
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5891  | https://doi.org/10.1038/s41598-024-56575-4

www.nature.com/scientificreports

Binarized neural network of diode 
array with high concordance 
to vector–matrix multiplication
Yunwoo Shin , Kyoungah Cho  & Sangsig Kim *

In this study, a binarized neural network (BNN) of silicon diode arrays achieved vector–matrix 
multiplication (VMM) between the binarized weights and inputs in these arrays. The diodes that 
operate in a positive-feedback loop in their p+-n-p-n+ device structure possess steep switching and 
bistable characteristics with an extremely low subthreshold swing (below 1 mV) and a high current 
ratio (approximately 108). Moreover, the arrays show a self-rectifying functionality and an outstanding 
linearity by an R-squared value of 0.99986, which allows to compose a synaptic cell with a single diode. 
A 2 × 2 diode array can perform matrix multiply-accumulate operations for various binarized weight 
matrix cases with some input vectors, which is in high concordance with the VMM, owing to the high 
reliability and uniformity of the diodes. Moreover, the disturbance-free, nondestructive readout, and 
semi-permanent holding characteristics of the diode arrays support the feasibility of implementing 
the BNN.

Keywords  Binarized neural network, Multiply-accumulate, Vector–matrix multiplication, Gated p+-n-p-n+ 
diodes, Positive-feedback loop mechanism

With the explosive growth of data, brain-inspired (i.e. neuromorphic) computing systems have achieved signifi-
cant improvements in parallel computing and efficient data processing1–5. In particular, binarized neural networks 
(BNNs) have recently demonstrated their capabilities in image recognition applications6–10. The accelerators in 
the BNNs perform a matrix "multiply accumulate" (MAC) operation (i.e. vector–matrix multiplication (VMM)) 
between the binarized weights and analog inputs6,7. The bitwise MAC operation enables extensive applicability to 
resource-constrained platforms, such as edge devices and mobile processors, promising a considerable reduction 
in memory (approximately 32 ×) and computation (approximately 2 ×) requirements compared with other neural 
networks6–10. Furthermore, it is still difficult for emerging synaptic devices to fully implement analog neural 
networks (analog input and analog weight) with nonlinear conductance changes and device variations1–4,11–13. 
However, digital synaptic devices are suitable for implementing BNNs because of their binarized weights13–16.

Various memory devices, such as resistive random-access memories (RRAMs), magnetoresistive RAMs 
(MRAM), flash-based memory devices, static RAMs (SRAM), and dynamic RAMs (DRAMs), have been widely 
researched for BNN implementation11–21. Their definite bistable characteristics, with a high on/off ratio and 
input/output linearity, are required for the implementation13–15. However, despite their improved characteristics, 
these devices still do not satisfactorily meet this requirement13–17. Moreover, as the number of hidden layers 
in the multilayer perceptron structure of neural networks increases, the neuron circuits that interconnect the 
pre- and post-layers become more complicated, which degrades the area and power efficiencies of computing 
systems based on neural networks21–24. The activation function of neuronal circuits is simplified or merged into 
a memory array to alleviate degradation25–27.

Recently, silicon diodes operating in a positive-feedback loop mechanism have demonstrated their fea-
sibility as neuromorphic devices, owing to their superior electrical characteristics, high reliability, and 
reproducibility28–32. The positive-feedback loop mechanism enables diodes to exhibit steep switching and bistable 
characteristics with a high ON/OFF ratio32. Compared to other memory devices used as components of emerging 
BNNs11–21, the p+-n-p-n+ diodes operating by the positive-feedback loop mechanisms have a significant advan-
tage in terms of reliability and endurance since the relatively low operating voltage prevents the deterioration 
of devices under sustained operations. Furthermore, the BNN comprising the p+-n-p-n+ diodes can be more 
simplified than those designed by SRAMs and DRAMs18,33. In this study, we demonstrate BNNs with 4 × 1 and 
2 × 2 arrays, consisting of p+-n-p-n+ diodes.
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Results
Optical images of the diode array and the p+-n-p-n+ diode in this array are shown in Fig. 1a. The bistable char-
acteristic principle of the diode is illustrated in Fig. 1b with a diode schematic, energy-band diagrams in State 
0 and State 1, and the red (blue) circuit symbol of State 0 (State 1). For the diode in the array, the gate voltage 
(VGate) controls the injection and accumulation of charge carriers by modulating the potential barrier in the 
n-doped region of the energy-band diagram. In State 0, excess charge carriers are absent in the potential wells 
in the n- and p-doped regions of the energy-band diagram, preventing the diode current (IDiode) from flowing in 
the diode. In contrast, in State 1, excess charge carriers accumulate in the potential wells in the n- and p-doped 

Figure 1.   Optical images of (a) diode array with p+-n-p-n+ diode, and (b) diode schematic, energy-band 
diagrams in States 0 and 1, and red (blue) circuit symbol of State 0 (State 1). The n-doped region in the optical 
image is present beneath the yellow-colored gate electrode.
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regions in the energy-band diagram, resulting in the IDiode to flow in the diode. Modulation of the potential bar-
rier allowed the diode to exhibit bistable characteristics. However, for the BNN operation, the conductance in 
State 0 (State 1) corresponds to Weight 0 (1), and the anode voltage (VAnode) and VGate represent the input and 
weight voltages (VIN and VW), respectively.

Figure 2 shows the IDiode versus VIN curves for a diode at VW = 0.0 V and VW = 1.0 V. The BNN operating con-
ditions are illustrated in the figure. As VIN increases from − 3 to 3 V (black curves), IDiode first remains at 0 mA, 
after which it abruptly increases at a VIN of 1.5 V for VW = 0.0 V and a VIN of 2.5 V for VW = 1.0 V. The generation 
of the positive-feedback loop leads to an abrupt increase in the IDiode. As VIN decreased from 3 to − 3 V (blue 
curves), IDiode linearly decreased and reached 0 mA near VIN = 1 V; the positive-feedback loop was eliminated 
near VIN = 1 V. The bistable characteristics are presented in the IDiode versus VIN curves, and the high ratio of 
the current magnitudes of States 1 and 0 is approximately 108 at a VW of 1.0 V for VIN = 2.0 V (see Supporting 
Information, Fig. S1). The unipolar switching (i.e. rectifying) characteristics inherit the electrical properties of 
the p–n diode. Regardless of VW, the IDiode versus VIN curve shape in State 1 resembles that of the rectified linear 
unit function used for the activation function of neural networks, including BNNs34–36.

In Fig. 2a, the diode state becomes State 1 (State 0) by the potentiation (depression) at a VIN of 2.0 V (− 2.0 V), 
and VW of 0.0 V. The potentiated (depressed) diode weighed 1 (0). In Fig. 2b, the potentiated or depressed diode 
is in a standby state at VW = 1.0 V and VIN = 0.0 V. For a VIN range of 1.1 V to 2.0 V, the IDiode of the potentiated 
diode is linearly proportional to VIN, the IDiode of the depressed diode remains at a low level, and the difference 
in the IDiode of the potentiated and depressed diodes is used for the MAC operation.

To describe the BNN operation, the diode-array architecture, schematics, and circuit symbols of the p+-n-p-n+ 
diodes in the weight update, standby, and multiplication operations are shown in Fig. 3a–c. In the diode array, 
p+, n+, and gate electrodes were connected to the input lines (ILs), output lines (OLs), and weight lines (WLs), 
respectively. WLs and OLs were parallel to each other and perpendicular to ILs37–39. The multiplication of VIN 
and the conductance (i.e. weight) of a diode using Ohm’s law produced IDiode, and the summation of IDiode at 
each common OL (i.e. the same row in the diode array) using Kirchhoff ’s law yielded the output current (IOUT). 
Thus, the diode-array architecture can perform parallel MAC operations. For the BNN operations, the VIN for 
IL, VW for WL, and IOUT for OL signals represent the input, weight update selection, and output, respectively.

In the weight update operation in Fig. 3a, the binarized weight (W) matrix is updated by both VIN (2.0 V 
or − 2.0 V) and VW (0.0 V). The diodes selected in the array with VW = 0.0 V were potentiated (depressed) at VIN 
of 2.0 V (− 2.0 V). In the standby operation shown in Fig. 3b, all VW and VIN are 1.0 V and 0.0 V, respectively. 
The diodes maintained their memory states with extremely low IDiode. In the multiplication operation shown in 
Fig. 3c, the VW (1.0 V) and VIN (0.0 V or from 1.1 V to 2.0 V) are applied to the diode array. IDiode represents the 
output of the product of VIN and the binarized weight, and IOUT is obtained from the summation of the IDiode.

Figures 4 shows the BNN operation and IDiode versus VIN characteristics of the selected diode in an array. In 
Fig. 4a, for potentiation (depression), voltage pulses with VIN = 2.0 V (− 2.0 V) and VW = 0.0 V were applied to 
the diode. After the potentiation, the IDiode is linearly proportional to the multipulse and staircase waveforms of 
VIN ranging from 1.1 to 2.0 V in steps of 0.1 V. In contrast, after the depression, the IDiode remained at a low level 
despite the same VIN pulses as the potentiation. During the standby operation between the VIN pulses, the diode 
memorized the weight with a power consumption of approximately 0 W. In Fig. 4b, the extracted IDiode values of 
the potentiated diode for each VIN pulse can be expressed as a linear function of VIN, as follows:

Here, the coefficient 7.4 represents the conductance of the potentiated diode (i.e. Weight 1). For the depressed 
diode (i.e. Weight 0), the conductance is close to 0, and the IDiode remains at a low level during multiplication after 
depression. The constant term – 1 indicates the lower limit of the VIN range for diode multiplication. This expres-
sion implies that the single diode performs multiplication between VIN and weight with outstanding linearity.

(1)IDiode(VIN) = 7.4× (VIN − 1).

Figure 2.   IDiode vs. VIN curves for a diode at (a) VW = 0.0 V and (b) VW = 1.0 V. The black and blue curves 
indicate the forward and reverse sweeps of VIN, respectively. The BNN operating conditions are shown in the 
figures.
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The bitwise MAC operation of the BNN in a 4 × 1 diode array is illustrated in Fig. 5. The MAC operation was 
conducted by multiplying the input VINn and binarized weight Wn for each nth diode. In a 4 × 1 diode array in 
Fig. 5a, IOUT can be expressed as

Figure 3.   Diode-array architecture, schematics, and circuit symbols of diodes in (a) weight update, (b) standby, 
and (c) multiplication operations. Colored boxes with W and IN mean the peripheral parts of the weight and 
input lines (WLs and ILs), respectively.

Figure 4.   BNN operation of a diode. (a) IDiode for potentiated and depressed diodes and (b) IDiode vs. VIN diode 
characteristics of potentiated diode. Here, the R-square value of the linear fit is 0.99986, which means that the 
diode features high linearity.
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The experimental data for the MAC operation are shown in Fig. 5b. All VIN were applied in the same wave-
forms as those in Fig. 4a. Wn is updated before the MAC operation, and IOUT remains linearly proportional to the 
multipulse and staircase waveforms of VIN. Moreover, IOUT is linearly proportional to the number of potentiated 
diodes for the same VIN pulse, and there are few electrical variations between the component diodes in the array, 
owing to the wafer-scale full CMOS process. Here, the product of VInn and Wn can be replaced with the IDiode in 
Eq. (1). Thus, Eq. (2) becomes

The MAC operation data (obtained from Eq. (3)) plotted in Fig. 5c were in good agreement with the experi-
mental data in Fig. 5b. The uniformity of the component diodes in the array can minimize the BNN computa-
tional errors39–4142. Thus, a massive array architecture comprising gated p+-n-p-n+ diodes can be realized with a 
high ratio of the bistable current magnitude to uniformity.

A 2 × 2 diode array is used to perform the matrix MAC operation of the BNN, as shown in Fig. 6. The bina-

rized weights of the diodes in Fig.  6a are the components of the W matrix 
[

W11 W12

W21 W22

]

 , where IOUT1 

( IDiode × n = W11 × VIN1 +W12 × VIN2 ) and IOUT2 ( IDiode ×m = W21 × VIN1 +W22 × VIN2 ) are obtained 
via the OLs, and n(m) is the number of potentiated diodes in the first (second) row in the array. In this array, the 
IN-vector component IN1 or IN2 is 0 (if VIN is 0.0 V) or 1 (if VIN is from 1.1 V to 2.0 V), and the OUT-vector 
component OUT1 (OUT2) is n (m). Thus, the matrix MAC operation can be expressed as 
[

W11 W12

W21 W22

][

IN1

IN2

]

=

[

OUT1

OUT2

]

 , which represents the VMM between the weight matrix and input vector, W · 

INT = OUTT.
The voltage pulses of VIN (2.0 V or − 2.0 V) and VW (0 V) are applied to the diode array to update the W 

matrix, as shown in Fig. 6a. In Fig. 6b, the 2 × 2 diode array performs the matrix MAC operation in the W = 
[

1 1
1 0

]

 case among the 16 different W cases (see Fig. 7 for other W cases). W is updated to the W = 
[

1 1
1 0

]

 case, 

after which VIN1 and VIN2 are applied to the same waveforms depicted in Fig. 4a for the matrix MAC operations. 
Thus, IOUT1 was twice as large as IOUT2. Consequently, the diode array exhibits a simplified VMM of 
[

1 1
1 0

][

1
1

]

=

[

2
1

]

.

In Fig. 7, we demonstrate the matrix MAC operations of the 2 × 2 diode array for six different W values. 
The IN-vector components IN1 and IN2 are both 1, where IOUT1 and IOUT2 correspond to the outputs OUT1 and 
OUT2 of the matrix MAC operation for each W case, respectively. Here, VIN1 and VIN2 are applied to the same 

(2)IOUT =

4
∑

n=1

Wn × VINn.

(3)IOUT = IDiode × n, where n = #of potentiated diodes.

Figure 5.   BNN operation of 4 × 1 diode array. (a) Circuit diagram of array, (b) experimental data of bitwise 
MAC operation, and (c) calculated data of bitwise MAC operation. Here, all VIN (VIN1–VIN4) are identical.
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waveforms as those in Fig. 4a. IOUT1 and IOUT2 in Fig. 7e are identical to those in Fig. 6c. For each W case, the 
output of the matrix MAC operation has a high concordance with the simplified VMM equation in each figure 
owing to the high uniformity of the diodes.

For the W matrix 
[

1 1
1 0

]

 in Fig. 8a, the OUT-vector components OUT1 and OUT2 vary with the IN-vector 

components IN1 and IN2, which are highly concordant with the simplified VMMs in Fig. 8b. IOUT1 and IOUT2 
depend on the number of potentiated diodes in the array and the multipulse and staircase waveforms of VIN1 
and VIN2. After multiplication, the diode array maintains the binarized weight matrix owing to the nondestruc-
tive readout characteristics of the component diodes43. Instead, the component diodes refresh their weights 
during multiplication operations. They also exhibit superior electrical stability against bias stresses (continuous 
input pulses), unlike other memory devices13,19–21,44,45. The diode array holds the binarized weight matrix semi-
permanently using refresh operations while performing multiplication operations. Moreover, the binarized 
weights are not updated unless VIN and VW are applied simultaneously. The binarized weight matrix did not 
change for multiplication. However, for the weight update operations, the matrix is determined by VW1 and VW2.

Discussion
We demonstrated the BNN operation of an array composed of p+-n-p-n+ diodes with bistable characteristics. The 
component diode exhibited inherent unipolar switching characteristics, and the array was immune to sneak path 
problems, unlike previously proposed BNNs11–13,16,43. In addition to the outstanding bistable characteristics with 
a high current ratio (approximately 108), the rectifying characteristics can simplify peripheral neuron circuits. 
Moreover, the simplified peripheral neuron circuits help to reduce the burden of area and power consumption 
for BNN-based computing systems. The diode array performed matrix MAC operations with high concordance 
with the VMM between the binarized weight matrix and input vector. Furthermore, the diode array exhibited 
nondestructive readout and semi-permanent holding characteristics. Our diodes can realize the compact synaptic 
array in which the cell is composed of a single device with 6F2 (F = feature size) as well as operate at relatively low 
voltages (≤ 2 V). Consequently, p+-n-p-n+ diodes are the most suitable building blocks for area-/energy-efficient 
and reliable synaptic arrays in BNN.

Figure 6.   BNN operation of 2 × 2 diode array. (a) Circuit diagram of array and (b) matrix MAC operation with 
fixed W matrix and IN vector. Here, VIN1 and VIN2 are identical.
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Figure 7.   Matrix MAC operations of 2 × 2 diode array for (a–f) six different W cases with fixed IN vector. The 
other cases are excluded because their results of the matrix MAC operations are the same as these six cases.

Figure 8.   Matrix MAC operations of 2 × 2 diode array with fixed W matrix. (a) Circuit diagram of array and 
(b) matrix MAC operations for four different IN vectors. The W matrix is updated before the matrix MAC 
operations.
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Methods
Device fabrication
The p+-n-p-n+ diodes were fabricated using full CMOS processes from a p-type (100)-oriented silicon-on-
insulator wafer with a 340-nm thick top Si layer on a 2-μm thick buried oxide layer. First, the wafer was cleaned 
by standard clean-1 and 50:1 diluted HF to remove particles or impurities. A 10-nm thick SiO2 layer was grown 
on the Si surface as a sacrificial layer to minimize channeling and damage to the channel during ion implantation 
by dry oxidation (800 °C, 200 min). The n-doped regions were formed using a conventional ion implantation 
process, in which P+ ions were implanted at a dose of 3 × 1013 cm−2 with an ion energy of 60 keV. Subsequently, 
the wafer was annealed at 1100 °C for 30 min under ambient nitrogen. The 25-nm thick SiO2 layers were ther-
mally grown as the gate dielectric for the gated p+-n-p-n+ diodes by dry oxidation (850 °C, 270 min). A 400-nm 
thick and 1.5-μm wide poly-Si gate electrode was formed by low-pressure chemical vapor deposition (LPCVD), 
followed by photolithography, and a dry etching process was used to delineate the gate profile. The lightly doped 
drain extension regions were implanted with BF+2  ions at a dose of 1 × 1012 cm−2 and an ion energy of 10 keV. 
And then LPCVD-based tetraethyl orthosilicate (TEOS) was used to form the 200-nm thick gate sidewall spac-
ers. For the p-doped regions, BF+2  ions at a dose of 3 × 1013 cm−2 were implanted at an ion energy of 40 keV. The 
n+ cathode, heavily n-doped poly-Si gate, and p+ anode regions were formed by masked ion implantation (P+ 
at 3 × 1015 cm−2, 50 keV and BF+2  at 3 × 1015 cm−2, 30 keV). Thereafter, the wafer was annealed at 1000 °C for 
30 min in ambient nitrogen, followed by rapid thermal annealing at 1050 °C for 30 s to activate the implanted 
dopants with uniform diffusion and eliminate defects. The dual-step annealing process was carried out to form 
the p+-n-p-n+ doping structure. Finally, a Ti/TiN/Al/TiN metal alloy was deposited in the drain, source, and 
gate contact regions after deposition of a 700-nm thick interlayer dielectric layer (for device protection) using 
the LPCVD-based TEOS.

Measurement
All electrical data were acquired at room temperature using a semiconductor parameter analyzer (HP4155C, 
Agilent Technologies) and Keithley 2636A and 2636 B source meters. The input-pulse width for the diode and 
MAC array operations was selected as 1 ms because of the limitations of the Keithley source meters. The experi-
mental set-up to examine the BNN operations of the diode array is shown in Fig. S2 of supporting information.

Data availability
All data generated during this study are included in this published article (and its Supporting Information files).
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