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Single shot detection of alterations 
across multiple ionic currents 
from assimilation of cell membrane 
dynamics
Paul G. Morris 1,2,4, Joseph D. Taylor 1,4, Julian F. R. Paton 3 & Alain Nogaret 1*

The dysfunction of ion channels is a causative factor in a variety of neurological diseases, thereby 
defining the implicated channels as key drug targets. The detection of functional changes in multiple 
specific ionic currents currently presents a challenge, particularly when the neurological causes are 
either a priori unknown, or are unexpected. Traditional patch clamp electrophysiology is a powerful 
tool in this regard but is low throughput. Here, we introduce a single-shot method for detecting 
alterations amongst a range of ion channel types from subtle changes in membrane voltage in 
response to a short chaotically driven current clamp protocol. We used data assimilation to estimate 
the parameters of individual ion channels and from these we reconstructed ionic currents which 
exhibit significantly lower error than the parameter estimates. Such reconstructed currents thereby 
become sensitive predictors of functional alterations in biological ion channels. The technique 
correctly predicted which ionic current was altered, and by approximately how much, following 
pharmacological blockade of BK, SK, A-type  K+ and HCN channels in hippocampal CA1 neurons. 
We anticipate this assay technique could aid in the detection of functional changes in specific ionic 
currents during drug screening, as well as in research targeting ion channel dysfunction.

The complement of ion channels in a cell membrane underpins key aspects of neuronal function such as the 
shape of action  potentials1, adaptive versus non-adaptive firing  response2, integration of synaptic  inputs3,4 and 
some forms of short or long-term  memory5. Dysfunction of a single channel type can substantially alter cellular 
behaviour: for example, channelopathies, in which certain ion channels are either absent or exhibit abnormal 
conductances, are known to be the causative factor in forms of  epilepsy6,7, pain  disorders8, cystic  fibrosis9, and 
cardiac  arrhythmias10. Channelopathies also form part of a more complex pathophysiology in Parkinson’s11,12 and 
Alzheimer’s13 diseases, Rett  syndrome14, and  autism15. Such outcomes drive the development of efficient methods 
for detecting ion channel dysfunction. In relation to disease, channelopathies may arise from changes in ion 
channel density, expression, gene mutations, and loss of function, such as in autoimmune  disease16,17. Mutational 
channelopathies are identified in research by high throughput sequencing, or patch-sequencing which aims to 
correlate morphological and electrical alterations to underlying gene  mutations18. These sequencing approaches 
face challenges in identifying disease-linked mutations, particularly in autoimmune diseases where channel func-
tion may be altered by factors beyond the mutations themselves. Patch-clamp electrophysiology is the primary 
technique used for profiling ion channels in vitro, both in research studies investigating ion channel dysfunction 
in disease models, and in screening candidate drugs targeting ion channels. However, in both scenarios this 
approach is low throughput and labor-intensive19, particularly if neurological causes are a priori unknown or 
involve multiple ionic currents. A single shot method is therefore highly desirable which can reconstruct ionic 
currents from multiple channel types from the effects they induce in the electrical response of a neuron. This 
would have the benefit of removing guess work by inferring changes across all ion channels simultaneously and 
by mapping the range of genes encoding altered subunits to the exclusion of all others whose effects are unknown.

In this work, we demonstrate a powerful method based on statistical data assimilation (DA) that extracts 
information on multiple ionic currents simultaneously from chaotically driven current-clamp recordings. The 
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method synchronizes a Hodgkin–Huxley-like  model20 to the membrane voltage oscillations of a hippocampal 
neuron to estimate ion channel  parameters21–24 such as maximal  conductances25, voltage thresholds, slopes of 
activation curves, and recovery time constants that constitute the fingerprints of individual ion  channels26–28. The 
predictive power of our approach is based on the observation that ionic currents reconstructed from estimated 
parameters carry an uncertainty three times lower than the parameters themselves. We subsequently use the 
ionic charge transferred per action potential as a reliable metric to predict ion channel alterations induced by 
channel antagonists. We find that changes in predicted ionic charge match the selectivity and potency of well-
characterized inhibitory compounds applied to block BK, SK, A-type  K+, and HCN channels. This approach is 
to our knowledge unique in inferring actual changes across a range of ion channel types from subtle changes 
in membrane voltage dynamics. The method can be applied to primary tissue, including animal models of dis-
ease, rather than being limited to cell cultures. The statistical readouts indicate any changes across the range of 
ionic currents simultaneously in the cell of interest in response to a drug or treatment. This method may prove 
beneficial in early drug screening, and in research studies aiming to detect functional changes amongst a wide 
range of ionic currents.

Results
Statistical data assimilation of pharmacologically altered neurons
The statistical DA workflow is schematically depicted in Fig. 1. The membrane voltage of a hippocampal CA1 
neuron is recorded whilst being driven by a chaotic sequence of current waveforms designed to elicit hyperpo-
larizing and depolarizing responses across many time scales and amplitudes (Fig. 1a). For each experiment the 
current-clamp protocol was applied twice: first in the natural state and a second time after applying an antagonist 
to block a specific ion channel (Fig. S1). We then synchronized the neuron model to electrophysiological record-
ings using interior point  optimization29, a constrained nonlinear optimization framework. The neuron model was 
a single compartment Hodgkin–Huxley-type system incorporating the 8 ion channels most prevalent in the CA1 
soma (Table S1). Each modelled ion channel represents an amalgam of the possible subtypes of that channel: for 
example, the ‘SK’ channel represents the gating and response dynamics of both SK1 and SK2 subunits. Interior 
point optimization inferred the 67 parameters that best synchronize the model to electrophysiological data over 
an 800 ms long assimilation window (Table S2). One set of 67 parameters was obtained from pre-drug data (ppre) 
and another from post-drug data (ppost). Preliminary assimilations of model-generated data successfully recovered 
the 67 parameters of the original model to within 0.2% and with a 100% convergence  rate21,30. Convergence was 

Figure 1.  Estimation of ion current alterations from current clamp recordings. (a) Membrane voltage of a 
(hippocampal) neuron recorded before and after a pharmacological inhibitor is applied to partially block a 
specific ion channel (black traces). The same current protocol (brown trace) is applied to elicit pre-drug and 
post-drug oscillations. (b) Data assimilation (IPOPT) was used to synchronize a nine-ion channel Hodgkin–
Huxley model to the data over a 800 ms long time window and obtain one set of pre-drug parameters {p*

Pre} 
and one set of post-drug parameters {p*

Post}. Each set has K = 67 parameters. This approach was repeated over R 
assimilation windows offset by 80 ms to generate a statistical sample of parameter sets {p*

Pre}1,…,R and {p*
Post}1,…,R 

where R = 15–19 depending on the antagonist applied. (c–e) The Hodgkin–Huxley model configured with each 
set of estimated parameters was used to predict the ionic current waveforms and membrane voltage oscillations 
through forward integration of the current protocol with an adaptive step-size fifth order Runge–Kutta method 
(RK5). (c, d) The degree of channel block was predicted by calculating the amount of ionic charge transferred 
per action potential, QPre−drug and QPost−drug , for all nine ion channels of the model. Predictions were validated 
by comparing the median and mean reductions in charge transfer to the known selectivity and potency of the 
antagonist. (e) Predictions were also validated by comparing the predicted membrane voltage to the measured 
one.
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achieved irrespective of starting conditions and the positioning of the assimilation windows in a 2000 ms long 
epoch. This indicates that the  observability31 and identifiability  criteria32 which are necessary to reconstruct the 
model’s state variables and parameters from measurements, are fulfilled. In contrast, the problem of assimilating 
biological neuron data is complicated by our lack of knowledge of the exact model. Model error introduces cor-
relations between some parameter estimates. As a result, parameter search tends to converge towards multiple 
solutions depending on the choice of starting conditions. In order to mitigate the uncertainty on parameters, we 
generated a statistical sample of parameters ppre,1… ppre,R and ppost,1… ppost,R (Fig. 1b) by assimilating R windows 
offset by 80 ms from each other (Figs. 1a). We then completed 2R conductance models by inserting the pre-drug 
and post-drug parameters in the model equations. The ionic current waveforms (Fig. 1c,d) and membrane volt-
age oscillations (Fig. 1e) were predicted by forward-integrating the stimulating protocol (Fig. 1a) with pre-drug 
and post-drug completed models. We then numerically integrated the current waveform of each ion channel, to 
obtain the ionic charge transferred per action potential, pre-drug and post-drug. We repeated this process for 
the R assimilation windows to generate a statistical distribution of the ionic charge transferred (Fig. 1c). All R 
current waveforms were calculated at the site of one action potential chosen for being in the short time interval 
overlapped by all assimilation windows. The statistical distributions of ionic charges were plotted (Fig. 1c) and 
analyzed (Mann–Whitney) to estimate the median and mean predicted inhibition for each channel. To ensure 
that our predictions are not affected by the firing frequency of neurons, which we found to be particularly sen-
sitive to potassium channel inhibition, we calculated the charge transfer at the site of a single action potential 
instead of over the entire assimilation window. Ionic current waveforms were reconstructed and analyzed in 
parallel allowing all current alterations to be predicted in one shot (Fig. 1d). Forward integration of the model 
also generated the predicted membrane voltage time series (Fig. 1e). The agreement between the experimentally 
observed and the predicted voltage provides an intermediate validation point of our method.

Accuracy of current and parameter predictions
The main challenge to inferring biologically relevant information from actual neurons as opposed to model 
data is to minimize the error introduced in the parameter field by model error and, to a lesser extent, measure-
ment  error32–34. In order to quantify the impact of model or data error, we calculated 100 sets of parameters 
by assimilating model data corrupted by 100 different realizations of white noise (Fig. 2). The parameters that 
deviate significantly from their true values (Fig. 2a) are few and mainly associated with gate recovery times 
( t  , ǫ ) (Table S2). In order to clarify the nature of parameter correlations, we calculated the 67 × 67 covariance 
matrix of this dataset (Fig. 2b). We find that the covariance matrix exhibits a block structure whereby the cor-
relations between parameters pertaining to the same ionic current are greater than those pertaining to different 
ionic currents. These findings suggest that the greater parameter correlations might compensate each other in 
the calculation of ionic currents. This underpins our key hypothesis that ionic currents might be calculated 
with a higher degree of confidence than their underlying parameters. A calculation of standard deviations of 
ionic currents and parameters over a range of noise levels (Fig. 2c) validates this hypothesis by predicting a 
three times lower uncertainty on ionic currents. This finding allows us to focus on ionic current as a metric of 
ion channel alterations, and to validate the magnitude of alterations against the effect of antagonists of known 
selectivity and potency. Figure 2d plots the eigenvalues of the covariance matrix which measure the lengths of 
semi-axes of the data misfit ellipsoid. There are six outliers at the left which point to six principal directions 
along which parameters are very loosely constrained with �p

p ≈ 100% . Along the 61 other principal directions 
�p
p  varies between 7 and 0.001% confirming that most parameter estimates are well constrained as observed in 

Fig. 2a. We now use these findings to predict the selectivity and potency of four ion channel antagonists applied 
to rodent hippocampal neurons.

Predicting the alterations of ion channels induced by four antagonists in hippocampal neurons
BK channel blockade
The analysis of neurons subjected to BK channel blocker iberiotoxin (IbTX; 100 nM; Fig. 3; R = 15 pre-drug and 
post-drug) predicted a 12.1% reduction in median and 14.8% reduction in mean BK-mediated charge per action 
potential. This was one statistical discovery across all channels in the drug-applied data (Fig. 3a; U = 25; q < 0.01; 
mean ranks 21.2 [pre-IbTX], 9.8 [post-IbTX]). Charge transfer decreased from 29.4 nC  cm−2 to 25.9 nC.cm-2. 
A compensatory increase in leak current was also identified, likely due to decreased  K+ permeability caused by 
IbTX (U = 37.5; q < 0.01; mean rank 10.5 [pre IbTX], 20.5 [post-IbTX]). Leak charge transfer increased from 
6.3 to 10.3 nC  cm−2, with a mean increase of 46%. There were no statistical discoveries for any other channels. 
This demonstrates that models constructed by DA correctly predict the selectivity of IbTX. Figure 3b predicts 
the reduction in charge transfer through the BK channel targeted by IbTX. Identically driven action potentials 
measured pre-IbTX and post-IbTX (Fig. 3c) are compared to the action potentials predicted from our pre-IbTX 
and post-IbTX models (Fig. 3d). The model correctly predicts the reduction in afterhyperpolarization (fAHP) 
observed post-IbTX. BK current waveforms were also predicted by forward-integration of the pre-IbTX and 
post-IbTX conductance models (Fig. 3e). The area under both waveforms yielded the drop in BK-mediated 
charge transfer plotted in Fig. 3b.

SK channel blockade
Following application of the SK-specific channel blocker apamin (150 nM; Fig. 4; R = 18 pre-drug and post-drug), 
our model predicted lower SK-mediated charge transfer (Fig. 4a; U = 65; q < 0.01; mean rank 23.9 [pre-apamin], 
13.1 [post-apamin]). Median charge transfer dropped from 1.66 nC  cm−2 to 0, with a mean reduction of 74.0%. 
This was the sole statistical discovery across all channels in the spike-normalized data. Our model thus correctly 
predicts that apamin is an antagonist of the SK channel. Figure 4b shows the predicted potency of apamin by 
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plotting the reduction in SK-mediated charge transfer from the pre-apamin state to the post-apamin state. The 
identically driven action potentials measured pre-apamin and post-apamin (Fig. 4c) are compared to the action 
potentials predicted by our conductance models (Fig. 4d). The models correctly predict the reduction in medium 
afterhyperpolarization (mAHP) observed post-apamin in the tail end of the action potential. Forward-integration 
of the models also predicted the SK current waveforms at the site of an action potential pre- and post-apamin 
(Fig. 4e). These waveforms were integrated in time to obtain the predicted amounts of SK-mediated charge 
transfer which were then plotted in Fig. 4b.

Kv channel blockade
Following application of 4-Aminopyridine (4-AP) to block the voltage-gated potassium channels (300 µM; Fig. 5; 
R = 19 pre-drug; R = 18 post-drug), our completed models predicted a reduction in charge transfer mediated by 
A-type  K+ channels (Fig. 5a; U = 52; q < 0.001; mean rank 25.3 [pre 4-AP], 12.4 [post 4-AP]). Median charge 
transfer dropped from 26.1 to 19.7 nC.cm−2 with a 19.0% mean reduction. In addition, the model predicts a 
10.0% increase in median charge transfer (8.8% mean) through the BK-channel (U = 73; q < 0.01; median charge 
41.2 nC  cm−2 [pre 4-AP], 45.3 nC  cm−2 [post 4-AP]); and a reduction in  Ca2+-mediated charge transfer (U = 79; 
q < 0.01; mean rank 23.8 [pre 4-AP], 13.9 [post 4-AP]).  Ca2+-mediated charge dropped from 9.65 to 9.23 nC  cm−2 
with a mean reduction of 3.0% mean. Figure 5b predicts the reduction in charge transfer through the A-type  K+ 
channels targeted by 4-AP. Action potentials measured pre 4-AP and post 4-AP (Fig. 5c) match the action poten-
tials predicted by our pre 4-AP and post 4-AP models (Fig. 5d). The model correctly predicts the widening of 
action potentials induced by 4-AP which follows from a slower AHP repolarization. Figure 5e plots the predicted 
A-type  K+ current waveforms elicited within the same action potential. The predicted current amplitude drops 

Figure 2.  Comparing the uncertainty on estimated ionic currents and parameter. (a) Deviations of parameter 
estimates from their true values ( p∗k ), k = 1 . . . 67 , when Gaussian noise is added to the membrane voltage. 
Parameter deviations �pk,r =

(

pk,r − p∗k
)

 were computed from a statistical sample of R = 100 assimilations of 
the same 800 ms window with 100 different realizations of added noise (0.25 mV r.m.s.) (red dots). The greater 
the dispersion, the greater the parameter sensitivity to data (and model) error. (b) Covariance matrix of 
parameter deviations: σkk′ =

1
R−1

∑

r=1

(

�pk,r
p∗k

)(

�pk′ ,r
p∗
k′

)

 . Correlations occur within blocks of parameters 
pertaining to the same ionic current. In contrast, correlations between the parameters of different ionic currents 
are weaker. (c) Comparison of the standard deviations of predicted ionic currents and of their underlying 
parameters. The parameter standard deviation (red dot) is an average of the relative standard deviations of the 
67 parameters each calculated over the statistical sample of 100 noise realizations. The current standard 
deviation (black dot) was calculated by integrating the 100 sodium current waveforms over the assimilation 
window and computing the relative standard deviation of the integral charge. The uncertainty on ionic currents is 
three times smaller than on parameters. (d) Spectrum of eigenvalues of the covariance matrix. The 6 outliers 
determine the 6 directions of parameter correlations in parameter space.
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sharply in response to 4-AP. The  K+ charge amounts transferred per action potential are obtained by integrating 
the pre 4-AP and post 4-AP current waveforms and plotted in Fig. 5b.

HCN channel blockade
We finally applied the ZD7288 antagonist to block the HCN channels (50 μM, Fig. 6; R = 19 pre-drug and post-
drug). Our completed models predict a reduction in HCN-mediated charge transferred across the full length of 
the assimilation window (Fig. 6a; U = 81; q < 0.01; mean rank 24.7 [pre-ZD7288], 10.5 [post-ZD7288]). Median 
charge transfer was reduced from 1.618 µC  cm−2 [pre-ZD7288] to 0.0 with a mean reduction of 85.5%. In addi-
tion, our model predicts an increase in leak current (U = 77; q < 0.01; mean rank 14.1 [pre-ZD7288], 25.0 [post-
ZD7288]), with median charge transfer increasing from 3.20 to 4.19 µC  cm−2 a mean increase of 25.1%. These 
numbers represent the HCN charge amounts transferred across one 800 ms long assimilation window rather than 
per action potential as above. This is because the HCN current contributes to subthreshold oscillations unlike 
the SK, BK and A-type currents which contributes to action potentials. Figure 6b predicts the total blockage of 
the HCN channel targeted by ZD7288. The membrane voltage response to a hyperpolarizing current step applied 
before and after ZD7288 (Fig. 6c) is compared to the responses predicted by the pre-ZD7288 and post-ZD7288 
models to the same current step (Fig. 6d). The model correctly predicts the faster adaptation and the reduced 
amplitude of the membrane voltage change post-ZD7288.

Figure 3.  Single-shot prediction of ionic current block by Iberiotoxin (IbTX). (a) Predicted ionic charge 
transferred per action potential, per ion channel, across the complement of ion channels of a CA1 neuron. 
The green dots are the charge predictions computed from R = 15 assimilation windows of pre-drug neuron 
recordings. The blue dots are the charge predictions computed similarly from the same neuron after 100 nM 
IbTX was applied. Horizontal bars show median charge values. Asterisks (***) indicate multiplicity adjusted q 
values from multiple Mann–Whitney U tests using a False Discovery Rate approach of 1%. (b) Predicted change 
in BK charge transfer showing the effect of IbTX as the nominal BK antagonist. (c) Effect of IbTX measured in 
one action potential. Inhibition of the BK channels reduces afterhyperpolarization (fAHP). (d) Effect of IbTX 
predicted for the same action potential. Each voltage trace is the average of 15 waveforms computed from 15 
assimilations windows. (e) Predicted BK current waveforms and their alteration by IbTX. Each waveform is the 
average of 15 BK current waveforms reconstructed from 15 assimilation windows.
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In order to validate the results of data assimilation, we now compare the predicted changes in ionic charge 
transfer to the selectivity and potency of each ion channel antagonist determined by IC50 analysis. The results 
are summarized in Table 1. The predicted reductions in charge transfer are in good agreement with degree of 
inhibition expected in SK, BK, A-type and HCN. We further discuss below the inhibition of sub-types of the SK, 
BK, A, and HCN channels. Besides correctly identifying the selectivity of known antagonists, DA is sensitive 
enough to pick up correlations between ion channels driven by the modulation of reversal  potentials35 (Fig. 6a) or 
compensation  mechanisms36 (Fig. 5a). We also determined the degree of confidence in our predictions by com-
puting the coefficient of variation (Table 1). The results consistently show a ± 11% uncertainty on charge estimates.

Discussion
This proof-of-concept study demonstrates that the DA approach we present can concurrently infer functional 
alterations across a range of ionic currents. Single hippocampal CA1 neurons in acute brain slices were char-
acterized by driving them with a chaotic current clamp protocol designed to extract the maximum of informa-
tion for parameter identifiability, and with fast synaptic neurotransmission blocked. The ionic currents were 
reconstructed with a high degree of confidence from the model parameters estimated by DA. This technique is 
potentially applicable to assaying multiple ionic currents during functional drug screening, or research stud-
ies targeting neurological disease. We now discuss the two factors limiting its predictive accuracy. The first is 
parameter estimation in the presence of model error. The second is the variation in subunits making up each ion 
channel, when we are limited to modelling channels using an aggregate contribution of all subunits.

Figures 3a, 4a, 5a and 6a demonstrate the ability of the method to disentangle the contributions of 8 differ-
ent ionic channels from the membrane voltage time series and to assign drug induced changes to the correct 

Figure 4.  Single shot prediction of ionic current block by apamin. (a) Predicted ionic charge transferred per 
action potential, per ion channel, of a CA1 neuron. The green dots are the ionic charges predicted from R = 18 
assimilation windows of pre-drug recordings. The blue dots are the predictions computed similarly after 150 nM 
apamin was applied to the neuron. Horizontal bars are the median charge values. Asterisks (***) represent 
multiplicity adjusted q values from multiple Mann–Whitney U tests. (b) Predicted change in SK charge transfer 
showing the effect of apamin as the nominal SK antagonist. (c) Effect of apamin on one action potential. Inset: 
same for multiple action potentials. (d) Effect of apamin predicted for the same action potential. (e) Predicted 
SK current waveforms and their alteration by apamin.
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Figure 5.  Single shot prediction of ionic current block by 4-Aminopyridine (4-AP). (a) Predicted ionic charge 
transferred per action potential, per ion channel of a CA1 neuron. The green dots show the charge predicted 
from R = 19 assimilation windows of pre-drug recordings. The blue dots show the same after 300 µM 4-AP 
after was applied to the neuron. (b) Predicted change in A-type charge transfer showing the effect of 4-APP as 
the nominal A-type antagonist. (c) Effect of 4-AP on one action potential. Inset: 4-AP increases the speed of 
adaptation of the neuron to stimulation following removal of the A-current-mediated delay. (d) Effect of 4-AP 
predicted for the same action potential. (e) Predicted A-type current waveforms and their alteration by 4-AP.

Figure 6.  Single shot prediction of the ionic current block by ZD7288. (a) Predicted ionic charge transferred 
per ion channel over an entire 800 ms long assimilation window for a CA1 neuron. The green dots are the 
charge predicted from R = 19 assimilations of pre-drug recordings. The blue dots are the charge predictions 
computed similarly after 50 µM ZD7288 was applied. (b) Predicted change in HCN-type charge transfer 
showing the effect of ZD7288 as the nominal HCN antagonist. (c) Effect of ZD7288 observed during a 
hyperpolarizing current step activating the HCN channel. (d) Effect of the ZD7288 antagonist predicted in 
response to the same hyperpolarizing step.
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ion channel being blocked. This identification relies on the uniqueness of the mathematical equations of each 
ionic current in the model (Table S1), and notably the correct ion channel type can still be identified even when 
we know that model equations only approximate biological reality. There are, however, reasons to believe that 
model error is merely residual because the completed models make excellent predictions of the membrane volt-
age pre-drug and post-drug (Figs. 1e, 3d, 4d, 5d, 6d) and because DA assigns stable, sensible values to a majority 
of parameters. In order to evaluate the effect of model error on current estimates, we deliberately introduced 
an erroneous gate exponent in the sodium current (NaT), changing the gate exponent m3h–m2h . We find that 
the current waveforms estimated with the wrong model deviate only by a few percent from their true shape. We 
also find any drop in sodium current (NaT) induced by model error is compensated by a drop in potassium (A) 
current. This indicates that a slightly wrong model still retains its ability to discriminate ion channel types as 
observed in Figs. 3a, 4a, 5a, 6a. This robustness to model error is important as it allows for the construction of 
larger, more inclusive models that do not rely on prior assumptions about which ion channel to include, making 
them applicable to a wide range of biological neurons. As the model size grows, simulations on model data ought 
to verify the stimulation protocol still satisfies identifiability  criteria31,32 as a prerequisite. Multicompartment 
models may also be  used22 however single compartment models have by and large been sufficiently detailed to 
accurately predict voltages and  currents22–28. The computational efficiency of single-compartment models is a 
significant advantage, particularly when processing large datasets. Moreover, single-compartment models are 
critical in conserving the observability of the neuron state and robustness against overfitting; they focus on 
capturing essential dynamics pertinent to the treatment response. We assume that while the electrophysiologi-
cal data also include features such as transmission line delays, and the effects of spatial parameters and sensing 
domains, it is reasonable to consider these invariant to drug application, thus not influencing the predicted charge 
alterations in Figs. 3a, 4a, 5a, 6a. Absolute physiological realism of the model is not necessary, as we focus on the 
ability to detect alterations in reconstructed currents in response to a treatment, rather than absolute accuracy in 
the modelled ion channel responses. This approach provides the benefit of increasing DA speed and increasing 
the success rate of assimilations.

We now discuss the predicted channel block in relation to the subunit variation within each ion channel.

Prediction of BK channel alterations
Our inference method correctly identifies a reduction in the BK-mediated current in response to application of 
IbTX which was the statistical discovery validated by the false discovery rate criterion (q < 1%) among all 7 ion 
channels analyzed (Figs. 3a,b). DA thus identifies correctly the effect of IbTX, a highly selective inhibitor of BK 
 channels37,38. BK channels have a very high unitary  conductance39,40, and contribute to both the repolarization 
of the action potential and to fast afterhyperpolarization  (fIAHP), as seen in Fig. 3c. The contribution of the BK 
channel to both repolarization and  fIAHP were correctly predicted by the model, in addition to the reduction in 
overall BK current induced by IbTX (Fig. 3d). This is validation that DA transfers biological relevant informa-
tion to the complete model.

Results predicted a 12.1% median reduction in the BK current (Table 1). The response of BK channels to 
IbTX is heavily modulated by the presence of up to four auxiliary subunits (β1-β4)38,41,42. Generally, β1 and β3 
do not appear to be expressed in the brain. β2 is highly expressed in astrocytes, and β4 is expressed in neurons. 
It has been suggested that a full complement of four β subunits (1:1 stoichiometry) may be required to confer 
full IbTX  resistance43: channels with less than four β subunits would exhibit toxin sensitivity similar to channels 

Table 1.  Validation of the predicted current alterations against the known potency of antagonists. The median 
and mean degrees of inhibition predicted using data assimilation are compared to the known potency of the 
antagonist at the same concentration as in our experiments. (+)/(++)/(+++) indicates the relative degree of 
expression (low, medium, high) of individual ion channel sub-types48–50. The Kv1.4 and Kv4.2 channels are 
both A-type.

Drug Dose (Mol)
Ion channel (sub-
unit)

Expected block 
(Reference) Median & Mean inhibition CoV

IBTX 0.1

BK [α] 86% 44

12.1% & 14.8% 21.3%
BK [α + β1] 12% 44

BK [α + β3] 77% 44

BK [α + β4] Insensitive 44

Apamin 0.15

SK [mAHP]  ~ 100% 50

100% & 74.0% 0.1%
SK2 (+ + +)  ~ 100% 52

SK3 ( +)  ~ 80% 52

SK1 (+ +) Insensitive 51

4-AP 300
Kv1.4 ( +)  ~ 25% 57

24.3% & 19.0% 21.1%
Kv4.2 (+ +)  ~ 13% 58

ZD7288 50

HCN 70% 68

100% & 85.5% 24.1%
85% 72

HCN1  ~ 63% 65

HCN2  ~ 80% 67
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totally lacking β4  subunits43. As stoichiometry is unknown in these neurons, a mix of configurations would result 
in the partial inhibition of BK-mediated currents by IbTX. The potency of IbTX has previously been evaluated 
for several configurations of β  subunits44 and is listed in Table 1. Whilst the precise degree of expected BK chan-
nel block is therefore not verifiable in CA1 neurons, we do find the channel is correctly selected by the method.

Prediction of SK channel alterations
SK channels have a major role in generation of the AHP. Our predictions from recordings made using the highly 
specific SK channel blocker,  apamin45, showed a median 100% reduction in SK-mediated current (Figs. 4a,b). 
The reduction in ranks for SK was the only statistical discovery, and DA did not predict any notable attenuation 
in charge transfer across any other type of ion channel. This validated the predictive power of our inference 
method against the specificity of inhibition by apamin.

Apamin is a highly selective inhibitor of SK2 and SK3 channels, which mediate medium AHP currents 
 (mIAHP) with a relatively fast inactivation and  decay45. Whilst apamin-sensitive  IAHP currents have been shown 
to be present in the CA1 soma, their blockade is often masked by the activity of other voltage-gated potassium 
 channels46,47. The majority of SK channel subunits in CA1 neurons are  SK248,49, with SK3 showing relatively low 
expression. SK1 is expressed in moderate  levels50 and is apamin insensitive, but does not contribute to  mIAHP

51,52. 
At 150 nM, apamin is expected to completely block SK2/3-mediated  mIAHP

50, and our prediction of an almost 
complete block (Fig. 4b) is therefore in excellent agreement with expected effects of apamin in CA1 neurons.

Prediction of A-type and K channel alterations
4-aminopyridine was applied to inhibit voltage-dependent  K+ channels. These are accounted for by the A-type 
and K-delayed rectifier channels in our model, each representing an amalgam of actual Kv channel subtypes, 
and we applied 4-AP to inhibit these two modelled channel groups simultaneously. A-type channels are known 
to be present in CA1  neurons3 where they give fast activating and fast inactivating  K+ currents which can sup-
press excitatory postsynaptic potentials and delay action  potentials53. In CA1 neurons, A-type  K+ currents are 
mediated by either Kv1.4 or Kv4.2  channels54, with Kv4.2 being more  abundant55,56. Our results show predic-
tion of 24.3% median (19.0% mean) reduction in A-type  K+ current (Figs. 5a,b), within the 13–25% inhibition 
expected from 4-AP at 300 μM (Table 1)57,58. This result is good evidence that the method is sensitive to smaller 
alterations in current.

The K-delayed-rectifier channels include the Kv1-3,5 and 6 subfamilies which are also inhibited by 4-AP, with 
an IC50 of 200–1500 µM59,60. We expected to see a reduction in predicted activity for the K-channel; however, 
whilst a reduction was clearly visible in 4-AP (Fig. 5a) this did not generate a discovery in the Mann–Whitney 
test. This is because the amount of charge transferred in the natural state is very low compared to other channels 
(NaT, A and BK). To statistically confirm the K-channel block, a larger sample of parameter estimates ( R ≫ 19) 
would be needed to reduce the variance on the predicted charge transfer.

Prediction of HCN channel alterations
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-
gated pore loop channels. They are unique in possessing a reverse voltage-dependence that leads to activation 
upon  hyperpolarization61. The HCN1 and HCN2 subunits are the most abundant in CA1  neurons62–64, and both 
are amalgamated in our model of the HCN channel. Under ZD7288, predicted HCN current was reduced by 
100% median (85.5% mean) (Fig. 6a,b). This result is a good match to the degree of block expected from previous 
work on CA1 neurons indicating a 70–85% mean reduction in HCN-mediated  current65,66. Similar values were 
obtained from specific studies of the  HCN167 and  HCN268 subunits (Table 1). In the predictive simulations of 
membrane voltage response to simulation (Fig. 6d), the average waveform of 19 iterations is presented. Notably, 
while the characteristic ‘sag’ of the HCN current is not prominently visible due to the averaging process, the 
‘rebound’ phenomenon remains evident. An example of non-averaged predicted membrane voltage demonstrat-
ing the HCN ‘sag’ current is plotted in Fig. S4.

Prediction of secondary effects of pharmacological inhibition in other channels
DA also predicted alterations in ion channels not specifically targeted by 4-AP and ZD7288 (Figs. 5a, 6a). The 
observation of collateral alterations is consistent with modification of the electrochemical driving force by the 
antagonist which alters current flow through other ion channels, particularly at times when the blocked channel 
would otherwise have been activated. For example, a reduction in  K+ permeability during AHP will change the 
electrochemical driving force of other ions during that period. The driving force of  Cl- into the cell will increase 
whereas the  Na+ driving force will be reduced. In addition, potassium current through the BK channel can 
compensate for the blocked Kv channels and vice-versa69.

The collateral effect of IbTX is to increase the leak current as predicted in Fig. 3a. This effect is likely to be 
caused by the reduction in  K+ permeability when the large conductance BK channel is inhibited. It is also notable 
that within the 4-AP dataset (Fig. 5a), BK current increases when the A-type channel is blocked. This is a well 
characterized effect of 4-AP which causes a persistent  K+  current69 and increases the spike  width70,71 (Fig. 5c). 
Our model correctly predicts this spike broadening (Fig. 5d), and the DA method has sufficient sensitivity to pick 
up the second order increase in BK current (Fig. 5a). A small (4.4%) reduction in median  Ca2+ channel current 
was also predicted in Fig. 5. This is likely to result from a reduction in the electrochemical driving force on  Ca2+ 
caused by the decreased potassium permeability following each action potential.

The DA inference method has the potential to provide unbiased quantitative assessment of alterations among 
a range of ionic currents simultaneously, including current compensation between ion channels. The effects 
we observe are in good agreement with the selectivity and potency of antagonists, and notably we also detect 
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well-characterized second order effects caused by blocking those channels. Sodium channels were not targeted 
in our study to avoid suppressing action potentials which would have impeded the ability of DA to estimate 
the parameters of all ion channels from the overall neuronal response. We decided therefore to prioritize other 
clinically relevant channels. However, future work would benefit from studying the partial inhibition of voltage 
gated Na channels.

The method we describe may be applied in various scenarios where assessing functional effects of drug or 
disease on specific ionic currents is desirable. Patch-clamp electrophysiology remains the primary technique 
used for profiling ion channels in vitro. A major limitation of this technique when applied traditionally is its low 
throughput, with a single ion channel being addressable at a time. This is especially limiting as a counter-toxicity 
screen when it is desirable to know the effects of a drug on more than one ionic current or when thousands of 
candidate drugs have to be screened. In drug screening, non-electrophysiological high throughput screening 
(HTS) methods such as ligand binding and ion flux assays can alternatively be applied. However, binding assays 
measure binding affinity rather than functional changes to ionic currents, and fluorescent assays are an indi-
rect measure of such currents as well as being unsuitable for use with voltage-gated channels due to the lack of 
control over membrane  voltage72,73. Ion flux assays are widely used in drug discovery, but also lack control over 
membrane voltage, as well as suffering from low temporal resolution and often weak ionic signal, rendering them 
inferior to voltage-clamp  experiments72. Due to these limitations, the desire to apply patch-clamp assays early in 
the drug discovery process has led to the development of automated HTS patch-clamp  systems19: such systems 
provide large amounts of functional data on the channels being targeted, however they are expensive to purchase 
and run, and like the above techniques, can normally only be applied in cell cultures directed to overexpress a 
specific ion channel rather than in primary  tissue73,74. This renders them unable to infer the functional impact 
of candidate drugs in physiologically relevant systems such as acute primary tissue  slices19. The DA method we 
present has the potential to be far faster than traditional patch clamp methods at interrogating multiple ionic 
currents at once, whilst retaining the ability to characterise the effects of a compound or treatment on individual 
neurons within a brain slice.

This proof-of-concept study may be applied to assay functional channel alterations in many other neuron 
types, in drug screening, and potentially in animal models of disease. When targeting other neurons, it may be 
necessary to add or remove channel groups from the model as appropriate based on information from prior stud-
ies. However, depending on the degree of overlap in the characteristics of modelled channel types, the addition 
of extraneous channels may not affect the accuracy of current reconstruction, as discussed previously. Further 
work will verify this in practice.

In relation to disease studies, the method could be complementary to transcriptomics and proteomics 
sequencing. Bottom-up sequencing methods do not discriminate between alterations which are relevant to 
electrical function from those which are not. Our top-down approach infers only the alterations in ion channels 
which are functionally relevant to neuronal electrical activity. Whilst the approach should be successful in theory, 
further validation of the method using animal models of channelopathy are necessary.

In summary, the present study demonstrates that it is possible to reliably reconstruct multiple specific ionic 
currents by assimilating the membrane voltage of a neuron driven by a complex current waveform. Accuracy on 
the reconstructed ionic currents is sufficient to predict alterations in currents in agreement with the expected 
effects of inhibitory compounds, as well as predicting well-characterized second order compensation effects. 
This data assimilation method requires no prior assumption as to which channel might be affected as it provides 
a quantitative assessment of functional alterations among a range of ionic currents in one shot, which to our 
knowledge has not previously been achieved. With further validation it therefore has the potential to be widely 
applied in drug screening pipelines, and additionally in studies aiming to characterize ion channel dysfunction 
in disease models. It has the benefit of application in acute tissue slices or primary neuron cultures and may 
substantially reduce workload.

Materials and methods
Current clamp electrophysiology
CA1 hippocampal neurons were driven and recorded using a Molecular devices MultiClamp 700B amplifier. 
This type of amplifier uses a voltage follower circuit that was necessary to drive rapidly varying currents. A Lab-
View controller (National Instruments) interfaced with a National Instruments USB-6363 DAQ card delivered 
the clamp protocol signal to the amplifier and recorded the membrane voltage returned by the neuron. Prior to 
each series of experiments, the gain of the protocol (via a multiplier) was adjusted to elicit a maximum num-
ber of action potentials per measurement epoch without causing depolarization block with excessive current 
amplitudes. The calibration protocol is described in Fig. S2. Current clamp protocols were designed to fulfil the 
identifiability criterion of the inverse problem, that is to excite the full dynamic range of the neuron. It com-
prised a mixture of hyperpolarizing and depolarizing current steps of different amplitudes and durations, and 
chaotic oscillations generated by the Lorenz96 system. Both the current stimulus and the membrane voltage were 
sampled at a rate of 100 kHz. This time resolution gave 20 datapoints per action potential which is sufficient for 
interpolating the finer features of the neuron response.

Whole-cell current-clamp recordings were performed in acute brain slices from male Han Wistar rats at 
P15–17. Following decapitation, the brain was removed and placed into an ice-cold slicing solution composed 
of (mM): NaCl 52.5; sucrose 100; glucose 25;  NaHCO3 25; KCl 2.5;  CaCl2 1;  MgSO4 5;  NaH2PO4 1.25; kynurenic 
acid 0.1, and carbogenated using 95%  O2/5%  CO2. A Campden 7000 smz tissue slicer (Campden Instruments 
UK) was used to prepare transverse hippocampal slices at 350 μm, which were then transferred to a submersion 
chamber containing carbogenated artificial cerebrospinal fluid (aCSF) composed of (mM): NaCl 124; glucose 
30;  NaHCO3 25; KCl 3;  CaCl2 2;  MgSO4 1;  NaH2PO4 0.4 and incubated at 30 °C for 1–5 h prior to use. Synaptic 
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transmission was inhibited pharmacologically in order to prevent network feedback or random postsynap-
tic potentials from disrupting the trace. To this end all experiments were performed in the presence of (μM) 
kynurenate 3, picrotoxin 0.05, and strychnine 0.01, to inhibit ionotropic glutamatergic, γ-aminobutyric acid 
(GABA)-ergic, and glycinergic neurotransmission respectively.

For patching, slices were transferred to the stage of an Axioskop 2 upright microscope (Carl Zeiss) and 
pyramidal CA1 neurons identified morphologically and by location using differential interference contrast optics. 
The chamber was perfused with carbogenated aCSF (composition as above) at 2 ml  min−1 at 30 ± 1 °C. Patch 
pipettes were pulled from standard walled borosilicate glass (GC150F, Warner Instruments) to a resistance of 
2.5–4 MΩ, and filled with an intracellular solution composed of (mM): potassium gluconate 130; sodium glu-
conate 5, HEPES 10;  CaCl2 1.5; sodium phosphocreatine 4; Mg-ATP 4; Na-GTP 0.3; pH 7.3; filtered at 0.2 µm.

Inhibitory compounds were selected for the predictability of their effects on ion channel types known to be 
present in hippocampal pyramidal neurons:

• SK channels were inhibited using apamin (150 nM);
• BK channels were inhibited with iberiotoxin (100 nM);
• HCN channels were inhibited with ZD7288 (50 µM);
• A and K channels were inhibited using 4-AP (300 µM).

The potency of each drug was obtained from IC50 values tabulated in the literature (Table 1), which we 
compared to the reduction in ionic charge transfer predicted by our DA method. A total of 13 animals were used 
in development of the methodology. The data presented in this proof-of-concept study were collected from 4 
animals. Each current datapoint was computed from one assimilation window, from a single neuron, in the pre-
drug or the post-drug state using a single compound as specified. The chaotic current clamp protocol was applied 
pre-drug, before immediately switching to drug-containing aCSF at the specified concentration and allowing to 
wash in for a further 3 min, before initiation of the same protocol. Time between the start of the pre-drug clamp 
protocol and termination of the drug-applied protocol was in every case < 5 min.

Model description
A single-compartment model of the CA1 pyramidal neurons was built using a conductance-based framework 
incorporating eight active ionic currents identified in the physiological literature as being prevalent in the soma 
of CA1  neurons62,66,75, in addition to a voltage-independent leak  current76,77. The complement of ionic channels 
includes transient sodium (NaT), persistent sodium (NaP), delayed-rectifier potassium (K), A-type potassium 
(A), low threshold calcium (Ca), large- and small-conductance  Ca2+- activated potassium (BK and SK respec-
tively), and the hyperpolarization-activated cation channel (HCN). The density of calcium channels in the soma 
of CA1 neurons is much lower than in distal  dendrites78, however the internal  Ca2+ concentration activates the 
transfer of  K+ ions through the Ca-dependent BK and SK channels. Therefore our model equations need to 
include the calcium current. The equation of motion for the membrane voltage is:

where C is the membrane capacitance, V is the membrane potential, Iinj(t) is the injected current protocol 
(Fig. 1a), A is the surface area of the soma, and JNaT … JLeak are the ionic current densities across the cell mem-
brane. The equations describing individual ionic currents are given in Table S1. These currents depend on maxi-
mum ionic conductances (gNaT, gK, gHCN…), reversal potentials (ENa, EK, EHCN…), and gating variables (m, h, n, 
p, …). The kinetics of each ionic gate is described by a first order equation and each gate activates or inactivates 
according to a sigmoidal function of the membrane voltage. The equations for each ion channel are as follows:

Sodium channels
The activation gate variables of the NaT and NaP channels were respectively:

where Vm , Vp are the activation thresholds and δVm, δVp are the widths of the gate transition from the open to 
the closed state. The activation time of NaT and NaP being very rapid (~ 0.1 ms)73 compared to other channels 
we have assumed it to be instantaneous. This simplification reduces model complexity and improves parameter 
identifiability in DA.

The kinetics of the NaT inactivation gate is given by:

where the steady-state inactivation curve is:

(1)C
dV(t)

dt
= −JNaT − JNaP − JK − JA − JCa − JBK − JSK − JHCN − JLeak + Iinj(t)/A,

(2)m∞(V) = 0.5

[

1+ tanh

(

V − Vm

δVm

)]

,

(3)p∞(V) = 0.5

[

1+ tanh

(

V − Vp

δVp

)]

,

(4)
dh(V , t)

dt
=

h∞(V)− h(V , t)

τh(V)
,
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and the recovery time depends on the membrane voltage as:

Vh is the inactivation threshold, δVh the width of the open-to-closed transition of the inactivation gate. th 
is recovery time away from the depolarization threshold and th + ǫh the recovery time at the depolarization 
threshold.  δVτh is the width of the peak at half maximum.

Potassium channels
The non-inactivating delayed-rectifier current (K) and the rapidly inactivating A-type potassium current (A) 
have the  form77 given in Table S1. The kinetics of the A-type activation gate is:

where a∞(V) and τa(V) are given by Eqs. 5, 6 where the subscript h is replaced with a (Table S2).
The inactivation kinetics of the K and A-type channels are respectively given by:

where n∞(V) , τn(V) and b∞(V) and τb(V) are given by Eqs. 5, 6 with the appropriate substitution of indices 
(Table S2). Although the muscarinic potassium current ( IM ) is present in certain CA1 neurons, it was excluded 
from our model because of its relatively minor conductance and its persistent  activity78 which primarily modu-
lates the resting potential of the CA1  neuron79. We determined that the characteristics of the IM can be adequately 
captured by the parameters governing the A-type potassium current, thereby avoiding an unnecessary increase 
in model complexity.

Calcium activated potassium channels
The BK and SK currents are  Ca2+ activated potassium currents found in the soma of hippocampal pyramidal 
 cells78. The BK current is sensitive to both membrane voltage and internal  Ca2+ concentration whereas the SK 
current only depends on the  Ca2+ concentration (Table S1). Both currents are dependent of the internal calcium 
concentration given  by80:

where [Ca]
∞

 is the equilibrium concentration, τca is t he recovery time, z is Faraday’s constant, w is the thickness 
of the surface across which  Ca2+ fluxes are calculated ( w = 1µm ), and Jca is the calcium current whose expres-
sion is given in Table S1. The calcium current had voltage-dependent activation and inactivation gates, s and r, 
 respectively80. The kinetics and activation curves of s and r are given by Eqs.4–6 where subscript h is replaced 
with the s and r subscripts of the Ca parameters (Table S2). The relaxation time constant for  Ca2+ in our model 
is set between 1 and 2 ms, a range that was chosen based on the slow dynamics, characteristic of  Ca2+ signaling. 
In the context of the model equations governing calcium, small variations within this interval were found to 
substantially influence the rate of change of internal  Ca2+ concentration, and so this range was deemed sufficient 
to accurately reflect the diversity of calcium dynamics in CA1 neurons.

The BK current has two gate variables c, d while the SK channel has one w. The form of the ultrafast SK activa-
tion gate, w, is given by Warman et al.81 as:

The slower activation gate of the BK channel, c, follows a first order rate equation:

with a steady-state activation curve given by:

The inactivation gate of the BK channel, d, similarly follows a first order rate equation:

(5)h∞(V) = 0.5

[

1+ tanh

(

V − Vh

δVh

)]

,

(6)τh(V) = th + ǫh

[

1− tanh2
(

V − Vh

δVτh

)]

.

(7)
da(V , t)

dt
=

a∞(V)− a(V , t)

τa(V)
,

(8)
dn(V , t)

dt
=

n∞(V)− n(V , t)

τn(V)
,

(9)
db(V , t)

dt
=

b∞(V)− b(V , t)

τb(V)
,

(10)
d[Ca]in

dt
=

[Ca]
∞

− [Ca]in
τca

−

JCa

2wz
,

(11)w ≡ w∞([Ca]in) = 0.5
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1+ tanh
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0.2
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dc
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with

The existence of the SK and BK ionic currents was validated by much improved fits of the height and shape 
of action potentials, and their AHP region (Fig. 1e). Without the SK and BK currents, the model clips action 
potentials at 80% of their maximum height. In total, our conductance model had the 67 adjustment parameters 
listed in Table S2.

Parameter estimation and current prediction
Our interior point method optimizes the parameter vector p∗ and the initial state vector x*(t = 0) by minimizing 
the misfit between the experimental membrane voltage, Vdata, and the membrane voltage variable, V, at each 
time point ti ( i = 0, . . . ,N ) of the assimilation window (Fig. 1a). This misfit is evaluated by the least-square cost 
function:

The cost function is minimized under both equality and inequality constraints using the variational 
approach of Lagrangian optimization. The equality constraints are the model equations (Eqs.1–16). These 
were linearized at each time point ti of the assimilation  window21,30 which was 800 ms long and was meshed 
by N = 40,000 intervals of equal duration. The inequality constraints are given by the lower and upper 
boundaries of the parameter search range, LB and UB, in Table S2. These are set by the user. The 67 param-
eter components of the parameter vector p∗ are listed in Table S2. The state vector has 14 state variables, 
x(t) ≡

{

V(t),m(t), h(t), p(t), n(t), a(t), b(t), s(t), r(t), c(t), d(t),w(t), z(t), [Ca]in
}

  that hold the membrane 
voltage, gate variables, and internal calcium concentration. State variable V(t) is observed, and is synchronized 
to the data, whereas the other state variables m(t), . . . , [Ca]in are unobserved and must be inferred. We used 
symbolic differentiation within Python to compute the Jacobian of the state variables with respect to parameters 
and the Hessian of the cost function. Both matrices were then inserted in the interior-point-optimization algo-
rithm developed by Wächter and  Biegler29 that iteratively determines p∗ and x*(ti) at each point of the assimila-
tion window. Thus, data assimilation infers observed and unobserved state variables, and model parameters. 
It estimates both parameters that relate in a nonlinear way to the membrane voltage (gate voltage thresholds, 
activation slopes, gate recovery times) as well as linear parameters (ionic conductances).

In order to stabilize the convergence of the parameter search, a control term u(ti)[Vdata(ti)-V(ti)] was added 
to the right-hand side of Eq.  121,82 and as u2(ti) in Eq. 17. In well-posed assimilation problems, the Tikhonov 
regularization  term82 u(t0) … u(tN) uniformly tends to zero as p converges to the solution p*. The model error and 
experimental error encountered with biological neurons makes the problem ill-posed. Model error introduces 
correlations between some parameters which take multi-valued solutions when the initial guesses on state vari-
ables, parameters or data intervals vary. In this case the u(ti) also converge to zero except at times that coincide 
with action potentials. Models configured with optimal parameters that include a small subset of correlated 
parameters reliably predict membrane voltage oscillations and ionic current waveforms for a wide range of cur-
rent injection protocols (Figs. 1, S1). When the u(ti) failed to converge uniformly across the assimilation window, 
the estimated parameters were discarded from the statistical analysis of the ion channels. Models configured with 
such parameters were unable to predict the experimental membrane voltage, as for example in Fig. 1e. Prior to the 
analysis of biological recordings, we verified that our current protocol and DA procedure fulfilled the conditions 
of observability and identifiability on model data. These preliminary studies showed that DA recovered all 67 
parameters to within 0.1% of their original value in the model used to produce the assimilated data. We verified 
the uniqueness and accuracy of solutions using the R = 19 assimilation windows offset by 80 ms (Fig. 1a) and 
varying the starting values of p∗ and x∗.

The predicted ionic currents and membrane voltages were generated by forward integration of each completed 
model over the 2000 ms long epoch, both pre- and post-drug. Current waveforms were integrated to obtain the 
total charge transferred through each channel in that epoch (Figs. 3e, 4e, 5e). In order to eliminate the depend-
ence on the neuron firing frequency, we divided the total charge transferred across the epoch by the number 
of action potentials to obtain the net charge transferred per spike, per ion channel (Figs. 3a, 4a, 5a). To verify 
the predicted inhibition is not affected by integrating currents over one action potential rather than the entire 
assimilation window, we plotted the changes in total charge transferred over the full epoch both pre- and post-
drug (Fig. S3). We verify that both methods gave similar results with small differences arising from sub-threshold 
current flow between action potentials.

The model equations were differentiated symbolically using our custom-built Python library pyDSI to gen-
erate the C++ code of the optimization  problem22–24. This code was then inserted in the open-source IPOPT 
software [www. coin- or- org/ ipopt] implementing the MA97 sparse linear equation solver [http:// www. hsl. rl. 

(14)
dd

dt
=

d∞(V , [Ca]in)− d

τd(V)
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[
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ac. uk/ catal ogue]. The optimizations were run on a 16-core (3.20 GHz) Linux workstation with 64 GB of RAM 
and a University of Bath minicomputer with 64-core processors and 320 GB of RAM. Model equations were 
linearized according to Boole’s  rule30.

Statistical analysis
Extreme outliers in the predicted charge data were detected using the ROUT  test83 with the maximum desired 
false discovery rate, Q set at 0.1%, based on values for the NaT channel. Only 3 outliers were identified out of a 
total of 138. The corresponding parameters solutions p∗ could also be identified by their failure to predict the 
membrane voltage oscillations over the 2000 ms epoch.

Due to the non-gaussian distributions of some of the total predicted charge data, multiple two-tailed 
Mann–Whitney  U84 rank-sum tests were applied, with multiple comparisons corrected for using the two-stage 
step-up method of Benjamini, Krieger and Yekutieli, with Q at 1%. Mann–Whitney U values are reported, and 
multiplicity-corrected significance values (q) are therefore reported for all discoveries. In figures, asterisks are 
applied based on these q values. For comparisons where predicted charge transfer distributions differed pre-drug 
and post-drug, we report the mean rank values in relation to Mann–Whitney U test output. GraphPad Prism 
version 9 was used for all statistical analyses.

Ethical statement
Experiments on rodents were performed under Schedule 1 in accordance with the United Kingdom Scientific 
Procedures act of 1986.

Data availability
Electrophysiological recordings underpinning this study are archived on the open data base https:// resea rchda 
ta. bath. ac. uk.

Received: 30 November 2023; Accepted: 8 March 2024

References
 1. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).
 2. Zeeh, C., Mayadali, Ü. S. & Horn, A. K. E. Histochemical characterization of the vestibular Y-group in monkey. Cerebellum 20, 

701–716 (2020).
 3. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D.  K+ channel regulation of signal propagation in dendrites of hippocampal 

pyramidal neurons. Nature 387, 869–875 (1997).
 4. Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. 

Science 268, 301–304 (1995).
 5. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. 

Proc. Natl. Acad. Sci. USA 93, 13481–13486 (1996).
 6. Santoro, B. et al. Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 51, 1624–1627 

(2010).
 7. Lerche, H. et al. Ion channels in genetic and acquired forms of epilepsy. J. Physiol. 591, 753–764 (2013).
 8. Kullmann, D. M. & Waxman, S. G. Neurological channelopathies: New insights into disease mechanisms and ion channel function. 

J. Physiol. 588, 1823–1827 (2010).
 9. Welsh, M. J. & Liedtke, C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322, 467–470 (1986).
 10. Ackerman, M. J. Long QT syndrome: Ion channel diseases of the heart. Mayo Clin. Proc. 73, 250–269 (1998).
 11. Chan, C. S. et al. HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat. Neurosci. 14, 

85–92 (2011).
 12. Duda, J., Pötschke, C. & Liss, B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia 

nigra dopaminergic neurons in health and Parkinson’s disease. J. Neurochem. 139, 156–178 (2016).
 13. Chakroborty, S. & Stutzmann, G. E. Calcium channelopathies and Alzheimer’s disease: Insight into therapeutic success and failures. 

Eur. J. Pharmacol. 739, 83–95 (2014).
 14. Oginsky, M. F., Cui, N., Zhong, W., Johnson, C. M. & Jiang, C. Hyperexcitability of mesencephalic trigeminal neurons and reor-

ganization of ion channel expression in a Rett syndrome model. J. Cell. Physiol. 232, 1151–1164 (2017).
 15. Schmunk, G. & Gargus, J. J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4, 61900 (2013).
 16. Jentsch, T. J. Neuronal KCNQ potassium channels physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30 (2000).
 17. Hübner, C. A. & Jentsch, T. J. Ion channel diseases. Hum. Mol. Genet. 11, 2435–2445 (2002).
 18. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935-953.

e19 (2020).
 19. Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D. & Arias, R. High-throughput electrophysiology: An emerging paradigm for ion-channel 

screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008).
 20. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation 

in nerve. J. Physiol. 117, 500–544 (1952).
 21. Toth, B. A., Kostuk, M., Meliza, C. D., Margoliash, D. & Abarbanel, H. D. I. Dynamical estimation of neuron and network proper-

ties I: Variational methods. Biol. Cybern. 105, 217–237 (2011).
 22. Meliza, C. D. et al. Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol. Cybern. 

108, 495–516 (2014).
 23. Nogaret, A., Meliza, C. D., Margoliash, D. & Abarbanel, H. D. I. Automatic construction of predictive neuron models through 

large scale assimilation of electrophysiological data. Sci. Rep. 6, 32749 (2016).
 24. Abu-Hassan, K. et al. Optimal solid-state neurons. Nat. Commun. 10, 5309 (2019).
 25. Kohjitani, H. et al. Gradient-based parameter optimization method to determine membrane ionic current composition of human 

induced pluripotent stem cell-derived cardiomyocytes. Sci. Rep. 12, 19110 (2022).
 26. Prinz, A. A., Billimoria, C. P. & Marder, E. Alternative to hand-tuning conductance-based models: Construction and analysis of 

databases of model neurons. J. Neurophysiol. 90, 3998–4015 (2003).
 27. Pospischil, M. et al. Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol. Cybern. 99, 

427–441 (2008).

http://www.hsl.rl.ac.uk/catalogue
https://researchdata.bath.ac.uk
https://researchdata.bath.ac.uk


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6031  | https://doi.org/10.1038/s41598-024-56576-3

www.nature.com/scientificreports/

 28. Kadakia, N. et al. Nonlinear statistical data assimilation for  HVCRA neurons in the avian song system. Biol. Cybern. 110, 417–434 
(2016).

 29. Wächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear 
programming. Math. Program. 106, 25–57 (2006).

 30. Taylor, J. D., Winnall, S. & Nogaret, A. Estimation of neuron parameters from imperfect observations. PLOS Comput. Biol. 16, 
e1008053 (2020).

 31. Schumann-Bischoff, J., Luther, S. & Parlitz, U. Estimability and dependency analysis of model parameters based on delay coordi-
nates. Phys. Rev. E 94, 032221 (2016).

 32. Nogaret, A. Approaches to parameter estimation from model neurons and biological neurons. Algorithms 15, 168 (2022).
 33. O’Leary, T., Sutton, A. C. & Marder, E. Computational models in the age of large datasets. Curr. Opin. Neurobiol. 32, 87–94 (2015).
 34. Slezak, D. F., Suárez, C., Cecchi, G. A., Marshall, G. & Stolovitzky, G. When the optimal is not the best: Parameter estimation in 

complex biological models. PLOS ONE 5, e13283 (2010).
 35. Sartiani, L., Mannaioni, G., Masi, A., Romanelli, M. N. & Cerbai, E. The Hyperpolarization-activated cyclic nucleotide-gated 

channels: From biophysics to pharmacology of a unique family of ion channels. Pharmacol. Rev. 69, 354–395 (2017).
 36. Wu, Z.-Z., Li, D.-P., Chen, S.-R. & Pan, H.-L. Aminopyridines potentiate synaptic and neuromuscular transmission by targeting 

the voltage-activated calcium channel β subunit. J. Biol. Chem. 284, 36453–36461 (2009).
 37. Sailer, C. A. et al. Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur. J. Neurosci. 24, 442–454 (2006).
 38. Raffaelli, G., Saviane, C., Mohajerani, M. H., Pedarzani, P. & Cherubini, E. BK potassium channels control transmitter release at 

CA3-CA3 synapses in the rat hippocampus. J. Physiol. 557, 147–157 (2004).
 39. Sah, P.  Ca2+-activated  K+ currents in neurones: Types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).
 40. Vergara, C., Latorre, R., Marrion, N. V. & Adelman, J. P. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8, 321–329 

(1998).
 41. Piwonska, M., Wilczek, E., Szewczyk, A. & Wilczynski, G. M. Differential distribution of  Ca2+-activated potassium channel β4 

subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153, 446–460 (2008).
 42. Gu, N., Vervaeke, K. & Storm, J. F. BK potassium channels facilitate high-frequency firing and cause early spike frequency adapta-

tion in rat CA1 hippocampal pyramidal cells. J. Physiol. 580, 859–882 (2007).
 43. Gonzalez-Perez, V. & Lingle, C. J. Regulation of BK channels by beta and gamma subunits. Annu. Rev. Physiol. 81, 113–137 (2019).
 44. Lippiat, J. D., Standen, N. B., Harrow, I. D., Phillips, S. C. & Davies, N. W. Properties of BK(Ca) channels formed by bicistronic 

expression of hSlo α and β1–4 Subunits in HEK293 cells. J. Membr. Biol. 192, 141–148 (2003).
 45. Sah, P. & McLachlan, E. M.  Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role 

for  Ca2+-activated  Ca2+ release. Neuron 7, 257–264 (1991).
 46. Chen, S., Benninger, F. & Yaari, Y. Role of small conductance  Ca2+-activated  K+ channels in controlling CA1 pyramidal cell excit-

ability. J. Neurosci. 34, 8219–8230 (2014).
 47. Storm, J. F. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J. Physiol. 409, 171–190 (1989).
 48. Ballesteros-Merino, C. et al. Developmental profile of SK2 channel expression and function in CA1 neurons. Hippocampus 22, 

1467–1480 (2012).
 49. Maciaszek, J. L., Soh, H., Walikonis, R. S., Tzingounis, A. V. & Lykotrafitis, G. Topography of native SK channels revealed by force 

nanoscopy in living neurons. J. Neurosci. 32, 11435–11440 (2012).
 50. Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive  Ca2+-activated  K+ current in hippocampal pyramidal neurons. Proc. 

Nat. Acad. Sci. 96, 4662–4667 (1999).
 51. Dhoedt, D., Hirzel, K., Pedarzani, P. & Stocker, M. Domain analysis of the calcium-activated potassium channel SK1 from rat brain: 

Functional expression and toxin sensitivity. J. Biol. Chem. 279, 12088–12092 (2004).
 52. Grunnet, M., Jensen, B. S., Olesen, S. P. & Klaerke, D. A. Apamin interacts with all subtypes of cloned small-conductance 

 Ca2+-activated  K+ channels. Pflugers Arch. 441, 544–550 (2001).
 53. Fransén, E. & Tigerholm, J. Role of A-type potassium currents in excitability, network synchronicity and epilepsy. Hippocampus 

20, 877–887 (2010).
 54. Coetzee, W. A. et al. Molecular diversity of  K+ channels. Ann. NY Acad. Sci. 868, 233–285 (1999).
 55. Kim, J., Wei, D.-S. & Hoffman, D. A. Kv4 potassium channel subunits control action potential repolarization and frequency-

dependent broadening in rat hippocampal CA1 pyramidal neurones. J. Physiol. 569, 41–57 (2005).
 56. Serôdio, P. & Rudy, B. Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents 

in rat brain. J. Neurophysiol. 79, 1081–1091 (1998).
 57. Yao, J. A. & Tseng, G. N. Modulation of 4-AP block of a mammalian A-type K channel clone by channel gating and membrane 

voltage. Biophys. J. 67, 130–142 (1994).
 58. Tseng, G. N., Jiang, M. & Yao, J. A. Reverse use dependence of Kv42 blockade by 4-aminopyridine. J. Pharmacol. Exp. Ther. 279, 

865–876 (1996).
 59. Gutman, G. A. et al. International Union of Pharmacology: LIII: Nomenclature and molecular relationships of voltage-gated K 

channels. Pharmacol. Rev. 57, 473–508 (2005).
 60. Grosse, G. et al. Expression of Kv1 potassium channels in mouse hippocampal primary cultures: Development and activity-

dependent regulation. J. Neurosci. 20, 1869–1882 (2000).
 61. Wahl-Schott, C. & Biel, M. HCN channels: Structure, cellular regulation and physiological function. Cell. Mol. Life Sci. CMLS 66, 

470–494 (2009).
 62. Brewster, A. L., Bernard, J. A., Gall, C. M. & Baram, T. Z. Formation of heteromeric hyperpolarization-activated cyclic nucleotide-

gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiol. Dis. 19, 200–207 (2005).
 63. Franz, O., Liss, B., Neu, A. & Roeper, J. Single-cell mRNA expression of HCN1 correlates with a fast-gating phenotype of hyper-

polarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur. J. Neurosci. 12, 2685–2693 (2000).
 64. Notomi, T. & Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 

471, 241–276 (2004).
 65. Gasparini, S. & DiFrancesco, D. Action of the hyperpolarization-activated current (Ih) blocker ZD7288 in hippocampal CA1 

neurons. Pflüg. Arch. 435, 99–106 (1997).
 66. Maccaferri, G., Mangoni, M., Lazzari, A. & DiFrancesco, D. Properties of the hyperpolarization-activated current in rat hippocam-

pal CA1 pyramidal cells. J. Neurophysiol. 69, 2129–2136 (1993).
 67. Shin, K. S., Rothberg, B. S. & Yellen, G. Blocker state dependence and trapping in hyperpolarization-activated cation channels. J. 

Gen. Physiol. 117, 91–102 (2001).
 68. Cheng, L., Kinard, K., Rajamani, R. & Sanguinetti, M. C. Molecular mapping of the binding site for a blocker of hyperpolarization-

activated, cyclic nucleotide-modulated pacemaker channels. J. Pharmacol. Exp. Ther. 322, 931–939 (2007).
 69. Kimm, T., Khaliq, Z. M. & Bean, B. P. Differential regulation of action potential shape and burst-frequency firing by BK and Kv2 

channels in substantia nigra dopaminergic neurons. J. Neurosci. 35, 16404–16417 (2015).
 70. Molgó, J., Lundh, H. & Thesleff, S. Potency of 3,4-Diaminopyridine and 4-aminopyridine on mammalian neuromuscular transmis-

sion and the effect of pH changes. Eur. J. Pharmacol. 61, 25–34 (1980).
 71. Judge, S. I. V. & Bever, C. T. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic 

treatment. Pharmacol. Ther. 111, 224–259 (2006).



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6031  | https://doi.org/10.1038/s41598-024-56576-3

www.nature.com/scientificreports/

 72. Yu, H., Li, M., Wang, W. & Wang, X. High throughput screening technologies for ion channels. Acta Pharmacol. Sin. 37, 34–43 
(2016).

 73. McGivern, J. G. & Ding, M. Ion channels and relevant drug screening approaches. SLAS Discov. Adv. Sci. Drug Discov. 25, 413–419 
(2020).

 74. Obergrussberger, A. et al. The suitability of high throughput automated patch clamp for physiological applications. J. Physiol. 600, 
277–297 (2022).

 75. Klee, R., Ficker, E. & Heinemann, U. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely 
isolated from hippocampal regions CA1 and CA3. J. Neurophysiol. 74, 1982–1995 (1995).

 76. Golomb, D., Yue, C. & Yaari, Y. Contribution of persistent  Na+ current and M-type  K+ current to somatic bursting in CA1 pyramidal 
cells. J. Neurophysiol. 96, 1912–1926 (2006).

 77. Yue, C., Remy, S., Su, H., Beck, H. & Yaari, Y. Proximal persistent Na+ channels drive spike afterdepolarizations and associated 
bursting in adult CA1 pyramidal cells. J. Neurosci. Off. J. Soc. Neurosci. 25, 9704–9720 (2005).

 78. Karst, H., Joëls, M. & Wadman, W. J. Low-threshold calcium current in dendrites of the adult rat hippocampus. Neurosci. Lett. 
164, 154–158 (1993).

 79. McQuiston, A. R. & Madison, D. V. Muscarinic receptor activity has multiple effects on the resting membrane potential of CA1 
hippocampal interneurons. J. Neurosci. 19, 5693–5702 (1999).

 80. Traub, R. D., Wong, R. K., Miles, R. & Michelson, H. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-
clamp data on intrinsic conductances. J. Neurophysiol. 66, 635–650 (1991).

 81. Warman, E. N., Durand, D. M. & Yuen, G. L. Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer 
simulation. J. Neurophysiol. 71, 2033–2045 (1994).

 82. Tikhonov, A. N. On the stability of inverse problems. C. R. (Doklady) Acad. Sci. USSR 39, 176–179 (1943).
 83. Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression: A new method based on robust 

nonlinear regression and the false discovery rate. BMC Bioinform. 7, 123 (2006).
 84. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. 

Stat. 18, 50–60 (1947).

Author contributions
P.G.M. performed all electrophysiological experiments and their statistical analysis; J.D.T. performed all com-
putations estimating model parameters, predicting changes in ionic currents both in rodent and model data; 
J.F.R.P. contributed to the design of electrophysiological experiments and reviewed the manuscript; A.N. and 
P.G.M. conceived the work; A.N. supervised the work and secured funding; A.N., P.G.M. and J.D.T. wrote the 
manuscript. All authors contributed to the submitted version.

Funding
This work was supported by the European Union’s Horizon 2020 Future Emerging Technologies Programme 
under grant 732170.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 56576-3.

Correspondence and requests for materials should be addressed to A.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-56576-3
https://doi.org/10.1038/s41598-024-56576-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Single shot detection of alterations across multiple ionic currents from assimilation of cell membrane dynamics
	Results
	Statistical data assimilation of pharmacologically altered neurons
	Accuracy of current and parameter predictions
	Predicting the alterations of ion channels induced by four antagonists in hippocampal neurons
	BK channel blockade
	SK channel blockade
	Kv channel blockade
	HCN channel blockade


	Discussion
	Prediction of BK channel alterations
	Prediction of SK channel alterations
	Prediction of A-type and K channel alterations
	Prediction of HCN channel alterations
	Prediction of secondary effects of pharmacological inhibition in other channels

	Materials and methods
	Current clamp electrophysiology
	Model description
	Sodium channels
	Potassium channels
	Calcium activated potassium channels

	Parameter estimation and current prediction
	Statistical analysis
	Ethical statement

	References


