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Application of analysis of variance 
to determine important features 
of signals for diagnostic classifiers 
of displacement pumps
Jarosław Konieczny 1, Waldemar Łatas 2 & Jerzy Stojek 1*

This paper presents the use of one-way analysis of variance ANOVA as an effective tool for ranking 
the features calculated from diagnostic signals and evaluates their impact on the accuracy of the 
machine learning system’s classification of displacement pump wear.The first part includes a review of 
contemporary diagnostic systems and a description of typical damage of multi-piston displacement 
pumps and Its causes. The work also contains description of a diagnostic experiment which was 
conducted in order to obtain the matrix of vibration signals and the matrix of pressures measured at 
selected locations on the pump housing and at the pump pressure line. The measured signals were 
subjected to time–frequency analysis. The features of signals calculated in the time and frequency 
domains were ranked using the ANOVA. The next step involved the use the available classifiers in 
pump wear evaluation, conducting tests and assessing their effectiveness in terms of the ranking of 
features and the origin of diagnostic signals.

Keywords Learning systems, Machine learning, Diagnostics, Signal analysis, Multi-piston pump, Vibration, 
Analysis of variance

Hydraulic drive and control have been used in many fields of technology. This was determined by their many 
favourable properties, such as: high output power density compared to the dimensions and weight of such sys-
tems, ease of automation, negligible moments of inertia of pumps and hydraulic motors, and, in most cases, their 
self-lubrication. The hydrostatic drive is commonly used in mobile machines, i.e., construction and agricultural 
machines. Power hydraulics have found application in heavy industry in press systems, rolling mills, pressure die 
casting machines and mining. Maintaining the operability of hydraulic systems requires keeping a given class of 
cleanliness of the working fluid and monitoring the physical parameters of their main components (including 
positive displacement pumps). This is the main task of maintenance engineering. The development of damage in 
a hydraulic element is usually accompanied by an increase in the temperature of the working fluid in the control 
signal lines and an increase in pressure pulsation and noise level. Monitoring of machines containing hydraulic 
systems, which is well-planned and carried out, allows for earlier determination of the working state of system 
components, thus facilitating the possibility of carrying out planned service works and preventing failures and 
resulting downtimes. Since hydrostatic drives started to be used in machines and devices, attempts have been 
made to predict and assess the efficiency of their components with the use of various  methods1. Examples of 
their implementation in the diagnosis of hydraulic components are presented below, with particular emphasis 
on techniques using the so-called intelligent fault identification.

The first, basic and well described in the literature tool used in machine diagnostics is the use of time and 
time–frequency analysis of signals measured in characteristic places of the tested system (or checked element). 
Such a solution was used at least in  works2–4 where the development of abrasive wear of the cam disk in a multi-
piston positive displacement pump was monitored. Another example may be the use of the Wavelet transform 
in the diagnosis of the external tightness of the hydraulic cylinder, which is described in the  article5.

Another method of diagnosing wear of hydraulic elements (or systems) is related to the construction of a 
model of the diagnosed element, in which the Kalman  filter6 or the extended Kalman  filter7,8 is often used as 
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a state observer. Such a solution was described  in8 as an effective tool for detecting leaks in the impeller of a 
multi-piston pump and  in7 for examining changes in the efficiency of a screw pump. The algorithm of the adap-
tive Kalman filter was used in  works9,10 to monitor the efficiency of the hydraulic manipulator and to detect the 
internal leakage of the hydraulic cylinder.

The next (third) group of systems used to diagnose hydraulic systems are systems with elements of the so-
called intelligent damage identification based on the use of machine learning and deep learning  algorithms11–13. 
In the literature, there are many papers describing the use of such solutions in the diagnostics of hydraulic 
 systems14–16. For example, the possibility of using machine learning in the diagnostics of pumps in liquefied 
gas regasification installations is presented  in17. In this case, the condition of the pump was tested based on 
the prediction of its power demand (power consumption). A comparison of the applied diagnostic models 
was made using a developed error analysis (minimum relative Error, absolute Error and mean square Error). 
The best results (the best accuracy) were recorded by the Gradient Boosted Trees GBT model. The following 
 article18 presents a combination of the empirical wavelet analysis with the Principal Component Analysis PCA 
and extreme machine learning, which was used in the diagnostics of a hydraulic piston pump. First, the vibra-
tion signals measured in characteristic places of the pump body were decomposed into components of different 
frequencies using the empirical wavelet analysis. For the signals obtained in this way, features were calculated 
and then reduced in terms of significance using PCA. The input vector reduced to the most important features 
was fed to the classifier using an extreme machine learning algorithm. The accuracy of predicting the modelled 
damage by the built learning system was 100%.

The diagnosis of abrasive wear of the piston foot in an axial piston pump using the extreme machine learning 
algorithm is presented in the  article19. Three methods of obtaining features constituting input data to the selected 
classification models were proposed, i.e. Wavelet Packet Transform (WPT), Empirical Mode Decomposition 
(EMD) and Local, Mean Decomposition (LMD). The obtained feature vectors were then ranked and the most 
significant ones were then given to the inputs of the classifiers. Finally, three pump condition prediction models 
were compared, i.e. Extreme Machine Learning ELM, Back Propagation BP and Support Vector Machine SVM.

The use of the K-nearest Neighbors classifier for effective classification of the life state of a multi-piston pump 
was described  in20. In turn, the application of the SVM algorithm to monitor the condition of a hydraulic car 
brake is described  in21.

Article22 presents the use of deep machine learning in the diagnostics of an axial piston pump. Initially, 
time–frequency portraits were obtained using a continuous Wavelet transform of vibration signals as input data 
for the Convolutional Neural Networks CNN, then the ranges of the adopted hyperparameters of the network 
were optimized using the Bayesian optimiser. By integrating deep machine learning and the adaptive Bayesian 
algorithm, a modified model was obtained for diagnosing failures in pumps.

Article23 presents the use of a deep Multi-Signal Fusion Adversarial Model Based Transfer Learning MFAN in 
the diagnostics of an axial displacement pump operating under variable operating conditions, i.e. variable capac-
ity and pressure (as is the case in most drives of construction and agricultural machines). A modular structure 
of the system was proposed by first carrying out fusion of vibration and acoustic signals with assigning their 
weights, with a module for generating features and the adopted structure of the neural network. The average 
accuracy of MFAN in identifying damage reached 98.5%.

The use of deep machine learning to classify faults in axial piston pumps is also presented in  articles24,25. 
Applying the deep belief networks architecture in this case, a high accuracy of classification of the four most 
common axial piston pump faults was achieved. The classification accuracy was above 97%. Device monitoring 
with a discussion of Deep Belief Network (DBN), Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN) is presented  in26.

Many papers on the diagnostics of displacement pump failures are based on using previously prepared models 
of pump component damage. Such an approach does not give the complete picture of the damage and is only its 
approximation. The authors have applied a different approach, which involves obtaining the pump component 
wear in a natural way based on a long-term pump operation under an assumed load at lowered oil purity class. 
In addition to obtaining the image of pump component wear in a natural way, this method allows controlling 
and observing the damage development and accompanying symptoms.

The review of papers on the diagnostics of hydrostatic systems indicates that most authors evaluating the 
efficiency of such systems use signals measured in stationary operating conditions (after the system reached 
thermal stability). The operational practice however proves that information included in signals measured in 
the non-stationary pump operation (at varying viscosity of the operational liquid) gives a fuller picture of the 
component wear. To evaluate the pump component wear, the authors have used signals measured in a steady 
state and in dynamic transient states.

In this paper, the authors have presented the application of machine  learning27 in the classification of wear of 
a multi-piston displacement pump. Machine learning systems have many advantages in engineering applications, 
such as the possibility of building a system of a very good classification accuracy with the use of a reasonable 
amount of data and short learning times of the developed diagnostic models. From the beginning, the assumption 
was that the learning system would be based on measures (features) obtained from vibration signals measured 
at characteristic locations on the pump housing, and additional signals measured on the pump pressure port 
by static and dynamic pressure transducers which would be obtained during a passive diagnostic experiment. 
The Choice of measures which were calculated from the obtained signals and the subsequent ranking of their 
significance was carried out using the analysis of variance (ANOVA)28,29.

The originality of the approach involves:
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• possibility of using ANOVA for an effective ranking of diagnostic features and evaluation of the impact of 
the origin of diagnostic signals on the accuracy of classification of displacement pump wear by the machine 
learning system;

• designing and experimenting with a way that allows obtaining the pump component wear in a natural way 
based on many hours of pump operation;

• using the signals measured in the entire pump operation range (i.e. in the stationary and non-stationary 
operating conditions) to evaluate the degree of pump wear.

After the introduction, the rest of this article follows. In Section "Tested object", the most common failures 
of multipiston pumps are presented, as well as an example of time–frequency analysis of the vibration signals 
produced when the wear of the pump’s valve plate is depressed. Section "Experimental part" describes the conduct 
of a test experiment at a laboratory station. Section "Selection of the classification system features" presents the 
features that were calculated from the measured diagnostic signals. Then, using ANOVA analysis of variance, 
the obtained features were subjected to ranking of their significance, which is described in Section "Applica-
tion of ANOVA in selection of significant features of measured signals". After discussing in Section "Selection 
of classification algorithm" the classification algorithms used, the results obtained from the classification of the 
wear condition of the pump tested by the learning system are presented in Section "Pump wear classification". 
The article is concluded with a summary.

Tested object
The tested object was a multi-piston axial  pump30,31 with a swashplate whose detailed structural diagram is 
presented  in20.

As presented  in20  and32,33, the most frequent type of wear in displacement pumps is abrasive wear. Excessive 
load on the rotor unit among others leads to abrasive wear of its elements and increasing radial clearance within 
piston-cylinder pairs. It results in increasing volumetric loss and reduced general efficiency of the pump.

The wear of the swashplate (Fig. 1) which mates with surfaces of rotor piston shoes, leads to occurrence of 
elliptical notch (Fig. 1) on its surface and as a consequence to a total wear of this surface. It causes reduction of 
pump mechanical and hydraulic efficiency. On the other hand, the wear of the valve plate is among other things 
caused by the decay of the lubrication layer between the disc surface and a surface of the rotor face. It results in 
occurrence of flow micro-conduits (Fig. 2) on the surface of the plate bridge. Such conduits cause flow of the 
working medium between suction and pressure zones in the pump, and consequently loss of tightness, reduction 
of operational pressure and volumetric efficiency of the pump.

The developing wear of the pump components can be traced with the use of conventional diagnostic methods 
which are based on time and time–frequency analysis of the measured signals. When damage of a pump part 
is initiated, the measured signal (e.g. vibration signal) starts to include synchronous components, as well as a 
number of quasi-periodic and chaotic components. We can use traditional techniques described  in3 to analyze the 
measured signal and assume that the transition function is linear. When we assume that the transition function is 
nonlinear, we can use the methods based on deterministic  chaos34. An example of time–frequency analysis from 
vibration acceleration signals measured on the pump body (in three directions X, Y, Z) in the development of 
the swashplate damage which involved gradual deepening of the elliptical notch, is shown in the figures below.

The analysis of the magnitude squared of the short-time Fourier transform STFT images (called spectrograms) 
obtained in axes X and Y (Figs. 3 and 4) indicates that as the swashplate wear increases. The signal spectrum 
gradually moves towards lower frequencies and its amplitude increases. For the measurements obtained in the 
X direction, the range of frequency changes of the signal spectra ranges from 4 to 0.02 kHz, and for the signals 

Figure 1.  Pump swashplate: (a) swashplate in good working order, (b) worn swashplate (elliptical notch is 
visible).
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measured in the Y direction, it is wider, ranging from 10 to 0.02 kHz. In the case of vibration signals from axis Z 
(Fig. 5), there is no clear shift towards lower or higher frequencies, but there is a tendency to reduce the signal’s 
amplitude as the wear develops. In this direction of measurement (Z direction), the frequency variation range 
of the signal spectra was 8 to 1 kHz.

Experimental part
The multi-piston components’ wear tests were conducted on a purpose-built laboratory station. One of the main 
test objectives was to obtain the wear of the pump components in a natural way, hence the multi-hour tests were 
done under actual operating conditions of the pump. During the test, the diagnostic signals from the installed 
measuring transducers were measured:

• static pressure;
• dynamic pressure;

Figure 2.  Pump valve plate: (a) plate in good working order, (b) worn plate (micro-conduits are visible), c) 
general view.

Figure 3.  STFT time–frequency representation of vibration signals measured on the pump body in axis X for: 
(a) swashplate without notch, (b) swashplate with notch 0.1 mm deep, (c) swashplate with notch 0.5 mm deep.
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• vibration acceleration on the pump body in three axes (X, Y, Z).

The acceleration was measured on the pump body in the vicinity of the valve plate and the swashplate. The 
static and dynamic pressures were measured on the pressure line directly on the outlet port. The sampling fre-
quency of the measured signals was 50 kHz. A simplified diagram of the measuring setup and location of the 
measuring transducers is presented in Fig. 6.

During the signal measurement, the pump shaft revolution signal was also measured, and each recorded signal 
was divided by it. In the case of the pump running at nominal speed (n = 1500 rpm), we obtained 25 data series 
per second of measurement and tables of signals one-revolution long (that is 0.04 s) which corresponded to 2010 
measurement points. The 1-s signals were recorded at 15-min intervals between successive measurements. The 
daily duration of the experiment was 10 h of pump operation under a static load.

The pump operation was monitored by measuring the pressure change at its outlet. By comparing day-by-day 
pressure values (for individual measurements), it was assumed that in the case when the pressure drop on the 
pump outlet reaches 10 percent of the load pressure (which was 7 MPa), the pump remains in good working 
order (classifier: pump operable). When the pressure drop on the outlet further increases (up to 20% of the initial 
pressure), the pump is classified as close to its end of life (classifier: end of life). When the pressure drop on the 
pump outlet exceeds 20 percent, the pump is classified as worn (classifier: pump worn). In total, recorded were 
441 measured signals (pump body vibration, static and dynamic pressures), of which 294 (evenly 147) were 

Figure 4.  STFT time–frequency representation of vibration signals measured on the pump body in axis Y for: 
(a) swashplate without notch, (b) swashplate with notch 0.1 mm deep, (c) swashplate with notch 0.5 mm deep.

Figure 5.  STFT time–frequency representation of vibration signals measured on the pump body in axis Z for: 
(a) swashplate without notch, (b) swashplate with notch 0.1 mm deep, (c) swashplate with notch 0.5 mm deep.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6098  | https://doi.org/10.1038/s41598-024-56498-0

www.nature.com/scientificreports/

signals for pump in good working order (classifier: pump operable) and pump in a transition state (classifier: 
end of life). The last 147 signals were from the worn pump (classifier: pump worn). The next stage in preparation 
of data for the pump condition classification system involved dividing the data into those used for the system 
learning and the data used for subsequent verification and validation of the system. It was assumed that 30% of 
the total data would be used to validate and test the obtained classifier, and the remainder (70%) of the real data 
would be used in the learning process. The prepared data were entered into the  Matlab35 package, where further 
analysis occurred. The analysis involved:

• selection and calculation of appropriate signal features;
• ranking of calculated features in terms of information they contain;
• accepting appropriate classifiers;
• evaluation of selected classifiers in the diagnostics of pump condition, in terms of choice of diagnostic signals 

and the applied feature ranking algorithm.

Selection of the classification system features
The following significant problem in the construction of the classification system is the selection of signal features 
on which the system will be based. The features of signals from the time and frequency domains were determined 
for each obtained matrix of the pump body vibration  signals36. The dimension of the vibration signal matrix 
for which the features were calculated was then 3 × 2010 measurement points. The procedure was the same 
in analysing signals from the static and dynamic pressure transducers installed in the pump pressure port. In 
this case, the dimension of the signal matrix for which the features were calculated was 2 × 2010 measurement 
points. In the case of the determination of time features of the measured signals, we defined their variability 
and the amount of information they contained. We used the statistical measures of location, concentration and 
variability. The list of features of the measured signals and relationships according to which they were calculated 
in presented in Table 1.37

The frequency measures are those which are universally used in the description of the frequency domain 
signals: maximum power spectral density (PSD) and the frequency at which the PSD reaches its maximum.

Application of ANOVA in selection of significant features of measured signals
The calculated features of the signals are the carrier of information about the wear of the monitored pump. In 
general perception, the more information, the better the discriminating power of the method used to classify 
sets with different  features29,38. Although, theoretically, the number of calculated signal features (which constitute 
input data for the classifier) is unlimited, in practice, the aim is to obtain the minimum number of features that 
well describe the properties of the tested object. This is conducive to getting a compact model with a good fit.

To improve the efficiency of classifiers, it is required to remove correlated and irrelevant features of signals. 
This leads to a reduction in the dimensions of the feature matrix and allows for a reduction of the needed 
computing power. Moreover, the reduction of the input data reduces the model training time and prevents its 
overtraining when creating classifier models.

The available data reduction methods can be divided into those that only find the most important features 
while removing insignificant ones (Backward elimination, Forward selection and Random forests can be dis-
tinguished here) and those that combine features by means of an appropriate transformation reducing their 
dimension (Principal Component Analysis (PCA), Factor Analysis (FA), Linear Discriminant Analysis (LDA) 
belong to this group).

Figure 6.  Setup for measuring vibration acceleration on the pump swashplate in axes X, Y and Z of laboratory 
station.
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In the present article, an easily interpretable and well-documented ANOVA analysis of variance was used 
to rank the features of the measured signals.The analysis of variance is based on breaking up the total sum of 
squares (SST) of variance for all observation results into two  components28:

– sum of squares describing variability within the group (SSE),
– sum of squares describing variability between groups (SSR).

Mathematically, this operation can be presented as:

where ni – number of data in the i-th group, xi  – arithmetic mean in the i-th group, x – arithmetic mean in the 
total n-element group, n- total number of independent observations xij for j = 1, 2, · · · ni

where k – total number of groups.
The data are the basis for verification of the following null hypothesis:

H0 Means calculated in each group are equal:

vs the alternative hypothesis H1:

H1 At least two means from the groups differ.

In the analysis of variance, the variance between groups (SSR) is compared with the variance within groups 
(SSE). If the ratio of variance between groups to variance within groups is significantly high, it is possible to reject 
the null hypothesis at the accepted level of significance α (in our calculations we used α = 0.05).

The verification is carried out using the statistical test F (Fisher-Snedecor test)28,29:

where MSR – root mean square of deviations between groups:

(1)
k∑

i=1

ni∑
j=1

(
xij − x

)2
=

k∑
i=1

ni∑
j=1

(
xij − xi

)2
+

k∑
i=1

ni∑
j=1

(xi − x)2

SST SSE SSR

(2)

(
n =

k∑

i=1

ni

)

H0 : m1 = m2 = · · ·mk

(3)F =
SSRk−1

SSEN−k
=

MSR

MSE

(4)MSR =
SSR

k − 1

Table 1.  The list of features of the measured signals. xi – i-th measurement data, n – total number of data in 
measurement.

No Expression Feature Description

1 x = 1

n

∑n
i=1

xi Mean Sum of all data divided by the number of data

2 δ =
√
δ2  where δ2 = 1

n−1

∑n
i=1

(xi − x)2 Standard deviation Square root of variance; the variance was estimated using a 
consistent and unbiased estimator

3 xRMS =

√
1

n

∑n
i=1

xi2 Root mean square Square root of arithmetic mean of data squared

4 xkurt =
1

n

∑n
i=1

(xi−x)4

δ4
Kurtosis Measure of the shape of feature distribution

5 xskw =
1

n

∑n
i=1

(xi−x)3

δ3
Skewness Defines the degree to which a distribution differs from the 

normal distribution

6 xsf =
xRMS

1

n

∑n
i=1

|xi |
Shape factor Root mean square of the signal divided by the mean value of 

the signal

7 xif =
max(|xi |)
1

n

∑n
i=1

|xi |
Impulse Factor Maximum absolute value of the signal divided by the mean 

absolute value of the signal

8 xcrest =
max(|xi |)
xRMS

Crest factor Maximum absolute value in data divided by the root mean 
square of the data

9 xclear =
max(|xi |)(

1

n

∑n
i=1

√
|xi |

)2 Clearance factor Maximum absolute value of the signal divided by the square 
root of the signal amplitude

10 max PSD Peak amplitude of PSD Maximum peak of the power spectral density amplitude

11 max Freq Peak frequency of PSD Frequency of the maximum peak of the power spectral density 
amplitude
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MSE – root mean square of deviations within group:

where k- number of groups; n- total number of independent observations.
Test F is used to rank each feature, rejecting the null hypothesis at the accepted level of significance. The low 

value of p – test statistics indicates that the analyzed feature is important for pump wear evaluation.
The ranking of significance obtained with ANOVA from the vibration and pressure signals is presented in 

Fig. 7 (vibration signals) and Fig. 8 (pressure signals).
From among 62 features which were obtained from the pump body vibration measurement, the five most 

significant ones were selected to evaluate pump wear. The ANOVA ranking of the most significant features is 
presented in Table 2.

where: YR_CrestFactor – crest factor of vibration signal measured on the valve plate in axis Y, YR_ImpulseFac-
tor – impulse factor of vibration signal measured on the valve plate in axis Y, YR_ClearanceFactor – clearance 
factor calculated from the vibration signal measured on the valve plate in axis Y, ZT_PeakFreq – frequency of 
maximum power spectral density PSD of vibration signal measured on the valve plate in axis Z, ZT_Kurtosis 
– kurtosis of vibration signal measured on the valve plate in axis Y.

(5)MSE =
SSE

n− k

Figure 7.  Ranking of feature significance based on ANOVA – vibration signals.

Figure 8.  Ranking of feature significance based on ANOVA – pressure signals.
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From among 22 features obtained from the measurement of static and dynamic pressures on the pump pres-
sure port, the five most significant ones were selected. The features which satisfy the conditions are presented 
in Table 3.

Selection of classification algorithm
The learning systems are increasingly used in maintenance engineering for modelling a state of an industrial pro-
cess or its component (e.g. a machine) exclusively based on available measurement data assigned to the process 
(class). In terms of learning techniques, the learning systems are divided into supervised and  unsupervised27,39.

Both supervised and unsupervised machine learning systems offer a large group of learning algorithms and 
the Choice of the most appropriate one depends on many factors. Firstly, in order to choose the appropriate 
learning algorithm, we need to specify the task that the model will perform accurately (classification, regression, 
grouping). The next issue is the type and size of input data which affect the learning speed, load on the computer 
(controller) memory and accuracy of output data prediction (model answers). The choice of appropriate clas-
sification algorithm is not clear-cut and only an experienced operator (a long-standing researcher) can quickly 
indicate the appropriate algorithm. Usually, the best classification algorithm is selected in multiple trials of indi-
vidual types and evaluation of the obtained classifiers in terms of speed of operation, accuracy of classification 
and load on the memory of the computing unit.

Among the algorithms which meet the  issue25 of the multi-piston pump condition classification we can find:

Decision trees
In this algorithm, data classification is performed using the decision tree based on the starting point and branches 
forming a binary decision making system whose end branches are the result of assigning the data to a class.

Discriminant analysis
It is based on the analysis of the Gaussian distribution of signals from the set of observations (inputs). The 
classifier estimates the Gaussian distribution parameters from observations and based on that assigns to an 
appropriate class.

Support vector machines
Classification of data by finding the best hyperplane which separates the data of one class from the data of the 
other class. The best hyperplane is the one which separates the data with the largest margin.

K Nearest Neighbours classifiers
It determines the membership of new data from the input set in a specific class based on the location of an 
assumed number (number K) of the nearest (neighbouring) data of the input set data relative to that data. The 
measure of location is measure of distance of the classified data from the neighbouring data.

Table 2.  The ranking of the most significant features obtained from the pump body vibration measurement.

No Feature Ranking

1 YR_CrestFactor 1

2 YR_ImpulseFactor 0.98

3 YR_ClearanceFactor 0.97

4 ZT_PeakFreq 0.85

5 YR_Kurtosis 0.75

Table 3.  The ranking of the most significant features obtained from the static and dynamic pressures 
measurement. where: CD_Std – standard deviation of dynamic pressure signal, CD_RMS – RMS of dynamic 
pressure signal, CD_Kurtosis – kurtosis of dynamic pressure signal, CD_PeakAmp – maximum peak of the 
power spectral density amplitude from dynamic pressure signal, CD_ClearanceFactor – clearance factor of 
dynamic pressure signal.

No Feature Ranking

1 CD_Std 1

2 CD_RMS 1

3 CD_Kurtosis 0.85

4 CD_PeakAmp 0.83

5 CD_ ClearanceFactor 0.81
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Naive Bayes classifiers
A probabilistic classifier which (naively) assumes mutual independence of input data. Using the Bayes’ theorem, 
this classifier calculates the probability of data membership in a specific class.

Before starting the verification of the suitability of the aforementioned classifiers in the evaluation of pump 
wear, it was assumed that each classifier using 5 most significant features of measured signals evaluates the pump 
condition with the same accuracy as the classifier based on previously determined all features of the measured 
signals (i.e. 64 features determined from vibration signals or 22 features determined form pressure signals).

In order to confirm this assumption, the following null hypotheses should be assumed and verified:

Hypothesis H01 The full model using all 64 features of the measured vibration signals classified the wear con-
dition of a multi-piston pump with the same accuracy as a simplified model using 5 most significant features.

And

Hypothesis H02 The full model using all 22 features of the measured pressure signals classified the wear condi-
tion of a multi-piston pump with the same accuracy as a simplified model using 5 most significant features.

The verification of hypotheses H01 and H02 was carried out for models using the K Nearest Neighbors algo-
rithm. We used a multiple repetition (5 × 2) t-Student test with a random division of signals. The measure of the 
accuracy of pump wear classification by the full model and the simplified model was fit error factor e specified 
by the equation:

where: ntest – number of observations; wj – weight of the j-th observation; I(x) – function marker; is 1 for true 
assumption, otherwise is 0; p̂1j – identified pump condition for the first model in the jth observation; yj – actual 
pump condition in the j-th observation.

In the comparison of the pump condition classification by the full and simplified models (for features calcu-
lated from vibration signals) the evaluation of hypothesis H01 was zero (h = 0 at probability p = 0.57). This indicates 
that hypothesis H01 cannot be rejected, and, consequently, it is possible to use the simplified model based on the 
5 most significant features of vibration signals.

In the comparison of the pump condition classification by the full and simplified models (for features cal-
culated from pressure signals) the evaluation of hypothesis H02 was also zero (h = 0 at probability p = 0.1). Also 
in this case, the hypothesis H02 cannot be rejected, and, consequently, it is possible to use the simplified model 
based on the 5 most significant features of pressure signals.

An example of estimation of the classification errors by models using the features calculated from the pressure 
signals for the multiple repetitions (5 × 2) t-Student test is presented in the Table 4 and Table 5.

(6)e =

∑ntest
j=1 wjI

(
p̂1j �= yj

)
∑ntest

j=1 wj

Table 4.  Calculated errors e1 of pump wear classification for the full model using 22 features from pressure 
signals.

5 × 2 t Test 1 2

1 0.2581 0.3125

2 0.2581 0.5000

3 0.3871 0.3125

4 0.3871 0.4063

5 0.2581 0.2500

Table 5.  Calculated errors e2 of pump wear classification for the simplified model using 5 most significant 
features from pressure signals.

5 × 2 t Test 1 2

1 0.4194 0.3750

2 0.3226 0.3438

3 0.2903 0.4063

4 0.2903 0.3438

5 0.2258 0.3750
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Pump wear classification
The pump wear classification was carried out using models based on 5 most significant features of the measured 
vibration and pressure signals. The following classification algorithms were  used37,38:

• Decision trees;
• Discriminant analysis;
• K Nearest Neighbours classifiers;
• Naive Bayes classifiers;
• Support vector machines.

The models’ accuracy of the pump condition identification was verified using cross-validation. The input 
data (calculated values of signal features) were divided into five disjoint sets which were used as test sets, and 
the remaining used as the learning set. Next the mean Error was calculated. The correctness of pump condition 
identification by each model was presented graphically as a Confusion Matrix. Figure 9 shows the classification 
error matrices for the models which as input data use the calculated features from pressure measurements.

Table 6 includes a comparison of properties used to evaluate the pump condition, by the following criteria:

• Classification accuracy;
• Learning time;
• Classification speed;
• Misclassification costs.

Similarly to the models based on the features obtained from pressure signals, the correctness of the pump 
condition classification by the models using the most significant features determined from vibration signals was 
estimated using a Confusion Matrix and is shown in Figs. 10 and 11.

The accuracy of pump condition classification by models and their main features are presented in Table 7.
The comparison of model properties presented in Tables 6 and 7 indicates that models that use the features 

from pressure signals had better classification accuracy for each used classification algorithm than the models 
using the features calculated from vibration signals, while the prediction speed and model learning time were 
comparable. The 100% accuracy of the pump condition detection was obtained for models using the algorithm 
K Nearest Neighbours KNN (regardless of the types of features). The Fine Decision tree models also had high 
prediction accuracy, but the learning time was on average three times longer than in KNN. On the other hand, 
the models using Support vector machines SVM classified the pump condition with identical accuracy, regard-
less of input signal type. The models using the Naive Bayes classifiers and Discriminant analysis classifiers had 
relatively the lowest accuracy of pump condition prediction which was about 70% for the measured pressure 
input signals and 65% for the measured vibration signals. The classifiers had the largest error in the detection of 
the pump transition state (end of life label), most frequently identifying it as “pump operable”.

A physical implementation of a diagnostic system based on the machine code generated from the selected 
classification model requires a selection of a model which offers the highest prediction of pump condition and, 
at the same time, has the least classification error. Based on the comparison of model accuracies presented in 
Tables 6 and 7 we can say that this condition is satisfied by all K Nearest Neighbours models KNN and the 
Weighted KNN model (for both pressure and vibration signals). In addition, the Fine Decision tree model has 
the 100% accuracy for features from the measured pressure and vibration signals. Further analysis of the models 
mentioned above involved verification of their accuracy for newly measured pressure and pump body vibration 
signals at three states of operating condition.

Table 8 presents the accuracies with which the flowing models exported to the Matlab  space35: Fine KNN, 
Weighted KNN and Fine Decision tree recognized the pump condition classes based on the previously calculated 
features.

An example of the kurtosis distribution as a function of standard deviation of the dynamic pressure signal 
which was obtained using the verified Fine Decision tree model is shown in Fig. 12.

Summary
A careful preparation of input data is a key factor in modern systems that use machine learning to classify a 
monitored machine’s wear state. The paper presents a concept of such system using a displacement pump as a 
diagnosed machine and operational and vibration signals as a source of information. While diagnosing displace-
ment pumps, such data may come from operation signals such as static and dynamic pressures measured on the 
pump pressure port and additional signals, such as vibration signals recorded in characteristic locations on the 
pump body. In both cases, the input data sets containing measured signals should be as numerous as possible. In 
diagnostics of displacement pumps, the input data must include signals in the entire range of the pump opera-
tion, i.e. at varying working pressures and with viscosity of the working medium which varies with changing 
temperature. This results in a better training of the obtained classifier model and better effectiveness of the pump 
wear classification. The next important issue is the selection of such signal features that best determine the classes 
of pump condition or damage. It is desirable to determine the minimum number of features which may affect the 
classifier learning time during the classification process and prevent over-training. ANOVA used in the ranking of 
the determined features effectively arranged the features coming from signals of both vibration and pressure. The 
five most significant features were used to evaluate the effectiveness of the accepted pump condition classification 
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algorithms. The obtained results unequivocally indicate that, regardless of the type of the used input features, the 
best classification accuracy was obtained using the K Nearest Neighbours models KNN (Fine KNN Weighted 
KNN models) and the Decision tree models (Fine Tree models and the Medium Tree model). Support vector 

Figure 9.  Error matrices for pump condition classification obtained from models using the classifiers: (a, b) 
Decision trees, (c, d) Discriminant analysis, (e, f) Naive Bayes classifiers, (g, h) Support vector machines, (i, j) K 
Nearest Neighbours.
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machines models (Cubic and Fine Gaussian models) showed slightly worse classification accuracy. In the case of 
physical implementation in a diagnostic system, in addition to the accuracy with which a given model is able to 
predict the wear and tear of a pump, the time required to train it must be taken into account. Assuming that the 
results obtained on a limited number of measured signals can be related to the real operation of the system, the 
obtained K Nearest-Neighbours KNN models were trained on average three times faster than the other models 
that provided equally high prediction accuracy (Decision tree models and Support vector machines models). In 
turn, the best model recognition speed expressed as the number of recognized observations per second (obs/s) 
was achieved by the Discriminant analysis models with a lower accuracy of pump state classification.

The authors plan to continue their research on the application of deep machine learning and machine learning 
systems to the diagnosis of the wear state of positive displacement pumps. At the same time, they would like to 
extend this research to the detection of the undesirable phenomenon of cavitation, which causes erosive wear 
of both the suction port and pump components. Based on the results already obtained using machine learning 

Table 6.  Comparison of properties of classifiers used to evaluate pump wear.

Model

Decision tree Discriminant analysis Naive Bayesian Support vector machines KNN

Fine Medium Quadratic Linear Gaussian Kernel Cubic Fine Gaussian Fine Weighted

Prediction speed [obs/s] 5500 5000 11,000 12,000 15,000 5000 4900 3800 6700 7700

Training
time [s] 4.6 4.05 1.16 1.36 1.17 2.1 4.49 4.97 1.41 1.47

Total misclassification cost [-] 0 0 87 124 123 108 21 18 0 0

Accuracy [%] 100 100 80.3 71.9 72.1 75.5 92.2 95.9 100 100

Figure 10.  Error matrices for pump condition classification obtained from models using the classifiers: (a, b) 
decision trees, (c, d) discriminant analysis.
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(e.g. the example verification of the Fine Decision tree model shown in Fig. 12), the authors plan to use them 
to build an advisory system. Such a system would be aimed at hydraulic system operators. The idea is that the 
system would make use of pressure signals measured at the pump output, from which a decision would be made 
about the wear state of the pump and the required service.

Figure 11.  Error matrices for pump condition classification obtained from models using the classifiers:(a, b) 
Naive Bayes classifiers, (c, d) Support vector machines, (e, f) K Nearest Neighbours.
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