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Predicting early Alzheimer’s 
with blood biomarkers and clinical 
features
Muaath Ebrahim AlMansoori 1,3, Sherlyn Jemimah 1,3, Ferial Abuhantash 1,3 & 
Aamna AlShehhi 1,2,3*

Alzheimer’s disease (AD) is an incurable neurodegenerative disorder that leads to dementia. This 
study employs explainable machine learning models to detect dementia cases using blood gene 
expression, single nucleotide polymorphisms (SNPs), and clinical data from Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). Analyzing 623 ADNI participants, we found that the Support Vector 
Machine classifier with Mutual Information (MI) feature selection, trained on all three data modalities, 
achieved exceptional performance (accuracy = 0.95, AUC = 0.94). When using gene expression and 
SNP data separately, we achieved very good performance (AUC = 0.65, AUC = 0.63, respectively). 
Using SHapley Additive exPlanations (SHAP), we identified significant features, potentially serving 
as AD biomarkers. Notably, genetic-based biomarkers linked to axon myelination and synaptic 
vesicle membrane formation could aid early AD detection. In summary, this genetic-based biomarker 
approach, integrating machine learning and SHAP, shows promise for precise AD diagnosis, biomarker 
discovery, and offers novel insights for understanding and treating the disease. This approach 
addresses the challenges of accurate AD diagnosis, which is crucial given the complexities associated 
with the disease and the need for non-invasive diagnostic methods.
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Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by a gradual loss of memory 
and  cognition1,2. AD is the most common cause of dementia, and is projected to affect over 78 million people 
by  20303. Although the exact cause of AD is unknown, its hallmark is the buildup of abnormal protein deposits 
in the brain known as amyloid plaques and tau tangles. With no cure, early detection is crucial to allow timely 
 interventions4,5. Currently, the detection of conventional AD biomarkers of amyloid-β deposition and tau pathol-
ogy require expensive or invasive diagnostic tools, such as Positron Emission Tomography (PET), Magnetic 
Resonance Imaging (MRI), and cerebrospinal fluid (CSF)  sampling6,7. These procedures are not conducted 
routinely, precluding early diagnosis. Additionally, these biomarkers are present in other forms of  dementia8,9 
and cognitively normal (CN)  individuals10,11, hindering definitive diagnosis. Several studies have also shown 
that these AD biomarkers perform poorly in distinguishing between the early and late stages of AD. A meta-
analysis of CSF tau levels in identifying mild cognitive impairment (MCI) cases that progress to AD showed 
wide variation in specificity, ranging from 0.48 to 0.7212. Another meta-analysis of β-amyloid PET showed poor 
specificity in differentiating between MCI and AD  patients13. Cumulatively, these factors create a significant 
potential for misdiagnosis.

Due to the drawbacks of conventional AD biomarkers, blood-based biomarkers have been proposed for 
Alzheimer’s disease diagnosis. The use of blood biomarkers for the diagnosis of AD was made possible recently 
by the development of novel, high-sensitivity assays. Blood concentrations of amyloid-β and phosphorylated tau 
appear to correlate with their corresponding levels in  CSF14. A study examined the predictive power of plasma 
biomarkers, such as APP669-711/Aβ1-42 and A β1-40/Aβ1-42, and their combinations, in identifying patients 
with positive or negative brain amyloid-β status. Two distinct datasets, one from Japan (n = 121) and one from 
Australia (n = 252), were used to examine cognitive states using amyloid-β-PET imaging. Researchers found 
that plasma biomarkers accurately predict brain amyloid-β load, suggesting their potential for cost-effective 
and scalable population  screening15. As a matter of fact, a plasma test utilizing mass spectrometry analysis of 
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A β has received approval in accordance with the Clinical Laboratory Improvement Amendments (CLIA) for 
the purpose of detecting A β  pathology16. In another clinical trial , lecanemab (BAN2401), an IgG1 monoclonal 
antibody, was tested for targeting soluble amyloid beta (Aβ ) in various forms and the Clinical Dementia Rating-
Sum-of-Boxes (CDR-SB) is used as one of the key secondary endpoints. The trial evaluated three doses and two 
regimens of lecanemab to placebo in early Alzheimer’s disease, mild cognitive impairment, and mild dementia 
using a Bayesian design with response-adaptive randomization. The 18-month analyses showed brain amyloid 
reductions and clinical improvements, suggesting therapeutic benefits. According to Bayesian and frequentist 
studies, the Clinical Dementia Rating-Sum-of-Boxes (CDR-SB) decreased 33% and 26% from  placebo17. Fur-
ther monitoring of protein levels in the brain is done through plasma levels of mitochondrial proteins from 
neuronal-derived exosomes (NDEs)18. Other blood markers, such as neurofilament light chain and glial fibrilary 
acidic protein may indicate Alzheimer’s disease progression and facilitate monitoring of treatment  effects14. The 
significance of these blood-based biomarkers is reinforced by evidence of systemic changes in blood cells that 
reflect Alzheimer’s disease pathology in the  brain19,20.

Using big data sets to find patterns and associations, artificial intelligence (AI) and machine learning (ML) 
techniques have demonstrated potential in the analysis of blood biomarkers for Alzheimer’s disease  diagnosis21. 
Lee and  Lee22 tested several ML techniques, such as Support Vector Machines (SVM) and Random Forest (RF), 
to distinguish between cognitively normal (CN) and AD participants. The input data consisted of blood gene 
expression data from the  AddNeuroMed23 and Alzheimer’s Disease Neuroimaging Initiative (ADNI)24 cohorts. 
Their SVM model achieved an AUC (area under receiver operator curve) of 0.62 using ADNI as the test dataset. 
Oriol et al.25 utilized Bootstrap Stage-Wise Model Selection (BSWiMS), Least Absolute Shrinkage and Selec-
tion Operator (LASSO), Recursive Partitioning and Regression Trees (RPART), and a BSWMS-LASSO-RPART 
ensemble to differentiate between AD and CN participants from ADNI using blood-derived genetic variation 
data. They showed that the ensemble method has better performance with an AUC of 0.72. An XGBoost model 
utilizing plasma metabolites achieved an AUC of 0.89 in the detection of AD and CN  cases26. Logistic regression 
using plasma levels of inflammatory proteins enabled the differentiation of AD from controls (AUC 0.79) and 
MCI subjects (AUC 0.74)27.

Multimodal machine learning models, (i.e., models incorporating multiple types of input), have been 
proposed to improve diagnostic accuracy over single biomarkers such as A β  PET13. Some machine learning 
models have achieved enhanced performance in AD prediction by combining their primary input data with 
clinical  features28–31. An RF model using MRI and demographic data from a small cohort of 49 subjects in the 
Vienna Trans-Danube Aging study attained an AUC of 0.77 in predicting whether neuropathological changes 
are  present28. Zhu et al.32 used MRI data and the APOE4 genotype in a wide neural network to predict cognitive 
decline in A β-positive individuals with an accuracy of 0.86. An ensemble of logistic regression, support vector 
machine, and gradient boosting methods achieved an AUC of 0.87 for early diagnosis of cognitive impairment 
using demographic and MRI data from the Epidemiology of Dementia in Singapore  study30. A neural network 
for predicting MCI diagnosis using radiomic features and amyloid brain PET attained an AUC of 0.90 using 656 
subjects from ADNI and a EudraCT (European Union Drug Regulating Authorities Clinical Trials Database) 
 cohort31. An RF model of serum biomarker data and clinical features attained an AUC of 0.94 in distinguishing 
between CN and AD  cases33. However, despite the progress made in AI-based detection of AD, most ML models 
suffer from a black-box reputation among  clinicians34.

In this study, we present a machine learning approach to accurately predict MCI/AD and identify novel 
blood-based biomarkers. We developed a multimodal ML method to distinguish between CN and MCI/AD cases. 
SHapley Additive exPlanation (SHAP)35 was used to identify clinical and genetic features that can serve as poten-
tial biomarkers. To develop our model, various ML methods were evaluated, namely Support Vector Machines 
(SVM), AdaBoost, Random Forest (RF), and Multilayer Perceptron (MLP), in combination with different feature 
selection methods: Least Absolute Shrinkage and Selection Operator (LASSO), Chi-square, mutual information 
(MI) and none. The performance of each model was tested with combinations of genotyping, gene expression, 
and clinical data. Our study demonstrates that multi-modal data leads to improved performance compared to 
single-modality data, while also highlighting that single-modality data prompts the model to emphasize the 
top features within that specific data modality. To address the black-box nature of ML models, SHAP is used 
to enable a better understanding of the model’s decision-making process by offering insights into how various 
features or variables contribute to the model’s output. This significantly contributes in aiding clinicians in making 
wise judgments and strengthens diagnostic abilities by enhancing interpretability, validating predictions, and 
identifying previously undiscovered biomarkers.

Results
A machine learning workflow with various feature selection techniques, models, and hyperparameter tuning was 
developed to identify the best-performing ML method and the best features to predict MCI/AD. SNPs (single 
nucleotide polymorphisms), gene expression, and clinical data were preprocessed and combined in different ways 
to make the multimodal data inputs. Feature selection was performed using Chi-square, Mutual Information 
(MI), and LASSO techniques. The selected features were used to train binary classification models, including 
SVM, RF, AdaBoost, and MLP. Hyperparameter optimization was performed for each model and input data 
combination to obtain the highest possible performance. Figure 5 in the “Methods” section shows the model 
development workflow. The results are explained in detail in the following sections.

Study cohort characteristics
Table 1 summarizes the demographic and clinical characteristics of the participants in the CN and MCI/AD 
groups. There is a significant differences in the mean age of the CN (74.6 ± 5.4 years) and MCI/AD (72.7 ± 7.6 
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years) groups (p = 0.001) was observed from the clinical data. The genders distribution is relatively balanced in 
CN participants (107 males to 105 females), but unbalanced in MCI/AD (162 females to 252 males). As expected, 
there are significant differences in most clinical features between the CN and MCI/AD groups.

Table 1.  Study cohort statistics and clinical features summary in CN and MCI/AD groups. Continuous 
variables are expressed as mean ± standard deviation. CN: cognitively norma; AD: Alzheimer’s disease; MCI: 
mild cognitive impairment. More details about the clinical features can be found in the “Alzheimer’s Disease 
Neuroimaging Initiative” section under “Methods”.

CN AD/MCI P-value

Number of patients (total = 623) 212 411

Age 74.62 ± 5.44 72.69 ± 7.57 0.001

Gender (male) 107 (50.5) 251 (60.8) 0.017

APOE4 allele 58 231 < 0.001

Years of education 16.23 ± 2.67 15.97 ± 2.79 0.258

FDG 1.30 ± 0.11 1.22 ± 0.16 < 0.001

AV45 1.10 ± 0.18 1.22 ± 0.24 < 0.001

ABETA 1241.52 ± 429.99 1017.68 ± 450.14 < 0.001

TAU 247.91 ± 81.60 283.65 ± 131.37 0.005

PTAU 22.60 ± 8.35 27.04 ± 14.47 0.001

CDRSB 0.07 ± 0.30 2.50 ± 2.53 < 0.001

ADAS11 5.82 ± 2.84 12.03 ± 8.13 < 0.001

ADAS13 9.33 ± 4.32 18.63 ± 11.21 < 0.001

ADASQ4 2.94 ± 1.67 5.63 ± 2.88 < 0.001

MMSE 29.06 ± 1.24 26.41 ± 4.02 < 0.001

RAVLT_immediate 45.34 ± 10.55 33.46 ± 12.41 < 0.001

RAVLT_learning 5.72 ± 2.32 4.13 ± 2.76 < 0.001

RAVLT_forgetting 4.00 ± 2.85 4.46 ± 2.57 0.043

RAVLT_perc_forgetting 37.46 ± 27.34 61.10 ± 40.21 < 0.001

LDELTOTAL 14.11 ± 3.46 6.48 ± 4.38 < 0.001

TRABSCOR 82.18 ± 37.88 124.56 ± 72.44 < 0.001

FAQ 0.24 ± 1.07 6.05 ± 7.88 < 0.001

MOCA 25.46 ± 2.45 21.85 ± 4.73 < 0.001

EcogPtMem 1.54 ± 0.44 2.27 ± 0.71 < 0.001

EcogPtLang 1.38 ± 0.38 1.83 ± 0.63 < 0.001

EcogPtVisspat 1.13 ± 0.23 1.45 ± 0.58 < 0.001

EcogPtPlan 1.14 ± 0.25 1.52 ± 0.60 < 0.001

EcogPtOrgan 1.29 ± 0.40 1.67 ± 0.72 < 0.001

EcogPtDivatt 1.45 ± 0.51 1.92 ± 0.78 < 0.001

EcogPtTotal 1.33 ± 0.30 1.80 ± 0.56 < 0.001

EcogSPMem 1.27 ± 0.35 2.46 ± 0.94 < 0.001

EcogSPLang 1.13 ± 0.22 1.92 ± 0.83 < 0.001

EcogSPVisspat 1.07 ± 0.19 1.71 ± 0.83 < 0.001

EcogSPPlan 1.13 ± 0.23 1.90 ± 0.92 < 0.001

EcogSPOrgan 1.14 ± 0.36 2.01 ± 1.00 < 0.001

EcogSPDivatt 1.22 ± 0.39 2.23 ± 0.98 < 0.001

EcogSPTotal 1.16 ± 0.22 2.04 ± 0.82 < 0.001

Ventricles 34,517.16 ± 18,550.93 41,918.44 ± 24,315.44 < 0.001

Hippocampus 7270.30 ± 956.41 6743.25 ± 1263.40 < 0.001

WholeBrain 1,018,671.18 ± 107,104.07 1,033,167.05 ± 117693.19 0.141

Entorhinal 3754.57 ± 666.69 3491.00 ± 825.96 < 0.001

Fusiform 18,144.35 ± 2461.02 17,795.75 ± 2981.73 0.218

MidTemp 19,974.68 ± 2681.84 19,767.19 ± 3232.69 0.499

ICV 1,500,236.24 ± 156,407.97 1,533,944.09 ± 159,949.57 0.015

mPACCdigit 0.12 ± 2.94 − 8.16 ± 7.87 < 0.001

mPACCtrailsB 0.05 ± 2.66 − 7.22 ± 7.21 < 0.001
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Performance evaluation of ML models
The machine learning models’ performance was assessed across four distinct input scenarios: clinical data with 
cognitive scores, clinical data without cognitive scores, gene expression data, and SNP data. Furthermore, various 
combinations of these four types of data were also considered in the evaluation process. The clinical data is used 
in two ways because incorporating cognitive scores (CS) aligns with diagnostic criteria, providing a straightfor-
ward and clinically relevant approach that enhances the model’s sensitivity to early AD cognitive impairments. 
On the other hand, excluding cognitive scores forces the model to use other biomarkers, which may reveal novel 
predictive features. This shift may lead to the utilization of fewer intuitive biomarkers, potentially reducing the 
model’s clinical interpretability. Four feature selection methods were employed, namely Chi-square, mutual 
information (MI), Least Absolute Shrinkage and Selection Operator (LASSO), and no feature selection, for each 
input. The results of prediction models for all combinations of inputs are detailed in Supplementary Table S1.

To start, the evaluation of the model’s performance focused on gene expression data, both independently and 
in combination with clinical data, excluding cognitive scores (CS). For gene expression with clinical without 
CS input, the Random Forest classifier with Chi-square feature selection outperformed all other models with 
an AUC of 0.65 and an accuracy of 0.65 as can be seen in Figs. 1b, 2b. All ML models performed well achieving 
an AUC of 0.57 or higher, with accuracy ranging from 0.55 for MLP to 0.65 for the Random Forest classifier. 
For gene expression data only the models’ performance showed a decline where the best performing model was 
also the Random Forest classifier with Chi-square feature selection achieving an AUC of 0.52 and an accuracy 
of 0.53 as can be seen in Figs. 1a, 2a.

Next, the performance evaluation concentrated on SNP data alone and in conjunction with clinical informa-
tion, with an intentional exclusion of cognitive scores (CS). Using SNPs and clinical data without CS, the best 
performing model was the Random Forest with no feature selection with an AUC of 0.63 with upper bound of 0.7 
and an accuracy of 0.67 (Figs. 1e, 2e). Using SNP data alone the performance exhibited an overall decrease across 
the models, as was the case with gene data, with the best performing model being the Adaboost with MI feature 
selection giving an AUC of 0.55 and an accuracy of 0.60 (Figs. 1d, 2d). Subsequently, various combinations of 
gene expression, SNP, and clinical data without CS were employed as inputs to assess the models’ performance. 
The combination of gene and SNPs yielded with the SVM model without feature selection as the best performing 
model an AUC of 0.53 and an accuracy of 0.60 (Figs. 1g, 2g), which is higher than using gene expression alone. 
Adding clinical data without CS to this combination increased the performance with the best performing model 
being MLP with MI feature selection to an AUC of 0.63 and an accuracy of also 0.63 (Figs. 1h, 2h).
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Figure 1.  Heatmap showing area under the ROC Curve (AUC) with 95% confident interval of ML models 
for all data inputs: gene expression, SNPs, Clinical features without cognitive scores, and Clinical features with 
cognitive scores. SVM: Support Vector Machines; MLP: multilayer perceptron.
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Lastly, the performance was evaluated for the combinations of clinical with cognitive scores, gene expression, 
and SNP data. Substantial performance improvements were observed in input data combinations containing 
clinical data with cognitive scores. When clinical data is used as the sole input, the SVM model without feature 
selection achieves the highest performance, as evidenced by an accuracy of 0.6 and an AUC of 0.63, as shown 
in Figs. 1j, 2j. The substantial performance mentioned before is adamant when cognitive scores are added to 
the set of clinical features to reach an AUC = 0.94 and accuracy = 0.95 using Random Forest classifier and MI 
feature selection as seen in Figs. 1k, 2k. In the evaluation of multiple feature inputs, the clinical data with CS was 
combined with gene expression and SNPs data separately, and then the three were combined. Using the gene 
expression and clinical data with CS, the accuracy ranged from 0.77 to 0.95, and the AUC ranged from 0.79 
to 0.93. The highest performing model was the AdaBoost classifier with no feature selection (accuracy = 0.95 
and AUC = 0.93, Figs. 1c, 2c). Using the SNPs and clinical data with cognitive score, the highest performing 
models were the Random Forest and the AdaBoost classifiers with no feature selection at an AUC of 0.93 and 
an accuracy of 0.94 (Figs. 1f, 2f). Using the combination of SNPs, gene expression, and clinical features as input, 
the AdaBoost classifier shows the best performance with LASSO feature selection method used (AUC of 0.94 
and accuracy of 0.95, Figs. 1i, 2i).

Overall, the best performance was observed using all three gene, SNPs and clinical data with CS as input. 
Detailed results for all models, feature selection methods, and input types are presented in Supplementary 
Table S1. However, this paper focuses specifically on the utilization of blood biomarkers (genes and SNPs), our 
subsequent analyses will focus on the best performing models within these two categories for further model 
interpretation and feature analysis. Specifically, we will closely examine the top-performing gene-based model 
(Random Forest Classifier with Chi-squre feature selection) and the most top-performing SNP-based model 
(Adaboost classifier with no feature selection). Table  2 provides a performance comparison of our three best-
performing models with previously published models. Prior studies often emphasized on either high AUC or 
accuracy, but not both, indicating a potential limitation. Hence, we are such to report both AUC and accuracy 
metrics. Including Mild Cognitive Impairment (MCI) participants is crucial for early detection, a factor often 
overlooked in prior research. Our SNP-based model outperformed a previous deep learning  model36. Further-
more, our gene-based model demonstrated performance on par with the best-performing prior model, while 
also exhibiting enhanced sensitivity for early detection on ADNI  data22.
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Figure 2.  Heatmap showing the accuracy with 95% confident interval of ML models for all data inputs: gene 
expression, SNPs, Clinical features without cognitive scores, and Clinical features with cognitive scores. SVM: 
Support Vector Machines; MLP: multilayer perceptron.
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Model explanation with SHAP
SHAP provides a framework for quantifying each feature’s contribution to model predictions, where each feature 
is given a value (SHAP scores), which are derived from cooperative game theory, to indicate its influence on 
the model’s output.The SHAP scores were calculated and their absolute values for the best-performing blood-
biomarker based models: the gene-based Random Forest with Chi-square feature selection using gene expres-
sion and clinical data without CS (accuracy = 0.65, AUC = 0.65) and the SNP-based AdaBoost model with no 
feature selection using SNPs and clinical data without CS (accuracy = 0.67, AUC = 0.63). The top SHAP scores 
are summarized for the top 40 selected features in Fig. 3a and b. The larger the absolute value of the SHAP value, 
the more influential the feature is in making a prediction. Interestingly, most of the features prioritized by SHAP 
were blood biomarker features, with certain clinical features consistently ranking among the top. For both CN and 
MCI/AD prediction, the “AGE” has been marked as the most influential feature, with SHAP importance values 
greater than 0.65. Additional important clinical features for MCI/AD prediction include the imaging based FDG 
((Fluorodeoxyglucose)) and AV45 (Florbetapir) which respectively measure glucose metabolism in the brain 
and detect beta-amyloid plaques in the brain. APOE4 is a specific variant of the apolipoprotein E (APOE) gene 
which is considered a major genetic risk factor for late-onset Alzheimer’s disease (AD). Its existence is shown as 
an important feature in the predictions.

SHAP-prioritized genetic features
In addition to clinical features, certain genetic features (gene expression and SNPs) are also among the top SHAP-
selected features influencing model prediction. From the overall feature importance plot (Fig.  3), NMNAT1, 
ABHD6, and SLC2A4RG gene loci have been prioritized in the gene expression-based model, while PDZD2, 
NEURL1, and SYNPR-A have been prioritized in the SNP-based model. These genes have been linked to brain 
aging and neurodegenerative processes making them promising leads for novel markers of AD pathophysiology 
and lend credibility to our model. A brief literature review was performed for the selected genes and the findings 
have been summarized below.

From the selected genes, NMNAT1 (Nicotinamide Mononucleotide Adenylyltransferase 1) has been suggested 
to play a pivotal role is safeguarding axons from  degeneration37,38. It is a crucial enzyme in cellular metabolism, 
facilitating the production of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme involved in 
various cellular processes. In one study, researchers observed that increasing the expression of NMNAT1 may 
have the potential to reverse neuronal  degeneration39. This effect is believed to be achieved through its involve-
ment in regulating oxidative stress and inhibiting cell death. The study by  Marrs40 in 2010 identified ABHD6 as 
a significant serine hydrolase involved in the degradation of 2-arachidonoyl glycerol in the nervous system. This 
degradation is a crucial mechanism for regulating the levels of 2-AG in the synaptic cleft, which is important for 
maintaining proper neuronal communication and overall neurological function. ABHD6 has been further con-
firmed to be present in the mature human  hippocampus41, suggesting potential distinct contributions from both 
neurons and glial cells to its overall levels in Alzheimer’s disease brains. In one study, the potential therapeutic 
benefits of ABHD6 inactivation in demyelinating condition have been demonstrated by inhibition of  ABHD642. 
Notably, SLC2A4RG was identified as one of the key genes influencing the hippocampus in Alzheimer’s  disease43. 
SLC2A4RG is a transcriptional activator shuttling between nucleus and  cytoplasm44, and is suggested to play 
an important role in the etiology of brain disease like glioblastoma and may be a potential therapeutic  target45.

Interesting, PDZ-domain containing-2 (PDZD2) which has been identified as a novel protein detectable in 
both the fetal pancreas and our isolated pancreatic progenitor cells (PPCs) since early research was deemed as a 
significant  feature46. It promotes proliferation of fetal pancreatic cells without them turning into specialized islet 
 cells47. These findings hold promise for refining techniques in islet transplantation therapy, a key approach in 
treating diabetes. Although PDZD2 is mostly implicated in pancreatic development, it is important to highlight 
that diabetes is an established risk factor of AD and further study on PDZD2 could uncover correlations with 
Alzheimer’s disease. NEURL1, Neuralized1, which is an E3 ubiquitin  ligase48 has been associated with learn-
ing and memory difficulties when it is  downregulated49. SYNPR has been identified as the top marker genes 
for inhibitory  neurons50. The National Center for Biotechnology Information (NCBI) predicts that it will be 
found as an essential membrane component in synaptic vesicles and neuron  projections51. SNYNPR’s potential 
involvement in memory recognition, as demonstrated in a 2022  study52, coupled with its role in neurotransmitter 

Table 2.  Performance comparison with previously published methods. Evaluation datasets were derived 
from ADNI by the respective authors. BSWiMS: bootstrap stage-wise model selection; LASSO: least absolute 
shrinkage and selection operator; RPART: recursive partitioning and regression trees.

Model Classification Inputs Accuracy AUC Reference

Random Forest with Chi-Square feature 
selection Binary (CN, MCI/AD) Gene expression and clinical data (no CS) 0.65 0.65 This work

AdaBoost model with no feature selection Binary (CN, MCI/AD) SNPs and clinical data (no CS) 0.67 0.63 This work

SVM model with MI feature selection Binary (CN, MCI/AD) SNPs and gene and clinical (with CS) 0.95 0.94 This work

Deep neural network (DNN) Binary (CN, AD) Blood gene expression NA 0.656 Lee and  Lee22

SVM Binary (CN, AD) Blood gene expression NA 0.620 Lee and  Lee22

BSWiMS-LASSO-RPART ensemble Binary (CN, AD) SNPs 0.677 0.719 Oriol et al.25

Deep learning models (DL) Binary (CN, MCI/AD) SNPs 0.66 NA Venugopalan et al.36
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modulation, provides insights into how imbalances may contribute to cognitive impairment, suggesting it could 
be a viable therapeutic target if its significance in the pathophysiology of AD is further confirmed. Additionally, 
prioritized features included KAZN and RIMS3 proteins have been associated with severe  AD53,54.

Stratified case studies with SHAP
After observing that Age was the top feature in both the gene expression-based model and the SNP-based model 
according to mean absolute SHAP values, we were motivated to further explore its implications.The cohort was 

FAM_exp
CEBPE_exp

PPG_exp
AOC3_exp

QA_exp
SLC22A7_exp
KBTBD8_exp

GCDH_exp
SM_exp

VEGFB_exp
NCF2_exp

DEK_exp
RG0_exp
SN1_exp

PFKL_exp
PPR3D_exp
SRPK2_exp

PRD_exp
TM7SF2_exp

ITM2C_exp
ARHGAP_exp

REPI_exp
STYX_exp

MCTP2_exp
NAMPT_exp

LPGA_exp
STAG3_exp

MAA_exp
RRAS_exp
RIMS3_exp

SLC2A4RG_exp
Entorhinal

ABHD6_exp
Ventricles

NMNA_exp
Hippocampus

APOE4
AV45
FDG
AGE

0.00 0.03 0.06 0.09 0.12
mean(mean(|SHAP value|) (average impact on model output magnitude)) over 5−folds

To
p 

fe
at

ur
es class

AD

CN

Feature Importance Plot

(a) Gene Expression-Based

rs6838005
rs93936
SH2D7

SORCS2
PTN

LO053357
r1768384
Fusiform

LO02723675
r7430865
Ventricles

RIT2
ADTRP

Entorhinal
gender__Female

EVC
rs2877347

LAMC3
MY6

rs8385
r31072
GNB4

PTEDUCAT
WholeBrain

INSC
KLK5

ADGRE4P
r1253696

CCSE
KAZN
AV45

SYNPR−A
rs363

NEUR
ICV

PDZD2
APOE4

Hippocampus
FDG
AGE

0.00 0.05 0.10 0.15 0.20 0.25
mean(|SHAP value|) (average impact on model output magnitude)

To
p 

fe
at

ur
es class

AD

CN

Feature Importance Plot

(b) SNP-Based

Figure 3.  SHAP feature importance results showing top 40 most influential features for the prediction of (a) 
gene expression-based model, and (b) SNP-based model.
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stratified into age groups with a span of 10 years for each group such that there was 4 groups: 50 to 60 years, 60 
to 70 years, 70 to 80 years old, and 80 to 90 years old. The detailed cohort distribution by age is in Table 3 where 
620 out of 623 participants were used as three of them are above 90 years old. As shown in Fig. 4 , the dynamic 
impact of Age on the models predictions across various age ranges is observed as its influence on distinguishing 
between CN and MCI/AD varies with advancing age. This feature importance plots provide the mean absolute 
SHAP values of the top 20 most influential features for each age group.

For the gene expression-based model, we can see that age holds the greatest influence in the first two age 
groups and specially for the 50–60 years old age group (Fig. 4a). This is because AD manifests differently in 
early-onset cases (occurring before 65) as opposed to late-onset cases (65 years and older) which makes age a 
more pronounced indicator in younger  populations55. Also, the effect of other features on the models prediction 
increases as age group increases as can be seen going from Fig. 4b to c and lastly to 4d.

In the SNP-based model, Age emerged as the predominant feature of importance across all four age groups 
(Fig. 4e–h), with most other features maintaining a consistent ranking in terms of significance. In general, SNPs 
indicate genetic predisposition to diseases and can provide information about long-term disease risk. Gene 
expression, on the other hand, reflects the current activity of genes and can change over time, offering insights 
into disease progression and potential therapeutic targets. Both SNPs and gene expression are important tools 
in understanding and managing diseases, but they serve different roles in the diagnostic and prognostic process. 
The SNP-based model shows more uniformity in features selected and robustness across age groups, ensuring 
that the reliance on Age as a key predictor remains stable across different cohorts.

The insights obtained from this stratified examination extend to potential age-related biomarkers associated 
with the risk of Alzheimer’s disease (AD), such as the reduced expression of NMNAT1. This understanding 
improves the clinical interpretability of the model, allowing healthcare professionals to recognize the significance 
of Age in forecasting the risk of Alzheimer’s disease (AD) and facilitating educated conversations with patients 
regarding individualized healthcare choices.

Discussion
The objective of this study was to create an interpretable machine learning (ML) classifier that enhances the 
precision of identifying cases of mild cognitive impairment (MCI)/Alzheimer’s disease (AD) and cognitively 
normal (CN) individuals using both gene expression and SNP data, surpassing the performance of previously 
published models. Additionally, the study aimed to highlight crucial gene features that play a significant role in 
the diagnosis of AD. The two gene models, gene-expression based and SNP-based, with the best performance 
were the Random Forest classifier with Chi-square feature selection and the AdaBoost classifier with no feature 
selection respectively. In the gene expression-based model, the input features from gene expression and clinical 
data without CS were processed using chi-square which assesses the independence between a feature and the 
target (ie. accurate prediction of MCI/AD cases) by comparing observed and expected frequencies in a contin-
gency table, helping to identify statistically significant features. SHapley Additive exPlanations were used with 
both models to elucidate potential biomarkers for AD diagnosis from blood genotyping and clinical data with CS.

From the overall SHAP analysis, clinical features such as Age, FDG, AV45, and hippocampus were found to 
have high importance in the model’s predictions. This is expected since, with the absence of neuropsychological 
test scores, imaging features represent structural features of the AD brain. Early changes in FDG imaging suggest 
it may be able to predict which individuals among CN or MCI are most likely to progress to  AD56, supported by 
studies on hypometabolism in AD-affected  regions57. Moreover, smaller hippocampal volumes have been cor-
related with worse study partner-reported everyday cognition scores in another  cohort58.

The genetic features identified by SHAP effectively encompass various aspects of early-stage Alzheimer’s 
disease. This significance is further highlighted by the decision not to incorporate clinical cognitive scores, as 
their inclusion might overshadow other crucial features. Axonal degenration safeguarding by the regulation of 
NMNAT1 protein, and synaptic memberane integrity indicated by ABHD, both being precursors of neurode-
generation. The identification of PDZD2 and NEURL1 genes, which have been linked to cognitive impairments 
related to learning and memory, serves as supportive evidence for the efficacy of the models employed.

Our models have demonstrated superior performance compared to previously published machine learning 
models, particularly due to their effectiveness in handling early-stage Mild Cognitive Impairment (MCI) par-
ticipants, who were not considered in previous studies. The gene expression-based model (AUC = 0.65, accuracy 
= 0.65) is comparable to the Lee and  Lee22 model (AUC = 0.656, accuracy = N/A). The SNP-based model, while 
displaying lower evaluation values, compensates for this by taking into account the additional MCI cohort, with 
(AUC = 0.63, accuracy = 0.67) it is comparable to the  Oriol25 model (AUC = 0.719, accuracy = 0.67). Moreo-
ver, the identification of the most influential clinical and genetic features using SHAP demonstrates the utility 
and validity of our ML model. Nonetheless, we recognize the possible limitations of our study. In our model, 

Table 3.  Stratified participants count in the four age groups.

Age group CN MCI/AD

50–60 years old 1 19

60–70 years old 30 125

70–80 years old 146 191

80–90 years old 35 73
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we have utilized a predefined list of top gene features from another related study. The incorporation of the full 
SNPs and gen expression data may also prove useful in our model. Furthermore, our model is developed on a 
dataset of 623 patients from ADNI. We hope to refine and test our model with additional, independently curated 
external datasets besides ADNI to validate our model. Finally, we recognize that the potential biomarkers iden-
tified by our method would require experimental validation. In the future, we hope to refine our model with 
external validation datasets as mentioned previously. We also hope to incorporate other modes of input data in 
our workflow, such as non-coding SNPs. Epigenetic data may prove beneficial to the workflow, as evidence of 
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Figure 4.  Feature importance plots for four stratified age groups for each of (a–d) gene expression-based model 
and (e–h) SNP-based model.
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epigenetic changes has been observed in PBMCs (peripheral blood mononuclear cells) of AD  patients59. The 
incorporation of additional data may improve model performance further and disclose additional biomarkers 
for diagnosis and treatment.

From our study, we have identified potential gene loci associated with the degeneration of myelin and mal-
function of synaptic vesicle membrane that indicate the early stages of neurodegeneration. Furthermore, the 
age group-stratified studies facilitated by SHAP offer more detailed insights from both clinical and genetic data 
tailored to specific age groups. Hence, our methodology, which omits the reliance on clinical cognitive scores, 
marks a significant stride towards uncovering novel genetic features associated with dementia. It is also hoped 
that our ML and SHAP workflow will help dispel black-box notions among clinicians and accelerate the adoption 
of machine learning in assisting clinical diagnosis.

Methods
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Data used in this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(http:// adni. loni. usc. edu). ADNI is a public-private partnership in 2003, led by Principal Investigator Michael 
W. Weiner, MD with the main goal of testing whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and neuropsychological assessment could track 
the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date infor-
mation, please see http:// www. adni- info. org. In addition to MRI and PET neuroimaging of patients at regular 
intervals, ADNI has collected and analyzed whole blood samples for genotyping and gene expression analysis. 
Table 4 summarizes the genotyping data provided by ADNI. Blood gene expression profiling was conducted 
using Affymetrix Human Genome U219 Array for 744 patients in the ADNI2/ADNI-GO  phase24. For this study, 
the authors utilised all the participants for whom both genetic and gene expression data were available in ADNI 
(623 participants). The selected cohort comprises 212 participants with a baseline diagnosis of cognitively nor-
mal (CN) and 411 participants with a diagnosis of Mild Cognitive Impairment (MCI) or Alzheimer’s Disease 
(AD), grouped together.

The ADNI clinical data included patient demographics, brain functioning scores, neuropsychological test 
scores, and MRI volume measurements. Demographic information such as age, gender, ethnicity, education, and 
marital status have been included. The APOE4 variable indicates the presence of the APOE-ǫ4 allele, a known 
AD risk factor. PET measures for brain function include variables such as fluorodeoxyglucose (FDG), Pittsburgh 
compound B (PIB), and Florbetapir (AV45). Amyloid-β , tau and p-tau levels in cerebrospinal fluid (CSF) are 
indicated by the ABETA, TAU, and PTAU variables. The clinical dementia rating sum of boxes (CDRSB) vari-
able provides the sum of all cognition and function scores from the Clinical Dementia Rating test. ADAS and 
MOCA are neuropsychological test variables used to assess cognitive capacity. The Mini-Mental State Exam 
(MMSE) variable reflects disease progression and cognitive changes over time. Rey’s Auditory Verbal Learning 
Test (RAVLT) variable is a neuropsychological test to examine episodic memory. Logical Memory-Delayed 
Recall Total Number of Story Units Recalled (LDELTOTAL) is another variable from neuropsychological tests 
that assesses an individual’s ability to remember information after some time. TRABSCOR variable denotes 
the time required to complete neuropsychological tests. Functional Activities Questionnaire (FAQ) assesses an 
individual’s reliance on others to perform daily life activities. Everyday cognitive evaluations (Ecog) are question-
naires used to assess the patient’s ability to perform daily tasks. The hippocampus, intracranial volume (ICV), 
Mid Temporal, Fusiform, Ventricles, Entorhinal, and Whole Brain are structural MRI variables. The Modified 
Preclinical Alzheimer Cognitive Composite (mPACC) variable assesses cognition, episodic memory, and time 
needed to complete tasks.

Data preprocessing
Among the participants, 623 unique individuals randomly provided whole blood samples for gene expression 
assays at specific time points. Consequently, we selected these 623 patients and concurrently extracted their clini-
cal data at the time of whole blood sample collection. Upon evaluation, the clinical data revealed that the majority 
of variables were not missing for most individuals or, at most, a small number of them. The ADNI dataset had 
the PIB and DIGISCOR variables missing for over 90% of individuals and were therefore removed. Around 35% 
of the selected participants do not have CSF biomarker variables (ABETA, TAU, PTAU). MRI variables are miss-
ing in 17% of the individuals, and FDG with AV45 variables are missing in 16% of the individuals. Therefore, 
missing data were identified and imputed with Multivariate Imputation By Chained Equations (MICE) using 
scikit-learn package in  Python60. Imputation was performed on the training data and then applied to the test 
data. Supplementary Fig. S1 shows all variables and the number of missing values in each variable.

For performance purposes, the genotyping data utilized in this study comprises the top 121 markers reported 
in a previous 2023  study61. Exact feature list can be found in Supplementary Fig. S2. As reported, the “bim,” “bed,” 
and “fam” files are the three files that make up the original plink file format of the dataset. Subject characteristics 

Table 4.  ADNI genotyping data summary.

Phase Platform Variants Genome assembly DbSNP build

ADNI1 Illumina Human 610-Quad BeadChip 620901 SNP and CNV markers hg18 129

ADNIGO/ADNI2 Illumina Human OmniExpress BeadChip 730525 SNP and CNV markers hg18 129

http://adni.loni.usc.edu
http://www.adni-info.org
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are documented in the “fam” file. The location, name, and allele representation of SNPs (features) are kept in the 
“bim” file. Lastly, “bed” files provide machine codes that are unintelligible to humans. These codes are composed 
of 8-bit codes that map the data between fam and bim files and represent the genotype  codes61.

Machine learning pipeline
The machine learning model development workflow is depicted in Fig. 5. The scikit-learn package in Python 
programming language v3.9.12 was used to develop the models. Further details of the workflow are discussed 
in the following sections.

Preparation of input data
Different combinations of clinical data, gene expression, and SNP data were integrated and utilized to train the 
model as can be seen in Fig. 5. This training process involved a two-step cross-validation approach: first, a strati-
fied five-fold cross-validation was conducted in the outer loop, followed by an additional stratified three-fold 
cross-validation in the inner loop. Target stratification was used in both the outer and inner loops to maintain 

ADNI SNPs data ADNI gebe expression dataClinical data

Data preprocessing
PLINK Ver 1.07

SNPs-gene mapping

Selects a subset from the
original set

Including cognitive
scores

Excluding cognitive
scores

Selects a subset from the
original set

MICE multiple imputation by chained
equations (For Clinicl Features Only)

Data merging
test different combination

Clinical table ( either include or
exclude table will used)

Min-Max scaling

SMOTE (
synthetic minority oversampling

technique)

Feature Selection 
"Tune parameters"

Model fitting
"Tune parameters"

Chi

Lasso

MI

RF

SVM

AdaBoost

MLP

Best model performance
evaluation

SHAP (SHapley Additive exPlanations)
Identification of features that affect the

prediction significantly

Biological interpretation
Validate and interpret findings using

previous study reports

Outer loop
Train with optimal
paramters using
Stratified Five-Folds
Cross-Validation

Inner loop
Tune parameters using repeated stratified three
folds Cross-Validation

Hyperparameter optimizaion:
Tune parameters using bayesian optimization with
100 trials for each fold to maximize the auc value on
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We simultaneously optimizing the hyperparameters
for both feature selection and model parameters

Training foldsTesting fold

Validation fold Training folds

Figure 5.  Machine learning pipeline for systematic model development.
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the proportions of MCI/AD and CN participants. During the inner loop, MICE imputation is performed on the 
“training data”, Min-Max scaling is then applied before transforming the test dataset. Our dataset contains twice 
as many MCI/AD as CN participants (411 versus 212 cases) and is therefore unbalanced. This was addressed via 
utilizing the Synthetic Minority Oversampling Technique (SMOTE).

Four types of input data (SNPs, gene expression, clinical data, and clinical data without cognitive scores) 
were used separately and combined to create single modal and multi-modal data inputs for the machine learning 
models. Multi-modal inputs include paired combinations of the four inputs, as well as the combination of all 
four together. The features in multi-modal inputs were merged before feature selection.

Feature selection
In this study, three different feature selection methods were carried out on both single-model and multi-modal 
inputs, namely Chi-square, mutual information (MI), and Least Absolute Shrinkage and Selection Operator 
(LASSO). Additionally, a parallel analysis was conducted, wherein no feature selection was implemented. Before 
the selection process, there were a total of 45 clinical features, 2,702,858 SNPs, and 19,403 gene expression 
features available. From the SNPs and gene expression features, 121 top features were chosen based on a well-
established and previously published  study61 enhancing the robustness of our genetic data. The number of features 
selected by each method varies as it is an optimized hyperarameter. The features selected by each method and 
feature selection method are provided in Supplementary Data 1.

Classification models and hyperparameter optimization
To binary classify the subjects as either CN or MCI/AD, Support Vector Machine (SVM), Random Forest (RF), 
AdaBoost (AB), and Multi-Layer Perceptron classifier (MLP) models were implemented. Bayesian optimiza-
tion with five-fold cross-validation and repeated stratified three-fold Cross-Validation was used to fine-tune the 
hyperparameters with 100 trials for each fold to maximize the auc value on the validation set. We simultaneously 
optimizing the hyperparameters for both feature selection and model parameters. For the SVM model, the cost 
(C), gamma ( γ ), kernel, and class weight hyperparameters were optimized such that the cost ranged between 0.1 
and 1000, and gamma values between 0.0001 and 0.001. The choice of the kernel was among linear, polynomial, 
radial basis function (RBF), or sigmoid and class weight was set to either balanced or none.

For the RF model, the maximum tree depth, maximum number of features, split quality criterion, and class 
weight were optimized. The maximum tree depth values were set at 3, 5, 7, and none, maximum feature numbers 
included the square root and log (base 2) of the number of features, as well as the total number of features. The 
criterion was Gini impurity, logistic loss, and entropy. Lastly, the class weight was set to be balanced, balanced 
subsample, and none.

For AB, the number of estimators, learning rate, and algorithm were optimized. The number of estimators was 
set at 50, 100, and 200. The learning rate was set at 0.1, 0.01, and 0.001. For the algorithm, we utilized Stagewise 
Additive Modeling using a Multi-class Exponential loss function (SAMME) and SAMME.R (which outputs class 
probabilities instead of discrete values 0 or 1).

For the MLP classifier, the hidden layer sizes, activation function, weight optimizer, L2 regularization strength, 
and learning rate were optimized. The hidden layers depth ranged from 10 to 100 with an increment of 10. The 
weight optimization algorithm choices included adaptive moment estimation(Adam), stochastic gradient descent 
(SGD), and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS). The learning rate was either set as a 
constant or specified according to adaptive or inverse scaling methods. The L2 strength values were set as 0.01, 
0.001, or 0.0001.

The selected hyperparameters for each dataset and the extracted features are shown in Supplementary Data 2.

Model performance metrics
Model performance is evaluated using the receiver-operator characteristic curve (ROC-AUC) and accuracy. The 
formulae for accuracy is shown below:

Here, the number of correctly predicted MCI/AD cases are True positive (TP), and CN participants incorrectly 
predicted as MCI/AD are assigned False Positive (FP). Correctly predicted CN participants are True Negative 
(TN), while MCI/AD participants wrongly predicted as CN are assigned False Negative (FN).

SHAP model interpretation
Lundberg and  Lee35 have proposed SHapley Additive exPlanations (SHAP) technique to explain model predic-
tions, which computes a unified measure of feature importance using game theory. To calculate SHAP values, 
each feature’s contribution to the predicted value is estimated by comparing predictions over different combi-
nations of features. The SHAP value for a feature is the average of all the marginal contributions to predictions 
from all possible feature combinations. SHAP values indicate the magnitude of difference that each feature 
makes to the final predicted value, starting from a base expected value. SHAP values were computed for the 
best-performing model to identify features that have the highest impact on model performance and are therefore 
potential biomarkers for prodromal and advanced Alzheimer’s. Genes were extracted from the most influential 
SHAP features, and a comprehensive review of the existing literature was conducted to establish connections 
between our findings and experimental evidence.

(1)Accuracy =
TP + TN

TP + TN + FP + FN
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Stratified case studies with SHAP
To examine the insights provided by SHAP, the cohort was stratified by age in 10 years interval from 50 to 90 
years old. This stratified examination also provides nuanced insights into whether Age assumes a more promi-
nent role in discriminating between the two classes within specific age brackets, potentially signifying a stronger 
association with AD development or progression in late adulthood. A feature importance plot was generated 
for each selected age-group, allowing for a comprehensive understanding of the impact of each feature on the 
final prediction outcome.

Statistical analysis
Differences in clinical features between CN and MCI/AD participants were analyzed using statistical tests for 
significance. The t-test was used for parametric continuous variables (with equal variance assumption), while the 
Mann-Whitney U test was used for non-parametric continuous variables. The Chi-square (χ2) test was used to 
test categorical variables hypotheses (with continuity correction), while Fisher’s exact test was used for smaller 
sample sizes (small cell counts). All statistical tests were performed at the 95% significance level.

Data availibility
The dataset analysed in this study is publicly available in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
repository, (http:// adni. loni. usc. edu) (Accession Number: sa000002).
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