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Power consumption prediction 
for electric vehicle charging 
stations and forecasting income
K. C. Akshay 1, G. Hannah Grace 1*, Kanimozhi Gunasekaran 2 & Ravi Samikannu 3

Electric vehicles (EVs) are the future of the automobile industry, as they produce zero emissions 
and address environmental and health concerns caused by traditional fuel-poared vehicles. As more 
people shift towards EVs, the demand for power consumption forecasting is increasing to manage 
the charging stations effectively. Predicting power consumption can help optimize operations, 
prevent grid overloading, and power outages, and assist companies in estimating the number of 
charging stations required to meet demand. The paper uses three time series models to predict the 
electricity demand for charging stations, and the SARIMA (Seasonal Auto Regressive Integrated 
Moving Average) model outperforms the ARMA (Auto Regressive Moving Average) and ARIMA (Auto 
Regressive Integrated Moving Average) models, with the least RMSE (Root Mean Squared Error), 
MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error) scores in forecasting power 
demand and revenue. The data used for validation consists of charging activities over a four-year 
period from public charging outlets in Colorado, six months of charging data from ChargeMOD’s 
public charging terminals in Kerala, India. Power usage is also forecasted based on wheels of vehicles, 
and finally, a plan subscription data from the same source is utilized to anticipate income, that helps 
companies develop pricing strategies to maximize profits while remaining competitive. Utility firms 
and charging networks may use accurate power consumption forecasts for a variety of purposes, 
such as power scheduling and determining the expected energy requirements for charging stations. 
Ultimately, precise power consumption forecasting can assist in the effective planning and design 
of EV charging infrastructure. The main aim of this study is to create a good time series model which 
can estimate the electric vehicle charging stations usage of power and verify if the firm has a good 
income along with some accuracy measures. The results show that SARIMA model plays a vital role in 
providing us with accurate information. According to the data and study here, four wheelers use more 
power than two and three wheelers. Also, DC charging facility uses more electricity than AC charging 
stations. These results can be used to determine the cost to operate the EVs and its subscriptions.
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The increasing adoption of electric vehicles (EVs) has led to a growing demand for charging infrastructure, 
particularly electric vehicle charging stations (EVCS). However, the operation and maintenance of EVCS require 
significant amounts of energy, which can result in high operating  costs1. To address this issue, accurate prediction 
of power consumption is necessary to optimize the utilization of charging stations and minimize operational 
expenses. In addition, forecasting income is crucial for the sustainable and profitable operation of  EVCS2.

Electric car adoption has been rising, and it is expected to keep on growing in the upcoming years. As a result, 
it is anticipated that there will be an increase in demand for EVCS, making efficient operation and maintenance 
of EVCS essential. Accurate prediction of power consumption and income can help optimize the utilization 
of charging stations, reduce operating costs, and improve revenue  forecasting3. It can also aid in planning the 
charging infrastructure especially It can help with creating the charging pin for various vehicle kinds, including 
two-wheelers, three-wheelers, and four-wheelers. Additionally, it may be used to determine if clients favor AC or 
DC stations. Therefore, there is a significant motivation to develop an accurate and efficient model for power con-
sumption prediction and income forecasting for EVCS. Time series  models4 are considered a suitable approach 
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as they can capture the trends and seasonality of power consumption accurately. The models of Autoregressive 
Moving Average (ARMA), Seasonal Autoregressive Integrated Moving Average (SARIMA) and Autoregressive 
Integrated Moving Average (ARIMA) are well recognized and often employed in time series analysis. These 
models are perfect for the job of estimating power consumption of EVCS and projecting income for the company 
since they have demonstrated promising results in properly forecasting electricity  usage5.

This study’s primary objective is to create a trustworthy time series model that can estimate EVCS’s power 
usage and the firm’s income with accuracy. The model will employ a variety of statistical techniques to find pat-
terns and trends in the historical data of power usage and revenue. The company can optimize operations and 
efficiently manage resources by properly forecasting power use and income. This would not only save money 
but also contribute to improving the EVCS user experience for the consumers.

This paper is organized as follows: "Background" section presents the state of art literature review related to 
papers on EVCS and Forecasting the income based on prediction. "Methodology" section describes the meth-
odology based on the time series models such as ARMA, ARIMA and SARIMA that are utilized to study data 
which helps in forecasting the future trends. Also, it gives a clear picture of the data collected from the charging 
stations of Colorado in USA. Preprocessing and Exploratory Data Analysis is done using packages in PYTHON. 
The results are discussed in “Results and discussions” section with graphical explanations. RMSE, MAE and 
MAPLE are the evaluation metrics used for the evaluation process. The forecasting plots shows that SARIMA 
model shows better result when compared with ARIMA and ARMA.

Background
This journal paper, authored  by6, presents a comprehensive conceptual framework for the successful integration 
of EVs into electric power systems. The framework encompasses two main domains: the technical operation of 
the grid and the electricity markets environment. The paper provides a detailed description of the various stake-
holders involved in these processes and their respective activities. Additionally, several simulations are conducted 
to demonstrate the potential impacts and benefits that arise from the integration of EVs into the grid under this 
framework. These simulations include analyses of steady-state and dynamic  behaviors7. The paper discussed three 
types of EVs that are currently relevant in the market: fully EVs, fuel cell EVs, and hybrid EVs. It acknowledges 
that the widespread adoption of these vehicles, particularly those relying solely on electric power, will have sig-
nificant implications for the design and operation of electric power systems. In summary, this paper presents a 
comprehensive conceptual framework for integrating EVs into electric power systems, addressing technical and 
market aspects. It emphasizes the challenges and benefits of EV integration and proposes strategies for effective 
operation and management. The presented simulations provided insights into the potential impacts and highlight 
the importance of advanced charging control strategies and local-level control for optimal system performance.

This journal article, written  by8, was centered on the creation of streamlined EV powertrain models for 
brand-new and current production cars, particularly the Tesla Roadster and Nissan Leaf. The models are based 
on published vehicle parameters and range information are compared with manufacturer specifications for range 
under various driving conditions and drive cycles. To validate the models, test results for the Tesla Roadster and 
Nissan Leaf are used, where a GPS-based smartphone app and Google Earth are used to simulate the geography 
of the test path. The paper demonstrated excellent correlations between the model projections, manufacturer 
data, and experimental outcomes. The study also considered the impacts of battery degradation over time and 
vehicle HVAC loads. These factors are considered to provide a more realistic assessment of the EV powertrain 
performance. Overall, the paper provides valuable insights into the performance of EV powertrains and their 
range capabilities.

Cai et al.9 discusses the energy issue and the state of ecosystem. According to them, the distribution network 
was facing new difficulties because of the growth of electric cars. The charging plan, the position and size plan-
ning for EV charging sites, and the cooperation coordination among EV and the distribution network all rely 
on the projection of charging demand and the scope of future EV growth. They assert that the growing size and 
charging capacity forecasting model for EV are established using the artificial neural network technique. The 
model’s accuracy was demonstrated through an example of Kunming, a significant city in West China, and the 
projection of the size and filling capacity of EVs. It has been determined that their study offers a fresh approach 
to forecasting China’s electric car market’s future growth size and charging load.

The  author10 addresses the problem of range anxiety and the variable anticipated range left in electric cars, 
which prevents their widespread adoption, in this article. The goal of the research is to comprehend the root 
causes of potential range prediction errors and how intelligent transportation systems (ITS) might assist in find-
ing solutions. Eleven participants made 141 documented trips, and the findings showed that the range projected 
by the EV and provided to the driver was overstated by around 50% in comparison to the actual trip distance. 
According to the research, driving aggressively results in increased mistakes and has the most influence on range 
forecast accuracy. In summary, the paper reveals that range predictions in EVs are often overestimated compared 
to actual journey distance. Driving style and journey characteristics play significant roles in range prediction 
accuracy. The study suggests incorporating these factors into range prediction algorithms and utilizing intel-
ligent systems to improve accuracy. It also highlights the importance of the driver’s behavior in maximizing the 
available range of an EV.

The  author11 sought to identify and measure links between the vehicle’s kinematic parameters and its energy 
usage. To build the energy consumption calculation models, they used actual statistics on EV energy consump-
tion. With the vehicle dynamics equation as the base physical model, they built three models using multiple 
linear regression. The input variables (predictors) used by each model are aggregated at a separate level, allowing 
prediction based on the input data available. One approach aggregates kinematic parameters in trips; another 
extends this model with fine-grained acceleration parameters over the journey; and the third uses fine-grained 
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kinematic parameter values to forecast micro-trips energy consumption. Multiple linear regression (MLR) having 
a much higher correlation coefficient was shown to be a successful strategy for estimating energy usage using 
aggregated tour data by accounting for a significant percentage of the variability included in the data. The findings 
showed that increasing the degree of detail in a model has the potential to produce one that is more accurate. 
Finally, concluded as non-linear effects of regenerative braking are mapped by connecting traffic situations and 
driving style with CMF to create accurate models.

The  author12 provides an overview of research on measuring and estimating energy consumption in EVs. The 
study emphasizes the significance of EVs in reducing oil dependence, improving efficiency, and mitigating carbon 
emissions. They developed a data collection system and analyzed 5 months of data to evaluate EV performance 
and driver behaviors. The findings revealed higher efficiency on in-city routes compared to freeways, with driv-
ers adjusting behavior based on real-time energy usage information. The research explored the relationships 
between EV power and variables such as velocity, acceleration, and roadway grade, highlighting their impact 
on energy consumption. They proposed an empirical method and an analytical model for EV power estima-
tion, successfully predicting instantaneous power and trip energy consumption. The study also demonstrated 
the feasibility of data collection and provides insights for enhancing EV energy efficiency. Limitations include 
a restricted dataset involving a single driver and vehicle, calling for broader studies with multiple drivers and 
commercially produced vehicles is required to validate the estimation model. Overall, this research contributes 
to understanding EV energy consumption and offers valuable insights for researchers and EV users.

In this  article13, the difficulties in accurately estimating the energy consumption of EVs are discussed and 
potential solutions are provided. EVs are complex devices with multiple concurrent processes involving energy 
consumption and generation within different onboard systems. Achieving more precise simulations of energy 
consumption is crucial for gaining a better understanding of energy management in electric transport and ulti-
mately contributing to a sustainable future with enhanced convenience in terms of distance range and recharg-
ing time. This paper addresses the problem of energy consumption simulation for EVs using various software 
packages and offers insights on making the simulation process more precise. By doing so, engineers can develop 
improved energy management strategies for EVs. Computer simulation plays a crucial role in the development 
and optimization of EV systems, and accurate modeling is a central challenge. Specific testing cycles such as 
NEDC, JC-08, and EPA cycle are utilized for powertrain simulation and optimization in different regions. In 
summary, this paper underscores the challenges of simulating energy consumption in EVs and proposes meth-
ods to enhance accuracy. It emphasizes the importance of precise modeling for improving energy management 
strategies, optimizing powertrain systems, and facilitating overall performance enhancement in EVs.

Several contrast  methods14 using participatory sensing for predicting the individual energy (1) a comparison 
to the average using personalized customization; (2) two techniques to resemblance matching based on vehicle/
driver/environment-dependent characteristics utilising pace profile comparison and driving habit match; and 
(3) an ensemble filtration strategy utilising matrix factorization. To find variables that depend on the driver, the 
car, and the surroundings, they also used a collaborative filtering technique based on matrix factorization and a 
black box framework. As there is a lack of systematic research on the effective use of the data for individualized 
prediction even though it can provide a variety of driving data.

Additionally, they conducted a case study using data from participatory sensing to forecast the distance to 
empty for electric vehicles, and they empirically assessed their results, that demonstrated that their approaches 
could greatly increase prediction accuracy. De Cauwer et al.15 to address the issue of range anxiety, they provided 
an energy consumption forecast method for EVs that was designed for energy-efficient routing. Using real-world 
measured driving data, geography data, and weather data, this data-driven technique anticipates consumption 
across every specific road in a road network.

They have approximated the energy consumption over road segments using a MLR models that links the 
energy consumption with minor driving characteristics and external factors. A neural network (NN) is utilized to 
forecast the unknowable microscopic driving parameters over a segment before departure based on the features of 
the road segment and the  weather16. This method enables cost-optimization methods to choose energy-efficient 
paths and allows for the pre-departure forecast of every road in the system, there is energy usage.

The advantage of the data-driven method, according to their argument, is that the models can be easily 
modified in long run time to reflect changing circumstances. The development of a driving range estimation 
model for electric cars considering the influence of environmental temperature and driving circumstances is 
the main topic of this paper, written  by17. Even though EVs are popular the limited energy density, high costs, 
and short cycle life of power batteries result in a restricted driving range compared to conventional vehicles. 
This research suggested a technique for estimating driving range that combines driving cycle recognition and 
prediction in order to overcome these difficulties. The driving cycle was first located using fuzzy C referring to 
clustering and Kernel principal component feature parameters. MATLAB/Simulink version  R2023b18 is used 
to construct a fuzzy rule between the characteristic parameters and energy usage. The driving range estimation 
method is validated using a rotary drum test bench under the ECE 15 condition, and the results are compared 
with the estimation results of actual driving mileage. In summary, this paper presents a driving range estimation 
model for EVs that incorporates the effects of environmental temperature and driving conditions. The proposed 
method provided a new approach to estimate the driving range of EVs, considering various factors and optimiz-
ing energy consumption modeling.

The amount of energy needed for a future  journey19 rely on a variety of elements, including driving style, 
knowledge of the topography of the road, the weather, and the flow of traffic. To anticipate the energy consump-
tion for a future journey, Jiquan Wang, Igo Besselink, and Henk Nijmeijer discussed an algorithm that comprises 
of an offline algorithm and an online algorithm. They contend that the offline algorithm is intended to offer 
information for the driver to create future driving plans, whereas the online algorithm is intended to adjust the 
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energy consumption prediction result based on current driving. They can confirm their energy consumption 
prediction algorithm with the aid of 30 driving tests.

The observed energy consumption for all trips was within the offline algorithm’s allowable range, and the 
bulk of the differences between the measurement and nominal prediction was less than 10%, according to a com-
parison of the  data20. Over the years, there has been a steady rise in the desire for electricity. A decent predictive 
model is, therefore, necessary to comprehend future consumption. Additionally, it aids in creating new plants 
and networks in order to prepare for anticipated increases in demand for electricity. Hence, the extensive use 
of ARIMA models for time series prediction by Praphula Jain, Waris, and Rajendra has produced encouraging 
findings. Using the ARIMA model, they have tried to predict how much energy will be used. After analyzing the 
electricity usage in IIT, (ISM) for the years 2004 to 2008, the seasonal ARIMA model was determined to be the 
best model. It was also able to predict consumption for the years 2008 and 2009.

Driving  ranges21 of many EVs running on highways are projected by the authors, and this knowledge was 
utilized to develop a recommendation system. By using actual statistics on EV trips to build data-driven models, 
they can compute recommendations based on energy consumption. For well-known EV models, extremely pre-
cise prediction models are created using the authors’ method. Prediction accuracy for new EV models, however, 
is lower than for popular EV models since fewer journeys by new EV models are made on the motorway than by 
well-known EV models. In order to solve this problem, the authors proposed a novel transfer learning strategy. A 
type of machine learning called transfer learning creates prediction models utilizing more than enough data on 
well-known EV models. They have put forth a novel transfer learning technique that incorporates more data to 
develop forecast models, more full information on popular EV models. Additionally, they tested their approach 
using real EV trip data. They claim that consequently, their approach had a prediction error rate that was 30\% 
lower than the traditional approach. Finally, it was found that the suggested method might be able to predict 
new EV models’ energy consumption more precisely.

A Model for Predicting Electric Energy Consumption (EECP-CBL) that predicts electric energy consumption 
by combining a convolutional neural network (CNN) and a bi-directional long short-term memory (Bi-LSTM)22. 
Two CNNs are used in this study’s initial module of the individual house electric power consumption dataset, 
that gathers the key information from a variety of sources. To create predictions, a Bi-LSTM module with two 
Bi-LSTM layers uses the data indicated above as well as time series patterns in both the forward and backward 
routes. They basically carried out these experiments to compare the forecasted results of the proposed model 
and the state-of-the-art models for the IHEPC dataset with various changes. Finally, findings showed that the 
EECP-CBL framework outperformed the most recent methods in terms of several performance measures for 
predicting electric energy usage. The efficacy of the electric energy usage prediction model is said to be enhanced 
in the future using various methods, including evolutionary algorithms.

This  literature23 summarizes the research conducted by on the stability and power consumption of EVs using 
different modern control strategies. The study introduces a novel control approach based on Artificial Neural 
Networks (ANNs) to predict the yaw moment for ensuring the lateral stability of EVs with four in-wheel motors. 
Computer simulations are conducted to evaluate the robustness and power consumption of the proposed Neural 
Network Controller (NNC) compared to Sliding Mode Control (SMC). The results show that the NNC achieves 
stable motion near the driving limits with slightly lower power consumption compared to SMC. Additionally, 
the soft computing controllers exhibit robustness against system uncertainty and consume satisfactory energy 
from the electric motors. This research contributed to understand stability control in EVs and highlighted the 
potential benefits of employing modern control strategies to enhance stability and reduce power consumption.

Time series ML analysis is used for forecasting in many different industries. ML-driven data series analysis 
can help predict the following: Demand and sales. ML can help analyze historical data to predict customer 
demand or sales. In some cases, there may be a scarcity of historical time series data, making it challenging for 
ML models to learn meaningful patterns. In certain cases, time series data may lack clear patterns or trends, 
making it difficult for ML algorithms to identify meaningful relationships and make accurate predictions. Poor 
quality or inconsistent time series data can negatively impact the performance of ML models, leading to inac-
curate predictions and unreliable insights. Certain industries or domains may have unique challenges that are 
not easily addressed by generic ML models.

This work summarizes the research on a novel ensemble method for forecasting EV power consumption 
in  Spain24. The study addresses the challenges associated with increasing EV usage and the need for power 
companies to adapt their generation accordingly. The proposed approach combines ARIMA, GARCH, and 
PSF algorithms using ensemble learning to forecast EV power consumption. The non-stationary nature of the 
time series adds complexity, leading to the dynamic weighting of algorithms over time. The study demonstrated 
the effectiveness of the approach using the Weighted Absolute Percentage Error (WAPE) metric. The research 
contributes by developing an ensemble algorithm, analyzing non-stationary time series, applying the method to 
real data, and implementing it at the EV Control Center. Coefficients are periodically updated to handle evolv-
ing data, and future research could focus on optimizing update frequency and exploring specialized treatments 
for holidays and different charging station aggregations. Overall, this research advances the field of EV power 
consumption forecasting and showcases its practical applicability in the Spanish system.

To forecast the demand for charging new EV models with larger battery capacities, A DCFCS dynamic plan-
ning approach that considers user behaviour and probabilistic driving patterns was developed by Marjan Gjelaj 
and  colleagues25. EVs (electric cars) seem to be a viable option for promoting green transportation and reducing 
CO2 emissions in urban areas. It is recommended to have saved charging need and synchronized charging need 
to lower the peak load from EVs and the expense of the charging infrastructure.

They considered a few configurations, such as synchronized storage feeding demand and charging demand, 
inside the stochastic planning technique. To reduce the running costs of the DCFCS and the peak demand for 
EVs, they have proposed an ideal BES as a replacement strategy. They also used setup strategies as a optimum 
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multipurpose design issue with the primary objective of lowering grid-reinforcement costs. The last phase was 
to carry out an economic analysis to evaluate the technical and financial elements of DCFCSs, the life-cycle costs 
of BESs, and the financial performance of BES costs in relation to grid-reinforcement expenses. Predicting the 
charging demand of PEVs (the energy consumed during the charging session) could aid in the efficient manage-
ment of the electric  grid26. One of the key components of green buildings and microgrids is now energy usage 
tracking. A dataset with information on charging via public charging facilities in Nebraska, USA was used, over 
the course of seven years. They have also boldly used data from many stations to apply the predicted framework.

In that case, it is probable that those input variables have an even stronger link with consumption of energy, 
improving estimates for a smaller percentage of consumers. The same framework may be used with data from 
a smaller area or even just one station. The challenge they ran into in this study was trying to build a prediction 
model to explain charging and parking habits after analyzing a substantial amount of semi-random data. They 
assert that by examining the charging trends at both public and private charging stations, this analysis can be 
strengthened.

In this article, Kim and  Kim2 examine the most recent EV energy usage models with the goal of offering 
recommendations for the development of EV apps in the future. They discuss EV energy consumption models 
in terms of modeling scale (microscopic vs. macroscopic), methodology, and they essentially divide the influ-
encing aspects of EV energy consumption to four categories: vehicle dynamics, traffic, environment-related 
factors, and automobile component (data-driven as opposed to rule-based). Their investigation shows trends 
of rising macroscopic models that can be used to predict trip-level EV energy consumption, as well as growing 
data-driven algorithms that estimated EV consumption of energy via vast amounts of real-world information 
and machine learning techniques. And it is discovered that rule-based models predominate earlier literature, 
whereas data-driven EV energy usage estimation and its applications have been drawing growing study interest 
in the last few years. Finally, they concluded that multi-scale energy estimation models should be developed as 
a comprehensive modeling strategy and that energy estimation models appropriate for applications linked to 
vehicle-to-grid integration should also be developed.

Using many scaled geographic datasets over a 2-year period, Kim and  Kim27 compare the forecasting 
approaches used to account for increases in power consumption brought on by the growing acceptance of EVs. 
They compared various modeling techniques based on historical data and exogenous variables, including long 
short-term memory (LSTM) modeling and Trigonometric, Box-Cox, auto-regressive moving average (ARMA), 
trend, and seasonality (TBATS) are other names for trigonometry exponentially smoothing state space. It was 
found that the historical data’s importance was confirmed, and the effects of exogenous variables are evaluated 
on both macro and micro-scale geographic regions. When they compared time-series techniques with machine 
learning techniques, they found that machine learning had the advantage of requiring comparatively less model-
fitting assumptions and straightforward hyperparameter tuning, but that it was not always highly predictive. 
They finally reached a decision. For macro data with generally straightforward patterns, the ARIMA model with 
regressors produced the best results.

With the help of other researchers, Straka et al.28 created a data-centric methodology to examine how the func-
tions, behaviors, and attributes of the environment around slow-charging facilities affect how energy is distributed 
there. They examined the likelihood distribution of energy use and its relationship to indicators of charging 
occurrences to gain some fundamental knowledge. They gathered geospatial information and produced numer-
ous potential features that modeled the physical environment in which the charging infrastructure functions. It 
was found and analyzed a relatively small subset of the most significant characteristics that are correlated with 
energy usage using statistical techniques. They distinguished the chosen characteristics by applying the approach 
to a particular class of charging infrastructure, as decided, for example, by the rollout strategy employed. The 
proximity of public venues, working residents, and business categories are associated with greater energy usage 
at carefully placed charging infrastructure. Age-related characteristics of the populace have an impact on how 
much energy is used at recharge stations that are installed according to demand. It was discovered that their work 
offered insightful information on the types of data to gather and incorporate into prediction models to help with 
the implementation of charging infrastructure and the planning of power networks.

A thorough breakdown of the many aspects of the EV industry and its charging system is provided by Naga-
raju Dharavat, Naresh Kumar, and  others29. Additionally, It provides a step-by-step procedure for implement-
ing the Vehicle to Grid (V2G) concept, explains how artificial intelligence can be used to capture data from the 
EV battery, and analyses the costs and benefits of using the V2G method effectively. This article also includes a 
list of various EVs, storage locations, methods for charging EVs using DGs combined with EVCS, as well as a 
variety of other socio-technical concerns with EVs. The acceptance rate and current stage of EVs globally have 
received attention.

EVs are a desirable way to reduce rising fuel use and GHG emissions, but their widespread use may compro-
mise the distribution system’s  reliability30. As a result, many methods are used to forecast the charging of EVs. 
Using a dataset made up of 2000 observations of charging events gathered from two public charging stations 
in Morocco, Mouaad Boulakhbar and colleagues compare the performance of four well-known deep learn-
ing models, namely ANN, recurrent neural networks (RNNs), LSTM, and gated recurrent units (GRUs), in 
predicting charging demand for EVs. The findings demonstrate that all four regression methods are capable of 
accurately predicting Morocco’s demand for EV charging. They claim that these findings can both short-term 
ensure the grid’s dependability and long-term direct the Moroccan National Office of Electricity and Water to 
create more charging stations. Mediouni et al.31 suggested a hybrid strategy to achieve this goal by accounting 
for factors like extra weight, road conditions, and driving habits. Physical and equation-based models are used 
to simulate the major EV parts. They primarily used a large synthetic dataset to illustrate various driving situa-
tions. A city car was also used to gather data from the real world. To connect mechanical and electric power, they 
created a machine-learning algorithm. In terms of R2 and root mean square error (RMSE), it turned out that 
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the proposed models performed well. They also added that it might be useful for route planning by EV users to 
lessen range-anxiety, as well as for people making judgments regarding autos for the appropriate sizing of parts 
like the battery and powerplant.

This paper by Wang and  Abdallah32 introduces the concept of a semi-decentralized robust network of elec-
tric vehicles (NoEV) integration system for efficient power management in a smart grid platform. The primary 
objective of this system is to tackle the challenge of balancing energy supply and demand, particularly in the face 
of fluctuating energy generated by renewable resources. To achieve this, the proposed approach integrates an 
aggregator with EV fleets using a blockchain framework. The system employs a multi-stage algorithm executed 
by the EVs, that incorporated a novel federated learning algorithm called Federated Learning for Qualified Local 
Model Selection (FL-QLMS) to predict power consumption accurately. The paper emphasized the significance 
of efficient distribution and utilization of renewable energy, highlighting the virtual power plant (VPP) as a vital 
intermediary in the smart grid ecosystem. NoEV addresses critical factors such as robustness, cost-efficiency 
of data storage, rapid response to demand, and scalability. In conclusion, this paper presented a sophisticated 
semi-decentralized system, leveraging blockchain technology and innovative federated learning algorithms, to 
integrate EVs into power management effectively. The NoEV system demonstrated improved efficiency, accuracy, 
and robustness in addressing the challenge of balancing energy supply and demand in the smart grid domain.

In order to meet the FCS’s demand for electricity while reducing the cost of production and energy loss, 
energy management and optimization are consequently crucial for the mixed energy  system33. A mixed-integer 
linear programming-based energy management technique was created as part of a model reference adaptive 
control to address this issue and enhance the charging station’s performance. The results of modeling and test-
ing the proposed system with the MATLAB/Simulink software are discussed. The evaluation finds that the 
recommended energy management system offers a performance that is optimum for the rapid charging station’s 
integration with nuclear and renewable energy.

Methodology
The need for power consumption forecasts is growing as more people switch to EVs so that charging stations 
can be efficiently  managed33. In the end, accurate power consumption predictions can help with the efficient 
planning and construction of EV infrastructure.

A charging activity dataset downloaded from the Colorado GOVERNMENT website to predict future power 
consumption. The general architectural diagram for the energy prediction and revenue forecasting is shown 
in Fig. 1. Data collection, data preprocessing and exploratory data analysis are carried out. The project then 
acquired an additional charging activity dataset from chargeMOD for future usage prediction. However, since 
this dataset contained charging activity data for various types of stations and vehicles, the charging activity data 
was grouped into categories for AC stations, DC stations, two-wheelers, three-wheelers, and four-wheelers, and 
further data preprocessing and exploratory data analysis was performed. This classification allowed for more 
precise forecasting of power consumption based on the specific charging station and vehicle type.

Model building
Time series models such as ARMA, ARIMA, and SARIMA are utilized to foresee future values based on histori-
cal data.

ARMA (autoregressive moving average) model
The ARMA model is made up of two parts: autoregression (AR) and moving average (MA). The present value of 
a series is modeled in an AR model as a linear combination of previous values of the same  series34. The current 
value of a series is modeled in an MA model as a linear mixture of historical mistakes, which are the disparities 
between the series’ actual and predicted values.

ARIMA (autoregressive integrated moving average) model
The ARIMA model is an extension of the ARMA model that differs the series to make it stationary before fit-
ting an ARMA  model35. The difference between consecutive values of the series is calculated until it becomes 
stationary.

SARIMA (seasonal autoregressive integrated moving average) model
The SARIMA model is an extension of the  ARIMA35 model that is used when the series contains a seasonal 
component that must be modeled. The SARIMA model adds seasonal parameters that capture the seasonal 
patterns in the data.

(1)ARMA
(

p, q
)

: Yt = c +

p
∑

i=1

ϕiYt−i +

q
∑

i=1

θiǫt−i + ǫt

(2)ARIMA
(

p, q
)

: Yt = α + β1Yt−1 + β2Y(t−2) + · · · + βpYt−pεt + φ1εt−1 + φ2εt−2 + . . . φqεt−q

(3)SARIMA
(

p, d, q
)
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In summary, the ARMA model is used for stationary data, the ARIMA model for non-stationary data, and 
the SARIMA model for data having a seasonal component. These models can be used to estimate future values of 
a time series by estimating the model parameters and then utilizing them to forecast future values of the series.

Identifying stationarity
To ascertain if a series has a consistent mean and variance over time, identifying stationarity is a fundamental step 
in time series forecasting. Visualizing the autocorrelation function (ACF) and partial autocorrelation function 
(PACF) plots is one method of determining  stationarity36. The best models, such ARMA, ARIMA, or SARIMA 
are chosen for forecasting future values and increase the accuracy of our forecasts by determining stationarity 
in a time  series37.

Data collection
The charging activity dataset is compiled from two sources, the first of which was a website that had data (refer 
Table1) on charging sessions in Colorado, USA, over a four-year period. Other dataset is taken from Kerala, 
India, from chargeMOD’s public charging stations. The chargeMOD company provided the following datasets: 
a six-month overall dataset of charging activity, six-month charging activity datasets for AC and DC stations, 
nine-month charging activity datasets for two-wheelers, three-wheelers, four-wheelers and finally a subscrip-
tion dataset to forecast revenue of the company. With this analysis which batteries are charged more frequently, 
charging trends of various types of automobiles can be determined and new subscription plans can be made.

Data description
The data from datasets from many sources are used to create the time series models. The Colorado dataset con-
tains information about electric vehicle charging stations located in Colorado, USA. The main attributes of the 
dataset include the station name, zip code, start date, and end date of the charging session, total duration of the 
session, and energy consumption in kWh. The dataset provides insights into the usage patterns and environmen-
tal impact of EV charging in Colorado. To predict or forecast future charging behavior, the datasets are split into 
a training set and testing set such that 70% of the data is for training, while the remaining 30% is for testing the 
predictive models. Subsequently training different models on the training set, the performance of each model is 

Figure 1.  Architecture diagram.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6497  | https://doi.org/10.1038/s41598-024-56507-2

www.nature.com/scientificreports/

evaluated on the testing set to determine which model performs the best. The model with the highest accuracy 
is selected and used for future predictions of charging behavior.

The overall charging activity dataset contains data on the charging activity of users at charging stations, 
including user id, station id, station type, start date, stop date, total duration, and energy usage in watt-hours 
(wh). The charging activity dataset is further broken down by vehicle type, including AC usage, DC usage, two-
wheelers, three-wheelers, and four-wheelers. Each dataset has the same attributes as the overall charging activity 
dataset. Finally, the plan subscription dataset contains information about user subscriptions, including user id, 
plan id, plan name, plan price, validity, plan energy, and balance. For time series forecasting, only the date and 
usage attributes are used, while other attributes are used for exploratory data analysis.

Data preprocessing
Initially charging activity dataset from Colorado is downloaded and null values referred as missing values denotes 
the absence of data for a certain observation or variable. Numerous things, including errors in data collection 
or entry, problems with the equipment, or simply the absence of data points, can result in null results. Since 
null values can impair the accuracy of the analysis and predictions, dealing with them is a crucial part of data 
preparation. Hence the rows containing the null values are removed. The only important fields needed for time 
series forecasting are the date field and usage field. That is locating and eliminating any duplicate or unnecessary 
variables, such as variables unrelated to consumption or pricing data, that are not required for the time series 
analysis. By concentrating on the pertinent variables that are connected to the time series pattern, this approach 
is crucial for time series forecasting since it reduces noise and increases the model’s accuracy.

The dataset contained daily timestamps corresponding to the usage, so the data was converted into monthly 
energy usage and used for time series forecasting. Through the process of aggregating or summarizing the data 
points for each day, the minute-by-minute data are grouped into daily data. Depending on the needs of the study, 
this can be accomplished by calculating the mean, median, or total of the minute-by-minute consumption data 
for each day. For data aggregation, mean for the minute-by-minute consumption data for each day is used. This 
procedure is crucial for time series forecasting as it aids in reducing data noise and unpredictability and offers a 
more comprehensive daily perspective of the time series pattern, making it simpler to identify seasonality and 
long-term patterns.

The next step is date-time manipulation, that includes changing the date and time information into a format 
appropriate for time series analysis or extracting certain properties like the day of the week or the month of the 
year. This procedure is crucial for time series forecasting because it helps the models more precisely identify pat-
terns and trends in the data and produce forecasts for future values. If the data was found to be non-stationary, it 
is made stationary by first-order differencing. The data is then used to get ACF and PACF plots to determine the 
order of the AR and MA parts in different time series models. The second dataset is collected from the company 
chargeMOD and contained charging sessions of different users. Since the charging activity dataset is further 
grouped for AC and DC stations and two, three, and four-wheeler charging session data. Finally, a subscription 
dataset from the same company is used to predict revenue through different subscription plans using the same 
steps, excluding splitting it according to station type and vehicle type.

Table 1.  Colorado data (sample data set).

State province
Zip postal 
code

Start date/
time

Start time 
zone End date time End time zone Total duration Charging time Energy GHG savings

Gasoline 
savings

Colorado 80302 1/20/2018 7:29 MDT 1/20/2018 9:22 MDT 1:52:59 1:52:41 4.608 1.936 0.578

Colorado 80302 1/20/2018 
11:42 MDT 1/20/2018 

15:27 MDT 3:45:39 2:22:15 8.786 3.69 1.103

Colorado 80301 1/20/2018 
11:51 MDT 1/20/2018 

12:54 MDT 1:03:01 1:02:50 4.94 2.075 0.62

Colorado 80302 1/20/2018 
13:55 MDT 1/20/2018 

13:57 MDT 0:02:00 0:00:00 0.0 0.0 0.0

Colorado 80305 1/20/2018 
14:54 MDT 1/20/2018 

15:52 MDT 0:58:33 0:58:25 3.023 1.27 0.379

Colorado 80301 1/20/2018 
20:21 MDT 1/21/2018 8:06 MDT 11:44:35 3:09:24 8.738 3.67 1.097

Colorado 80305 1/21/2018 
14:19 MDT 1/21/2018 

16:12 MDT 1:53:38 1:53:27 11.336 4.761 1.423

Colorado 80301 1/21/2018 
17:27 MDT 1/22/2018 7:41 MDT 14:14:38 4:53:09 19.976 8.39 2.507

Colorado 80302 1/22/2018 
10:04 MDT 1/22/2018 

16:15 MDT 6:11:13 2:06:43 6.62 2.78 0.831

Colorado 80302 1/22/2018 
11:22 MDT 1/23/2018 9:41 MDT 22:18:26 2:14:06 4.792 2.013 0.601

Colorado 80302 1/22/2018 
12:53 MDT 1/22/2018 

14:47 MDT 1:53:19 1:53:05 6.899 2.898 0.866

Colorado 80304 1/22/2018 
14:00 MDT 1/22/2018 

15:19 MDT 1:19:03 1:18:47 4.776 2.006 0.599
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Overall, the data preprocessing steps involved cleaning the data, converting it into monthly or daily usage, 
checking for stationarity, and using ACF and PACF plots to determine the order of AR and MA parts in time 
series models. The dataset was also split based on station type and vehicle types to get a more accurate predic-
tion. In time series forecasting, splitting a dataset entail separating the data into two parts: a training set and a 
testing set. The time series model is created using the training data, and its effectiveness is assessed using the 
testing data by contrasting the projected values with the actual values. The sequence of the data points is crucial 
for time series analysis; hence attention should be used while dividing the dataset. A rolling window technique 
is a popular method for dividing a time series dataset, with the training set consisting of the first portion of the 
time series and the testing set consisting of the second half of the time series. The dataset is divided into a train-
ing set, which contained 70% of the data, and a testing set, that contained the remaining 30%, to create our time 
series forecasting model.

Autocorrelation function (ACF)
Order for the MA model is taken as 0 since there is no line extending in the region as shown in Fig. 2. The 
Autocorrelation Function, or ACF, is a statistical tool for determining the degree of correlation between a time 
series and its lagged  values38. By plotting the autocorrelation values against the corresponding lags, the ACF 
is represented graphically in the ACF plot. The existence of a pattern in the data that repeats every k time step 
is implied by a substantial autocorrelation at lag k, which suggests that the value of the time series at time t is 
strongly correlated with its value at time t-k. An absence or mild autocorrelation at lag k indicates that the data 
do not have such a repeating pattern. Indicators indicating the type of process creating the time series, such as 
the existence of seasonality or trends, can also be found in the shape of the ACF plot.

Partial autocorrelation function (PACF)
Order for the AR model in Fig. 3 is taken as 5, as only few lines are extending the region. Another tool used in 
time series analysis to comprehend the correlation structure of a time series is the partial autocorrelation function 
(PACF) graph. The correlation between a time series and its lags is displayed using a PACF plot while accounting 
for the impact of shorter lags. After accounting for all shorter delays (i.e., 1 through k-1), the PACF at lag k is the 
correlation between the time series at time t and its lagged value at time t-k. The order of an autoregressive (AR) 
process can be determined using a PACF display. The order of a moving average (MA) process can be determined 
using a PACF graphic. For an MA process, the PACF will specifically degrade gradually. A stationary time series 
is one in which the correlation coefficients rapidly decrease as the lag lengthens, but the PACF plot abruptly ends 
after a predetermined number of lags. In contrast, a non-stationary time series will show ACF and PACF plots 
that are progressively decaying, which suggests the presence of a trend or seasonality.

Evaluation metrics
RMSE, MAE, and MAPE scores are the three common assessment metrics to compare the performance of vari-
ous time series models. These measurements are frequently used to evaluate a predictive model’s ability to match 
the data and predict the future accurately.

Using these assessment measures, the performance of three distinct models—ARMA, ARIMA, and 
SARIMA—on various datasets are assessed. As indicated by its reduced RMSE, MAE, and MAPE scores, our 
study demonstrated that the SARIMA model consistently outperformed the other models across all datasets. 
This suggests that the SARIMA model is more adept at identifying patterns and trends in the data and producing 
precise forecasts of future values. These findings led us to choose the SARIMA model as the preferred model for 
forecasting the future. When compared to the ARMA and ARIMA models, the SARIMA model performed better, 
giving it a solid option for predicting future values. Overall, the assessment metrics gave us useful information 

Figure 2.  Autocorrelation function (ACF).
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about the advantages and disadvantages of the various models, enabling us to choose the best model for future 
projections.

After analyzing the Colorado EV charging activity dataset, it is found that some charging stations had sig-
nificantly higher power consumption compared to others, indicating that factors like location and charging 
infrastructure play a significant role in energy consumption, also found that the power consumption is higher 
during weekdays compared to weekends, which could be due to increased usage by commuters. Overall, these 
insights can help in developing the necessary electrical infrastructure and evaluating the cost of operating EVs. 
Additionally, these findings can be used to optimize the placement of charging stations based on factors like 
vehicle type and location.

Software’s and packages used
Users can generate interactive dashboards and reports using the business intelligence and data visualization 
software Tableau  Desktop39. scipy package in Python offers various statistical methods like hypothesis testing, 
probability distributions, correlation analysis, and many others. Additionally, statsmodels, NumPy, in pandas 
package and datetime package in Python are used for statistical modeling, data analysis, manipulation and for 
handling dates and timings.

Exploratory data analysis
Exploratory data analysis (EDA) and the visualization of large, complicated datasets are two common uses for 
the potent tool Tableau. Analysts may visualize and examine data in several ways with the help of the software’s 
capabilities and features. Tableau uses a variety of plots to convey data visually, including bar charts, pie charts, 
and line graphs. When it comes to seeing significant patterns and trends in the dataset, such as seasonal patterns, 
outliers, and relationships between variables, these visualizations are very helpful. Using Tableau, analysts can 
rapidly and simply analyze huge datasets, produce insights, and present their results to stakeholders in a way 
that is both concise and effective.

Friday of every week consumes maximum energy of 56,010 units as can be clearly seen in Fig. 4a. Perhaps 
people prefer to charge their EVs on Fridays, or it could be due to other factors that result in higher energy con-
sumption on Fridays. There are specific periods of the day when energy usage is at its peak, according to an hourly 
examination of consumption statistics. The data specifically reveals that 10 am and 3 pm are the times when 
energy use is at its highest as seen from Fig. 4b. Compared to other times of the day, there is a noticeable increase 
in the quantity of energy utilised during these periods. To optimise energy distribution and supply at peak times 
or to inform policies that encourage energy saving during these hours, this information can be helpful in a variety 
of ways. Businesses and consumers can benefit from significant insights that can be gained from knowing when 
and where energy is being used. This will allow them to make educated choices about their energy consumption 
and perhaps cut expenses. The month-wise analysis from Fig. 5, shows that July has maximum energy usage of 
40,541 units followed by June and May. And the lowest consumption is recorded in the month of September.

Charging activity dataset
The charging stations are located at different places in the city. Also, the type of charging station, number of 
vehicles used and type of vehicle changes as per the location. In order to identify the type of station and the type 
of vehicle, station IDs are provided with Pin Id. For analysis, the station ID 1490 and Gun ID 1641, 1565 is con-
sidered. The Station Id 1490, Gun with Id 1641 had comparatively very less usage compared to Gun with Id 1565 
as can be seen from Fig. 6. The limited or nonexistent utilization of these specific charging stations suggests that 
several variables may be at play. One explanation can be the little parking available for larger vehicles. Another 
reason can be that the charging pins have some problems. Additionally, it’s probable that there aren’t many people 

Figure 3.  Partial autocorrelation function (PACF).
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that use electric vehicles nearby, which results in little to no utilization. From the plots, it can be inferred that 
other than manual stop, power failure has become the second most reason for stopping from charging for AC 
charging stations, and in DC stations it is maximum remotely stopped. It is found 1,431 times charging stations 
are force stopped in AC stations whereas only 92 times in DC stations.

Figure 7a depicts the users count in Kerala from each district and Fig. 7b portrays DC fast charge Alappuzha 
charging station turn to be the top visited station 672 times followed by Alpha DC FC 528 times. Maximum 
power consumption is also in DC fast charge Alappuzha with 8985.6 (kWh) followed by DC FC Kalamassery 
with 8217.3 (kWh). Thus, these findings imply that to alleviate the crowding issues in these charging stations, 
installing more charging pins could be a feasible solution, as the data indicates a higher number of charging 
sessions are recorded in these specific locations.

Plan subscription dataset
The users and total balance in their plans are calculated and found 5% people only completely used the plans 
before expiry. 8% users had more than 50 units in their subscription plan as portrayed in Fig. 8. It can be inferred 
that more than 50% of the users are not completely using their subscription plan from Fig. 9, which contributes 
to the company’s revenue. Figure 10, displays users and the total plans of each user are analyzed. The top 3 
plans executed by users are Rainbow, Green, and White with a count of 4503, 2878, and 1611. From this, it can 
be concluded that altering Plan Rainbow and Plan Green may result in a rise in income creation, particularly 

Figure. 4.  Average energy consumed over weekdays and each hour (a) Change in energy consumption over 
weekdays and (b) average energy consumed in each hour.

Figure.5.  Change in energy consumption over months.
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through these plans. The plan Green generated revenue of Rs. 11,53,677 followed by Rainbow with Rs. 4,77,882 
and Blue with Rs. 4,73,262. Revenue generated per day is analyzed and found to be increasing over days even 
though a dip is found at some points as seen from Fig. 11.

Results and discussions
Forecasting plots of COLORADO dataset
The Energy usage is forecasted using the ARMA model for the last 1 year for already existing data can be clearly 
seen from Fig. 12a. and b shows that energy usage is forecasted using the ARIMA model for the last 1 year for 
already existing data. In Fig. 12c, energy usage is forecasted using the SARIMA model for the last 1 year for 
already existing data. The ARMA model was trained and tested, and it was found that the predictions are off, with 
the graph showing a downward trend rather than the anticipated increasing trend. Table 2 gives a summary of 
accuracy measures used for colarado dataset. The scores for Root mean squared error (RMSE), MAE, and MAPE 
are 3227.79, 2885.26, and 0.25, respectively. As opposed to the ARMA model, the ARIMA model produced more 
accurate predictions after evaluating the data, with lower RMSE, MAE, and MAPE scores.

However, testing with the SARIMA model produced the most encouraging findings since it is very accurate 
and correctly caught the increasing trend. This model’s RMSE, MAE, and MAPE scores are much lower than 

Figure.6.  Usage classified into station ID, pin ID, station type.

Figure 7.  Users in each district and most visited stations.
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those from the other models (1869.13, 1572, and 0.16, respectively). These findings led to the determination that 
the SARIMA model is appropriate for predicting future energy use. By the middle of 2023, Colorado’s electricity 
consumption is anticipated to reach 20,903 units, according to model forecasts. Energy consumption trends can 
be forecasted using the SARIMA model and the knowledge from this study, that will ultimately result in more 
effective and sustainable energy use. In Fig. 13, SARIMA model is being used for future usage consumption 
prediction of the COLORADO dataset for 1 year.

Figure.8.  Users and total plans used.

Figure 9.  Plans used before their expiry date.
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Forecasting plots of charging activity dataset
After the ARMA model had been trained and tested using the company’s Charging Activity dataset, it is discov-
ered that the forecast is inaccurate and had missed the trend, producing a graph with a straight line as a conse-
quence. The results are 641.96, 520.64, and 0.23 for RMSE, MAE, and MAPE, respectively. However, there is a 
minor gain in accuracy when using the ARIMA model, although it too exhibited a straight-line graph. Although 
the trend is somewhat caught, the RMSE, MAE, and MAPE scores are lower than the ARMA model. The SARIMA 

Figure. 10.  Top plans executed.

Figure 11.  Total revenue from each plan.
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model, with a graph that showed an upward trend, is examined and shown to have higher prediction accuracy 
than both the ARMA and ARIMA models. The scores obtained from the other models are higher than the RMSE, 
MAE, and MAPE scores, which are 539.37, 268.06, and 0.12, respectively. The SARIMA model is chosen to 
anticipate future energy consumption, and it is predicted that the company’s power consumption will be around 
3637 Wh on March 1, 2023. A summary of the evaluation metrics for the charging data set is given in Table 3.

The energy usage is forecasted using the ARMA model for the last 1 month for already existing data as in 
Fig. 14a and b, energy usage is forecasted using the ARIMA model for the last 1 month for already existing data. 
In Fig. 14c, energy usage is forecasted using the SARIMA model for the last 1 month for already existing data.

Each model prediction is plotted in the same graph and accuracy is compared as seen from Fig. 15. In Fig. 16, 
the SARIMA model is being used for future usage consumption prediction of the Charging Activity dataset for 
2 months. Upon analyzing the data, it is found that the power consumption varied significantly across differ-
ent charging stations and time periods. it is also observed that the type of charging station (AC or DC) and the 
type of vehicle (two-wheeler, three-wheeler, or four-wheeler) had a significant impact on energy consumption.

Figure 12.  Energy usage forecasted using ARMA, ARIMA and SARIMA for 1 year.

Table 2.  Summary: evaluation metrics for Colorado dataset:

MODEL ARMA ARIMA SARIMA

RSME 3227.79 3022.34 1869.13

MAE 2885.26 2484.33 1572

MAPE 0.25 0.22 0.16

Figure 13.  Future prediction using SARIMA model for 1 year.
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Further analysis showed that the power consumption is higher in DC charging stations compared to AC 
charging stations, as expected. Additionally, it is found that four-wheelers consumed more electricity than two- 
and three-wheelers, which could be attributed to their larger size and higher power requirements. It also observed 
a trend of increasing energy consumption over time, which could be due to the growing popularity of electric 
vehicles and the increasing number of charging stations. Overall, these insights can be valuable for developing 
the necessary electrical infrastructure and evaluating the cost of operating EVs.

Forecasting plots of subscription dataset
The revenue from different subs plans is forecasted using ARMA model for last 1 month for already existing data 
is shown in Fig. 17a and b helps us to check whether the revenue from different subs plans is forecasted using 
ARIMA model for last 1 month for already existing data. After training and testing the ARMA model on the 
company plan subscription dataset, it became apparent that the graph is declining and the prediction is quite 
inaccurate, failing to capture the trend. The resulting RMSE, MAE, and MAPE scores are 6306.42, 5045.66, and 
0.13, respectively. Although the ARIMA model showed a slight increase in prediction accuracy compared to the 
ARMA model, it still had a linear graph. The resulting RMSE, MAE, and MAPE scores are lower than those of 
the ARMA model. However, when the SARIMA model is applied, the results showed a better prediction accuracy 
than both the ARMA and ARIMA models, with a graph that is trending upwards, in line with the actual data.

Furthermore, the resulting RMSE, MAE, and MAPE scores are 5197.89, 4194.04, and 0.12, respectively, 
which are lower than the scores of the other models. Therefore, the SARIMA model is selected for future rev-
enue predictions based on plan subscriptions for the company. It is forecasted that the company would generate 
a revenue of Rs. 66,853 by March 29th, 2023. Figure 17c, revenue from different subs plans is forecasted using 
the SARIMA model for the last 1 month for already existing data. A summary of the evaluation metrics for the 
subscription data set is mentioned in Table 4.

SARIMA model in Fig. 18 is being used for future revenue prediction of subs dataset for 2 months. Upon 
analyzing the data, it is found that plan Green and Rainbow plan as in Fig. 11 by generating significantly more 
revenue than others. It is also found that there is a strong correlation between the price of the subscription plan 
and the revenue generated. Additionally, it is observed that the revenue generated varied across different time 
periods, with some months generating more revenue than others. Overall, these findings can be useful in develop-
ing strategies to increase revenue for the company. By identifying the subscription plans that generate the most 
revenue, the company can focus on promoting those plans and optimizing their pricing. Additionally, analyzing 
the revenue trends across different time periods can help the company to better understand the demand for EV 
charging services and plan accordingly.

Forecasting plots of AC and DC charging stations charging activity dataset
Energy usage for AC charging stations is forecasted in Fig. 19a using the SARIMA model for the last 2 months 
for already existing data and Fig. 19b uses SARIMA model for future consumption prediction of the AC charging 
station dataset for 1 month. EV charging stations that use AC (alternating current) are often used, and they take 
a lot of energy. Several variables, such as the charging rate, battery size, and charging duration, have an impact 
on how much energy AC charging stations use. The charging time for an EV depends on its battery capacity and 
is generally determined by the charging rate, which ranges from 3.3 to 22 kW at AC charging stations.

The time needed for charging increases with battery capacity. Although it has been noted that AC charging 
stations use less energy than DC charging stations, they nevertheless make a sizable contribution to the total 
energy usage. This is especially true when many EVs are being charged at once during rush hour. Installing more 
AC charging stations in areas where they are most required would help to reduce energy usage and the burden 
on the grid during peak hours. In Fig. 19c, energy usage for DC charging stations are forecasted using SARIMA 
model for last 2 month for already existing data.

SARIMA model is being used as in Fig. 20, for future usage consumption prediction of DC charging station 
dataset for 1 month. Upon analyzing the data, it is found that the power consumption is significantly higher in 
DC charging stations than in AC charging stations Fig. 19a and c. This can be attributed to the fact that DC charg-
ing stations typically have a higher power output, hence they can charge an EV more quickly. It is also observed 
that the energy consumption varied significantly across different charging stations, regardless of whether they 
are AC or DC stations.

Forecasting plots of two-wheelers, three-wheelers and four-wheelers charging activity
Energy usage for Two-Wheelers is forecasted using the SARIMA model for the last 2 months for already existing 
data as shown in Fig. 21. In Fig. 22, the SARIMA model is being used for Two-Wheeler’s future energy usage 
consumption for 2 months.

Table 3.  Summary: evaluation metrics for charging data set.

MODEL ARMA ARIMA SARIMA

RSME 641.96 600.66 539.37

MAE 520.64 484.10 268.06

MAPE 0.23 0.22 0.12
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SARIMA model is being used for testing as in Fig. 23 and to predict the future energy consumption of Three-
Wheelers. In Fig. 24, SARIMA model is used for Three-Wheeler’s future energy usage consumption for 2 months. 
SARIMA model is used for testing and to predict the future energy consumption of Four-Wheelers as can be 
seen in Fig. 25. In Fig. 26, SARIMA model is being used for Four-Wheeler’s future energy usage consumption 
for 2 months. After analyzing the charging activity dataset of EVs based on vehicle types, it is found that the 
power consumption of four-wheelers is significantly higher compared to that of two-wheelers and three-wheelers. 

Figure.14.  Charging activity for ARMA, ARIMA and SARIMA: (a) ARMA model testing (b) ARIMA model 
testing (c) SARIMA model testing for Charging Activity dataset.
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Figure.15.  Comparison of 3 models.

Figure. 16.  Future prediction : SARIMA model for 2 months.

Figure 17.  Subscription for ARMA, ARIMA and SARIMA.
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As four-wheelers have higher battery capacity and require more power for charging, the charging duration for 
four-wheelers is longer compared to that of two-wheelers and three-wheelers. It is also observed that the power 
consumption and charging duration of two-wheelers and three-wheelers are similar. This indicates that the charg-
ing infrastructure for two-wheelers and three-wheelers can be similar and can be optimized for faster charging. 
Overall, the analysis provides useful insights for developing necessary electrical infrastructure and evaluating 
the cost of operating EVs based on the vehicle type.

For power consumption prediction, time-series models including ARMA, ARIMA, and SARIMA are 
 employed40. However, since the SARIMA model produced more accurate results as can be seen from Tables 1 
and 2, than the other models, it was used for future power consumption prediction in all cases. Finally, a plan 
subscription dataset was obtained from chargeMOD, which contained plan subscription details of users, includ-
ing the plan price. The SARIMA model was again used for forecasting revenue for the company through different 
plans.

Table 4.  Summar—evaluation metrics for subscription dataset.

MODEL ARMA ARIMA SARIMA

RSME 6306.42 5954.49 5197.89

MAE 5045.66 4873.99 4194.04

MAPE 0.13 0.13 0.12

Figure 18.  Future revenue prediction using SARIMA model for 2 months.

Figure 19.  (a) SARIMA model testing for AC charging stations Charging Activity (b) Future prediction using 
SARIMA model for 1 month (c) SARIMA model testing for DC charging stations charging activity.
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Conclusions
The results of our experiment show that the SARIMA model is the best in foretelling power usage for all three 
datasets. In particular, our forecasts indicated that on March 1, 2023, electricity consumption in Colorado is 
anticipated to be 17,765 (kWh), whereas it is predicted to be just 120.20 (kWh) in Kerala ChargeMOD. In addi-
tion, four-wheelers use more power than two- and three-wheelers, according to our study of the data. DC charg-
ing facilities also use more electricity than AC charging stations. The creation of crucial electrical infrastructure 
for electric car charging stations can benefit greatly from these revelations. Additionally, the results of our study 
may be used to determine how much it will cost to operate EV and to develop charging station and subscription 
pricing strategies. Overall, our initiative offers useful information on the power usage habits of EV charging sta-
tions and can help stakeholders build an EV infrastructure that is more efficient and sustainable.

Figure. 20.  Future prediction using SARIMA model for 1 month.

Figure.21.  SARIMA model testing for Two-Wheelers Charging Activity.
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Figure. 22.  Future prediction using SARIMA model for 2 months.

Figure. 23.  SARIMA model testing for Three-Wheelers’ CA.
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Figure. 24.  Future prediction using SARIMA model for 2 months.

Figure 25.  SARIMA model testing for four-wheelers charging activity dataset.
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First, as a way to increase the precision of the power consumption forecast, the potential for including addi-
tional real-time energy usage data is noted. By doing this, it could be feasible to expand these forecasts to specific 
stations and car models, giving consumers information that is more precise and focused. It becomes possible to 
develop and design charging guns that are tailored to the unique needs and specifications of various segments 
and models, ultimately improving the overall charging experience. Furthermore, it is recommended that further 
research be done on the effects of various price structures on consumer behavior. Companies may be able to 
improve their pricing strategies to better suit consumer demands and increase profitability by examining how 
this pricing plans influence revenue earned through charging stations. Charging stations may lessen their reliance 
on non-renewable energy sources by using the power of solar or wind turbines, eventually lowering the carbon 
footprint associated with charging Evs. Overall, the ideas presented lays the groundwork for further research 
and development in the field of EVCSs. By exploring these areas in more depth, the usability and profitability of 
EVCSs can be improved ultimately benefiting both users and businesses alike.

Data availability
The Colorado datasets analysed during the current study are available in the [Colorado dataset] repository, 
https:// open- data. bould ercol orado. gov/ datas ets/ 95992 b3938 be462 2b07f 0b05e ba95d 4c which is used for energy 
consumption. The dataset 2 and 3 that support the findings of this study are available from [chargeMOD] but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of [chargeMOD]. hello@chargemod.com.
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