {γ µ, γ ν} = 2gµνI4 , here the I4 is the identity 
four-by-four matrix, and gµν is the metric tensor of spacetime.

We will take advantage of the standard notation for contravariant and covariant tensors, as well as the Einstein 
summation convention.

Stochastic optimal control theory of quantum mechanics
Let us express the previously mentioned fundamental principles of Stochastic Optimal Control Theory of quan-
tum mechanics in mathematical terms.

The stochastic equation of motion of the Brownian  particle24 is:

(1)γ µ(i�∂µ − eAµ)ψ = mcψ ,
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where xµ denote the spacetime coordinates x of the particle, and uµ represents the components of the four-
velocity u . In the context of applying optimal control theory, the velocity uµ is referred to as the Markov control 
policy. The Wµ terms are standard independent Wiener processes, and σµ represent the diffusion coefficients.

Note that in Eq. (2), we consider diffusions not only in three spatial dimensions but also allow the time vari-
able to undergo a diffusion process. This assumption puts the time dimension on equal footing with the spatial 
dimensions and is in line with the principles of special relativity, which combines space and time into a single 
entity of spacetime. The concept of temporal diffusion was introduced  in12,20.

The action is postulated to be the minimum of the expected value of the stochastic action:

where L(x(s), u(s), s) is the Lagrangian of the test particle, which is a function of the control policy u(s) and the 
four-coordinates x(s) at proper time s. Note that s need not be the proper time; it can be any monotonic function 
representing the progress of the world point along the particle’s world line  (see25, Chapter 7.10). The subscript 
xi on the expectation value indicates that the expectation is taken over all stochastic trajectories that start at xi.

The task of optimal control theory, as described by  Bellman26, is to find the control u(s) for the time interval 
τi < s < τf  , often denoted as u(τi → τf ) , that minimizes the expected value of the action S(xi , u(τi → τf )).

We introduce the optimal action for any intermediate proper time τ such that τi < τ < τf :

in stochastic optimal control theory, this function is commonly referred to as the “cost-to-go” function, and the 
use of the symbol “J” as notation for it is a common convention.

By definition, the action S(xi , u(τi → τf )) is equal to the cost-to-go function J(τi , xτi ) at the initial proper 
time and spacetime coordinate:

In following  papers27–30 one can find the derivation of the Hamilton–Jacobi–Bellman (HJB) equation, which is a 
partial differential equation for J(τ , x) with boundary conditions J(τf , x) = 0 . The final result for this equation is:

The optimal control at the current x , τ is given by:

To describe a quantum system, one must start with a given Lagrangian for the system and then solve the Eq. (6).

Covariant relativistic Lagrangians
In Eq. (6), we employ the following Lorentz-invariant Lagrangian for a single particle in an electromagnetic 
field, as detailed  in25.

where q represents the charge of the particle and Aµ denotes the 4-vector potential. The symbol σ̃ indicates 
the sign convention for the metric tensor: it takes the value of +1 for the metric with diagonal elements 
(1,−1,−1,−1) and −1 for the metric (−1, 1, 1, 1) , as elaborated  in31.

The components of the four-velocity of the particle are related to the speed of light by the equation:

This relation, referred to as the “weak equation” by Dirac, allows us to treat uµ as unconstrained quantities until all 
differentiation operations have been carried out, at which point we impose the condition of Eq. (9)  (see25 Chap-
ter 7.10). This will be the approach we employ as we seek to minimize the expected value of the stochastic action.

Derivation of Dirac equation
Let us find the minimum of the expected value of the stochastic action using the Lagrangian (8). Let us substitute 
this Lagrangian in (6):

If we take derivative with respect to uµ we can find the optimal control policy uµ at which the above expression 
has minimum:

(2)dxµ = uµds + σµdWµ, µ = 0..3,

(3)S(xi , u(τi → τf )) = min
u(τi→τf )

〈
∫ τf

τi

dsL(x(s),u(s), s)

〉

xi

,

(4)J(τ , xτ ) = min
u(τ→τf )

〈
∫ τf

τ

dsL(s, xs , us)

〉

xτ

,

(5)S(xi , u(τi → τf )) = J(τi , xτi ).

(6)−∂τ J(τ , x) = min
u

(

L(τ , x, u)+ uµ∂µJ(τ , x)+
1

2
σµσµ∂µµJ(τ , xτ )

)

.

(7)u(x, τ) = argmin
u

(

L(τ , x, u)+ uµ∂µJ(τ , x)
)

.

(8)� = σ̃mc
√

σ̃uµuµ + qAµu
µ,

(9)uµu
µ = σ̃ c2.

(10)−∂τ J(τ , x) = min
u

(

σ̃mc
√

σ̃uµuµ + uµ
(

∂µJ(τ , x)+ qAµ

)

+
1

2
σµσµ∂µµJ(τ , x)

)

.
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If we use the weak condition (9) then we derive:

For short in the rest of this paper we will denote with uµ the optimal control policy and will skip the superscript 
of umin

µ .

We want to linearise Eq. (10) with respect to uµ . For this purpose we will use similar approach that  Dirac23 has 
used to linearise the relativistic energy. The idea of the linearization of the Lagrangian in HJB equation is the 
main idea in this paper and we will see that this idea will lead us to the derivation of Dirac equation. We write:

here, the γ µ are the Dirac  matrices23. Note that since γ µ is a four-by-four matrix, we should assume that the left-
hand side of this equation is multiplied by a four-by-four matrix whose square is the identity matrix.

Since the four-velocity is optimal, we can then remove the minimization function from (10) and use (14) to 
obtain:

here, we have raised the index of the derivative in the last term and assumed summation over µ in this term.
In equation (15), γ µ is a four-by-four matrix. To align the dimensions of each term, we assume multipli-

cation by a four-by-four matrix whose square is the identity matrix. To find the appropriate matrix, we will 
consider the example of a particle at rest with four-velocity (c, 0, 0, 0). In this case, the equation simplifies to: 
−∂τ J(τ , x) = mc2γ 0 −mc2 . It is clear now that we need to multiply the scalar terms by γ 0 . If we use the identi-
ties γ 0γ 0 = I4 , I4I4 = I4 , and multiply both sides of  (15) by γ 0 , then we obtain:

Now we will introduce the following notation:

Let us also denote γ 0
(r) and I(r)4  , where r = 1, 2, 3, 4 , as the rth column of the γ 0 matrix and the identity matrix I4 , 

respectively. It is obvious that γ 0
(r) = ǫrI

(r)
4  for r = 1, 2, 3, 4 . We will consider Eq. (16) as four independent equa-

tions, one corresponding to each column of the matrix.

We should note that if the first term in Eq. (14) was not linearized, then we would have four identical equations 
for r = 1, 2, 3, 4 . Another observation is that we can rewrite ∂µJ(τ , x)I(r)4 = ∂τ (J(τ , x)I

(r)
4 ) = ∂τ J

(r)(τ , x) and 
mcγ µuµI

(r)
4 = mcγ µ(uµI

(r)
4 ) = mcγ µu

µ
(r) . This allows us to treat both J and the uµ as four-component column 

vectors. Then Eq. (18) can be written as:

As Nelson proposed  in6, the variance of the Brownian motion of the particle is equal to the ratio of Planck 
constant to the mass of the particle. That is why we express the square of the diffusion coefficient in (2) to be 
proportional to the �m.

In the original idea proposed by Nelson, the imaginary unit, the factor 2, and the temporal diffusion coefficient 
were missing from the equation above. Later, we will demonstrate that the introduction of the imaginary unit and 
the factor 2 in the equation above is necessary for the linearization of Eq. (15). This serves as another key con-
tribution of the current paper, explaining the existence of the imaginary unit in quantum mechanics equations. 

(11)σ̃ c
2σ̃umin

µ

2

√

σ̃umin
µ u

µ
min

+
1

m

(

∂µJ(τ , x)+ qAµ(τ , x)
)

= 0.

(12)umin
µ +

1

m

(

∂µJ(τ , x)+ qAµ(τ , x)
)

= 0.

(13)uµ = −
1

m

(

∂µJ(τ , x)+ qAµ(τ , x)
)

(14)σ̃mc
√

σ̃uµuµ = mcγ µuµ,

(15)−∂τ J(τ , x) = mcγ µuµ + uµ
(

∂µJ(τ , x)+ qAµ(τ , x)
)

+
1

2
σµσµgµµ∂

µ∂µJ(τ , x),

(16)−∂τ J(τ , x)I4 = mcγ µuµγ
0 + uµI4

(

∂µJ(τ , x)+ qAµ(τ , x)
)

I4 +
1

2
σµσµgµµ∂

µ∂µJ(τ , x)I4.

(17)ǫr =
{

1 if r = 1, 2
−1 if r = 3, 4

.

(18)
−∂τ J(τ , x)I

(r)
4 = ǫrmcγ µuµI

(r)
4 + uµI

(r)
4

(

∂µJ(τ , x)+ qAµ(τ , x)
)

I
(r)
4 +

+
1

2
σµσµgµµ∂

µ∂µJ(τ , x)I
(r)
4 , r = 1, 2, 3, 4

(19)
−∂τ J

(r)(τ , x) = ǫrmcγ µu(r)µ + uµ
(

∂µJ
(r)(τ , x)+ qAµ(τ , x)

)

+

+
1

2
σµσµgµµ∂

µ∂µJ
(r)(τ , x), r = 1, 2, 3, 4.

(20)gµµσ
µσµ = −

2iǫr�

m
, µ = 0..3
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However, it is important to note that the imaginary diffusion coefficient will result in a complex stochastic Eq. (2), 
as we will show in Sect. “Diffusion coefficients of the stochastic motion”.

If we substitute Eqs. (20) and (13) into (19) we obtain:

Expanding the last term of the above equation we obtain:

Let us introduce a new function J̃(τ , x):

If we use this new function in Eq. (13), it will make the equation asymmetric with respect to ǫr . That is why let 
us denote q = ǫre and rewrite Eq. (13) as:

This result is quite interesting because it tells us that the last two equations in the initial set of Eq. (19) with 
r = 3, 4 are for particles with the opposite sign of the charge compared to the first two equations with r = 1, 2.

Substituting Eq. (23) into Eq. (22), and then multipling both sides by m, we obtain:

Using (Hopf-Cole) logarithmic transformation, defined by J̃(τ , x) = log(φ(τ , x)) , we can linearize the HJB 
equation through the following calculation:

Now, it becomes clear that the presence of the imaginary unit in the diffusion coefficient (20) and the imagi-
nary unit in (23) are a consequence of the need to linearize the HJB equation.

The explicit equation for φ(τ , x) is:

later we will discuss what is the physical meaning of this function.
The above substitution transforms the HJB into a linear equation:

Multiplying both sides of Eq. (28) by φ(τ , x) , finally we obtain:

We are going to prove that Eq. (29) is equivalent to:

After expanding the brackets we obtain:

To simplify the above equation we will use the following relations: 

(21)
−∂τ J

(r)(τ , x) = −ǫrmcγ µ 1

m

(

∂µJ
(r)(τ , x)+ qAµ

)

−
iǫr�

m
∂µ∂µJ

(r)(τ , x)−

−
1

m

(

∂µJ (r)(τ , x)+ qAµ
)(

∂µJ
(r)(τ , x)+ qAµ

)

, r = 1, 2, 3, 4.

(22)
−∂τ J

(r)(τ , x) = −ǫrmcγ µ 1

m

(

∂µJ
(r)(τ , x)+ qAµ

)

−
iǫr�

m
∂µ∂µJ

(r)(τ , x)−

−
1

m
∂µJ (r)(τ , x)∂µJ

(r)(τ , x)− 2
1

m
∂µJ (r)(τ , x)qAµ −

1

m
q2AµAµ, r = 1, 2, 3, 4.

(23)J (r)(τ , x) = −iǫr�J̃(τ , x)I
(r)
4 , r = 1, 2, 3, 4.

(24)u(r)µ = −
1

m

(

−iǫr�∂µ J̃(τ , x)+ ǫreAµ(τ , x)
)

I
(r)
4 , r = 1, 2, 3, 4.

(25)
i�m∂τ J̃(τ , x) = mcγ µ

(

i�∂µ J̃(τ , x)− eAµ

)

+
+ �

2
(

∂µ J̃(τ , x)∂µ J̃(τ , x)+ ∂µ∂µ J̃(τ , x)
)

+ 2i�∂µ J̃(τ , x)eAµ − e2AµAµ.

(26)

∂µ J̃(τ , x)∂µ J̃(τ , x)+ ∂µ∂µ J̃(τ , x) =
∂µφ(τ , x)

φ(τ , x)

∂µφ(τ , x)

φ(τ , x)
+ ∂µ

(

∂µφ(τ , x)

φ(τ , x)

)

=
∂µφ(τ , x)

φ(τ , x)

∂µφ(τ , x)

φ(τ , x)

+
∂µ∂µφ(τ , x)

φ(τ , x)
−

∂µφ(τ , x)∂µφ(τ , x)

φ(τ , x)2
=

∂µ∂µφ(τ , x)

φ(τ , x)
.

(27)φ(r)(τ , x) = φ(τ , x)I
(r)
4 = e−

ǫr
i� J(τ ,x)

I
(r)
4 , r = 1, 2, 3, 4.

(28)

i�m
∂τ φ(τ , x)

φ(τ , x)
= mc

(

i�γ µ ∂µφ(τ , x)

φ(τ , x)
− eγ µAµ

)

+ �
2 ∂

µ∂µφ(τ , x)

φ(τ , x)
+ 2eAµi�

∂µφ(τ , x)

φ(τ , x)
− e2AµAµ.

(29)
i�m∂τ φ(τ , x) = mc

(

i�γ µ∂µφ(τ , x)− eγ µAµφ(τ , x)
)

+ �
2∂µ∂µφ(τ , x)+

+ 2eAµi�∂µφ(τ , x)− e2AµAµφ(τ , x).

(30)i�m∂τ φ(τ , x) =
(

i�γ ν∂ν − eγ νAν −mc
)(

−i�γ µ∂µφ(τ , x)+ eγ µAµφ(τ , x)
)

.

(31)
i�m∂τ φ(τ , x) = mc

(

i�γ µ∂µφ(τ , x)− eγ µAµφ(τ , x)
)

+ �
2γ ν∂νγ

µ∂µφ(τ , x)+
+ i�γ ν∂ν

(

eγ µAµφ(τ , x)
)

+ eγ νAν i�γ
µ∂µφ(τ , x)− eγ νAνeγ

µAµφ(τ , x).
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To prove that γ µBµγ
νBν = BµBµ lets sum two times γ µBµγ

νBν and take one half of this sum. Also let 
us use the fact that we can change the name of summation indexes, and the property γ µγ ν + γ νγ µ = gµν : 
γ µBµγ

νBν = 1
2
(γ µBµγ

νBν + γ νBνγ
µ∂µ) = 1

2
(γ µγ ν + γ νγ µ)BµBν = 1

2
2gµνBµBµ = BµBµ.

If we use the Lorenz gauge  condition32 ∂µAµ = 0 , the Eq. (33) will turn into Eq. (29), which proves that both 
Eqs. (29) and (31) are equivalent.

Let us introduce the four-component column vector function:

the factor 1mc is introduced to ensure that ψ(τ , x) has dimensionless units.
If we divide the Eq. (30) by mc, then we obtain the following equation for any r:

It should be noted that the Dirac equation is stationary equation when one set the partial derivative with respect 
to proper time to zero.

Where ψ(x) is the stationary solution that does not depend on the proper time. As it can be seen from (36) that 
ψ(x) is the Dirac spinor, which from (34) becomes:

Note that derivation of Dirac equation presented in this paper does not derive the equation with the negative 
mass −m . Even some recent theoretical attempt to recover the idea of negative  mass33, until now there is no 
experimental evidence of particle with negative mass.

Dirac spinor and the wave function
In the previous section, we expressed the Dirac spinor in Eq. (37) as a function of φ(x) , which is a stationary 
solution of the HJB equation, and its derivative ∂µφ(x).

As any other solution φ(τ , x) of HJB equation, the stationary solution φ(x) should also satisfy the Eq. (27):

The function φ(x) is identical as the wave function in the path integral formulation of quantum mechanics 
proposed by  Feynman34. That is why |φ(x)|2 is the probability density of the system to be in spacetime position 
x . This conclusion aligns with the work of  Papiez16. Note that here we do not give probabilistic physical inter-
pretation of function φ(τ , x) , because this function is object of the stochastic optimal control theory, and it is 
not an object of path integral formulation of quantum mechanics. The connection of both theories is via the 
stationary solution of HJB.

Proper time in Dirac equation
In his paper, Fock employed a representation of the Dirac spinor (see Chapter 37-2, Section II,  in35) that appears 
strikingly similar to the one we have derived in Eq. (37), as per our application in stochastic optimal control.

Fock was looking for a solution for the Dirac equation represented in the form ψ = (i�γ ν∂ν − eγ νAν −mc)� , 
where � is required to satisfy a second-order equation �2�� = 0 . Here � is an operator defined as 
� = 1

�2 (i�γ
ν∂ν − eγ νAν −mc)(i�γ µ∂µ − eγ µAµ −mc) . A solution of the equation for � can be looked for 

in the form of a definite integral, � =
∫

C Fdτ , over the auxiliary variable τ taken between certain fixed limits (or 
along a specific contour in the complex τ-plane). It is obvious that this equation would be satisfied if one imposes 
on F the equation, called by Fock the proper time Dirac equation, �

2

2m�F = i� ∂F
∂τ

 with the choice of contour C 
such that 

∫

C
∂F
∂τ
dτ = F|∂C = 0.

In this paper, we introduce a representation of the Dirac spinor as ψ = − 1
mc (i�γ

ν∂ν − eγ νAν)φ(x) , detailed 
further in Eq. (37). The corresponding second-order equation that φ(x) must satisfy is presented as �2�φ(x) = 0 . 
Here, the operator � is defined by � = 1

�2 (i�γ
ν∂ν − eγ νAν −mc)

(

−i�γ µ∂µ + eγ µAµ

)

 , as elaborated in 
Eq. (30). Similar to Fock’s approach, we consider representing φ(x) in the form 

∫

C φ(τ , x)dτ , with the condition 
that 

∫

C
∂φ(τ ,x)

∂τ
dτ = φ(τ , x)|∂C = 0 . However, within the framework of stochastic optimal control, the parameter 

τ is an invariant parameter used to trace the progress of the system point in configuration space. Consequently, 
such a contour C for integration is not feasible. The feasible approach is to regard φ(x) as a stationary solution 
of the time-dependent second-order differential equation �

2

2m�φ(τ , x) = i�∂τ φ(τ , x) , as outlined in Eq. (29).

(32)γ µ∂µγ
ν∂ν = ∂µ∂µ γ µ∂µγ

νAν = ∂µA
µ γ µAµγ

νAν = AµAµ

(33)
i�m∂τ φ(τ , x) = mc

(

i�γ µ∂µφ(τ , x)− eγ µAµφ(τ , x)
)

+ �
2∂µ∂µφ(τ , x)+

+ i�e(∂µA
µ)φ(τ , x)+ i�eAµ∂µφ(τ , x)+ eAµi�∂µφ(τ , x)− e2AµAµφ(τ , x).

(34)ψ(τ , x) = −
i�

mc
γ µ∂µφ(τ , x)+

e

mc
γ µAµφ(τ , x),

(35)
i�

c
∂τφ(τ , x) =

(

i�γ ν∂ν − eγ νAν −mc
)

ψ(τ , x).

(36)
(

i�γ ν∂ν − eγ νAν −mc
)

ψ(x) = 0

(37)ψ(x) = −
1

mc
i�γ µ∂µφ(x)+

1

mc
eγ µAµφ(x).

(38)φ(r)(x) = φ(x)I
(r)
4 = e−

ǫr
i� J(x)

I
(r)
4 , r = 1, 2, 3, 4.
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Even though we cannot directly apply Fock’s technique to the stochastic optimal control case, we can still 
identify Eq. (33) or the equivalent Eq. (29) as the proper time Dirac equation. This is because, by definition, the 
variable τ in these equations represents the proper time.

Physical interpretation of the stationary solution of HJB equation
To accurately interpret the stationary solution of the Hamilton–Jacobi–Bellman (HJB) equation and the asso-
ciated proper time Dirac equation as derived in Eq. (29), a detailed analysis of this equation is essential. One 
important observation is that we need to solve the HJB equation reverse in time. This means that, given the 
boundary condition at the future time moment τf  and spacetime coordinate xτf  , we aim to find the solution 
of this equation for an earlier time moment τ and coordinate xτ . This time-reversal approach is typical for the 
dynamic  programming26, as incorporated in the derivation of the HJB equation.

It is required that xτ be a four-vector of real numbers. However, there is no requirement for the four-coordi-
nates corresponding to times greater than τ to be real numbers, see the discussion  in16; they can be a four-vector 
of complex numbers. This implies that no matter what the complex four-coordinates and four-velocities of the 
particle are at the time moments greater than τ when it moves backward in time, it should arrive at the initial 
time τ with the real four-coordinate xτ.

As far as τf  being any arbitrary final moment in time, we can choose τf  to be sufficiently large so that when 
the particles propagate backward in time, their motion becomes stationary and ceases to depend on time.

In all physical theories, the aim is to identify an equation that describes how a system evolves over time. 
Essentially, this means determining the state of the system at successive time moments based on its state at 
previous moments. The stochastic optimal control theory of quantum mechanics also allows for this traditional 
approach, as demonstrated in this paper through the derivation of the Dirac equation. However, the theory also 
offers an alternative approach. To determine the wave function for every spacetime coordinate xτ , we must choose 
some future proper time τf  . We then backtrack all possible complex stochastic trajectories of the particle to the 
present time τ and real four-coordinates xτ , aiming to find the optimal trajectories that minimize the expected 
value of the action. It appears that the current state of the system is determined by all possible optimal future 
trajectories of the particle.

Plane wave solutions of the Dirac equation
Let us consider a particle with mass m that moves with velocity uµ in free space, where Aµ = 0.

If we multiply both sides of Eq. (13) by m, we find that the particle momentum is given by pµ = −∂µJ(x) . 
A solution to this equation is J(x) = −p · x . Substituting J(x) into Eq. (38), we obtain the equation for a 
plane wave, which describes the particle: φ(r)(x) = e−

iǫr
�
p·x

I
(r)
4 , r = 1, 2, 3, 4 . We can calculate the derivative 

∂µφ
(r)(x) = ǫr

i�pµe
− iǫr

�
(p·x)

I
(r)
4 , r = 1, 2, 3, 4 and then substitute this result into Eq. (37).

Now we will prove that ψ (r)(x), r = 1, 2, 3, 4 , satisfies the Dirac Eq. (36).

The last equation equals zero due to Eqs. (9) and (14). This demonstrates that ψ (r)(x) from Eq. (39) are indeed 
solutions of the Dirac Eq. (36).

Diffusion coefficients of the stochastic motion
In Sect. “Derivation of Dirac equation”, we derived the Dirac equation by linearizing the stochastic HJB equa-
tions, necessitating the use of complex diffusion coefficients (refer to Eq. (20)). The works of  Papiez16,20 and 
Lindgren et al.12 also employ optimal control theory in conjunction with complex diffusion coefficients. In 
contrast, earlier variational approaches to deriving stochastic  mechanics17,36,37 do not rely on complex numbers 
but utilize two control parameters: the forward ( b+ = vρ + uρ ) and backward ( b− = vρ − uρ ) velocities in the 
variational procedures.

In their work on Complex  Mechanics38, Yang et al. prove that the current velocity vρ and the osmotic veloc-
ity uρ , as defined in stochastic mechanics of Nelson, are equivalent to the real part and negative imaginary part, 
respectively, of the complex velocity evaluated on the real axis. Thus, one can consider the complex diffusion 
coefficient and related complex stochastic equations of motion as a theoretical construct to simplify the deriva-
tion of quantum mechanics equations from stochastic optimal control theory, or it can be viewed as an intrinsic 
aspect of reality, subject to interpretation.

It should be noted that, in contrast to non-relativistic Complex Mechanics as discussed in Yang et al.38 and 
other works utilizing a complex diffusion coefficient ν = −i�/m3,7,12,16, in the relativistic case the diffusion 
coefficient is two times larger, ν = −2iǫr�/m (see Eq. (20)). This increase is a consequence of the linearization 
performed on the kinetic term of the Lagrangian (see Eq. (14)). Note also that the sign of complex diffusion 
coefficient is opposite for the equations r = 1, 2 and r = 3, 4 that describes particles with opposite changes as 
per Eq. (24).

If we take the square root of both sides of Eq. (20), we obtain the following equation for the diffusion 
coefficient:

(39)ψ (r)(x) = −
ǫr

mc
γ µpµe

− iǫr
�
(p·x)

I
(r)
4 , r = 1, 2, 3, 4

(40)−(i�γ µ∂µ −mc)
ǫr

mc
γ µpµe

− iǫr
�
(p·x)

I
(r)
4 = (γ µpµ − ǫrmc)e−

iǫr
�
(p·x)ǫrI

(r)
4 = 0
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If we use the identity 
√
±i = 1√

2
(1± i) , we finally obtain:

If we rewrite the equation of stochastic motion (2) using Eq. (42) we obtain:

The presence of complex diffusion coefficients and complex four-velocity in the stochastic equation of motion (2) 
necessitates that the particle’s four-coordinates also be complex-valued. Taking the real and imaginary parts of 
the four-coordinates allows us to formulate the equations of stochastic motion (2) for both real and imaginary 
spacetime coordinates.

The coordinates of the test particles, both the real and imaginary parts, can be treated separately as coordinates 
in Minkowski spacetime in the same way as it is done  in38.

Conclusion
The present work derives the Dirac equation from the stochastic optimal control theory and provides representa-
tion of Dirac spinor using the solution of Hamilton–Jacobi–Bellman (HJB) equation.

We proposed a linearization of the Lagrangian in the HJB equation, which yields four independent equations. 
The last two of which are for particles with opposite charges.

It has been demonstrated that in the case of relativistic theory, the complex diffusion coefficient is twice as 
large as in the non-relativistic theory, with an opposite sign for the oppositely charged particle.

We also proposed a physical interpretation of the proper time Dirac equation in terms of stochastic optimal 
control theory that leads to the observation that the current state of the system is determined by all possible 
optimal future trajectories of the particle.

Even though the stochastic mechanics has some  difficulties39 in explaining the locality (see Chapter 23  in15) 
and entanglement (see Chapter 10  in40) the present paper makes one step further of explaining other feature of 
the theory that was not revealed until now.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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