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Study of multi‑dimensional 
problems arising in wave 
propagation using a hybrid scheme
Jinxing Liu 1, Muhammad Nadeem 2, M. S. Osman 3 & Yahya Alsayaad 4*

Many scientific phenomena are linked to wave problems. This paper presents an effective and suitable 
technique for generating approximation solutions to multi‑dimensional problems associated with 
wave propagation. We adopt a new iterative strategy to reduce the numerical work with minimum 
time efficiency compared to existing techniques such as the variational iteration method (VIM) and 
homotopy analysis method (HAM) have some limitations and constraints within the development 
of recurrence relation. To overcome this drawback, we present a Sawi integral transform ( S T) for 
constructing a suitable recurrence relation. This recurrence relation is solved to determine the 
coefficients of the homotopy perturbation strategy (HPS) that leads to the convergence series of 
the precise solution. This strategy derives the results in algebraic form that are independent of any 
discretization. To demonstrate the performance of this scheme, several mathematical frameworks and 
visual depictions are shown.

Keywords Sawi integral transform, Homotopy perturbation scheme, Multi-dimensional wave equations, 
Approximate solutions

Several notable advances in computational approaches have been developed for engineering and scientific appli-
cations, including geometrical description, flexible artificial materials, and acoustic wave  propagation1–3. Partial 
differential equations (PDEs) have a significant impact on many scientific and engineering fields, including 
electronics, hydrodynamics, computational motion, physical biology, the engineering of chemicals, dietary fiber, 
mechanics, material dynamics, and geometrical  optics4–7. Numerous researchers have investigated different 
methods to derive the analytical results for such PDEs. Utilizing a meshfree approach named the Radial basis 
function pseudo spectral (RBF-PS) method, researchers numerically examined the solutions for both integer and 
fractional KdV type equations on a finite domain with periodic boundary  conditions8,9. Although the computa-
tions associated with these approaches are fairly straightforward and certain variables are based on the assump-
tion of a variety of limitations. As a result, many scientists are looking for new techniques to overcome these 
restrictions. Numerous scientists and other researchers have offered several methods for assessing the analytical 
 findings10–12. Several academics and scientists have used  HPS13,14 to solve complicated physical problems. When 
employing this method, the solution series converges relatively quickly in most cases. The  authors15,16 used HPS 
to the oscillation challenges in nonlinearity and demonstrated its effectiveness in providing analytical findings.

The wave problem is a partial differential equation for a scalar function offering wave propagation in the 
motion of fluids.  Wazwaz17 used the VIM to study linear and nonlinear problems. Ghasemi et al.18 computed the 
effective results for two-dimensional nonlinear differential problem using HPS. Keskin and  Oturanc19 proposed 
a new method for the analytical results of wave problems. Dehghan et al.20 applied HAM to derive the approxi-
mation results for PDEs. Ullah et al.21 proposed a homotopy optimum technique to generate algebraic findings 
for wave challenges. Thorwe and  Bhalekar22 used Laplace transform method to obtain approximation solution 
of partial integro-differential equations. Adwan et al.23 presented analytical findings for multidimensional wave 
challenges and validated the proposed technique. The HPS was applied for the approximate solutions of wave 
equations by Jleli et al.24. The researchers  in25 proposed the finite element technique and separated the wave sys-
tem to derive their approximate solution. These approaches include a lot of limitations and assumptions during 
the estimation of problems.
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The current study aims to use a new iterative technique for multi-dimension challenges by combining S T and 
HPS. In the present work, we eliminate these drawbacks and constraints by offering a novel iterative method for 
these multi-dimensional wave issues. An iteration series with approximate findings that are close to the precise 
outcomes is produced by this new strategy. This technique performs more effectively and produces more appeal-
ing outcomes for the present challenges. The following is a description of this work: the concept of Sawi integral 
transform is given in “Fundamental concepts”. In “Formulation of new iterative strategy”, we build our new strat-
egy to achieve the multi-dimension model findings. The convergence theorem has been laid out in “Convergence 
of new iterative strategy”. In “Numerical applications”, a few numerical examples are examined to demonstrate 
the power of new technique and we offer the conclusion at the end of “Conclusion remarks and future work”.

Fundamental concepts
In this portion, we give few fundamental features of S T that are helpful in the development of our new strategy.

Sawi transform

Definition 2.1 Let ϑ be a function of η ≥ 0 . Then, S T  is26,27

in which S represents the symbol of S T. Now

where Q(θ) shows the function of ϑ(η) . The S T of ϑ(η) for η ≥ 0 exist if ϑ(η) tends to exponentially ordered and 
piecewise continuous. The existence of S T for ϑ(η) is basically predicated on the two requirements mentioned.

Proposition 1 Now, we define the basic propositions of S T. Therefore, let S{ϑ1(η)} = Q1(θ) and S{ϑ2(η)} = Q2(θ)
28,29, thus

Proposition 2 Now, for the differential characteristics of S T, we consider S{ϑ(η)} = Q(θ) , the differential charac-
teristics are defined as30

Formulation of new iterative strategy
This section examines the approximate solutions of 1D, 2D, and 3D wave problems by using new iterative 
strategy (NIS). This approach can be used to solve differential equations based on initial conditions. We stated 
that the construction of this approach does not depend on integrating and other suppositions. Let a differential 
equation like that

subjected to initial conditions

where f (ϑ) denotes the nonlinear element, f (x1, η) is known component of arbitrary constants a1 and a2 , and 
ϑ(x1, η) is a uniform function. Moreover, we may express Eq. (4) like this:

A function of a real variable can be transformed into an expression of a complex variable using an integral 
transformation known as the Sawi transform in mathematics. This transformation has several uses in the fields 
of science and technology because it serves as a tool to deal with differential problems.

Apply S T on Eq. (6), we get

Using the formula as defined in Eq. (3), it yields

(1)S[ϑ(η)] = Q(θ) =
1

θ2

∫ ∞

0

ϑ(η)e
−
η

θ dt. η ≥ 0, k1 ≤ θ ≤ k2

S
−1[Q(θ)] = ϑ(η), S

−1 is the inverse ST,

(2)
S{aϑ1(η)+ bϑ2(η)} = aS{ϑ1(η)} + bS{ϑ2(η)},

⇒ S{aϑ1(η)+ bϑ2(η)} = aQ1(θ)+ bQ2(θ),

(3)

S{ϑ ′(η)} =
Q(θ)

θ
−

ϑ(0)

θ2
,

S{ϑ ′′(η)} =
Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
,

S{ϑm(η)} =
Q(θ)

θm
−

ϑ(0)

θm+1
−

ϑ ′(0)

θm
− · · · −

ϑm−1(0)

θ2
.

(4)ϑ ′′(x1, η)+ ϑ(x1, η)+ f (ϑ) = f (x1, η),

(5)ϑ(x1, 0) = a1, ϑη(x1, 0) = a2

(6)ϑ ′′(x1, η) = −ϑ(x1, η)− f (ϑ)+ f (x1, η).

S[ϑ ′′(x1, η)] = S[−ϑ(x1, η)− g(ϑ)+ g(x1, η)].
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Thus, Q(θ) is derived as

On inverse S T on Eq. (7), we get

Use the condition (5), we obtain

This Eq. (8) is known as the development of NIS of Eq. (4).
Let HPS be introduced as

where as the nonlinear variable f (ϑ) is stated as

Hence, we are able to generate H ′
ns polynomial as

Use Eqs. (9)–(11) in Eq. (8) and evaluate the similar components of p, it yields

Following this procedure, which results in

Hence, Eq. (12) provides a closed-form approximation to the differential problem.

Convergence of new iterative strategy

Theorem 4.1 Let [a, b] × [0,T] be the rectangular interval on which the Banach space B ≡ C([a, b] × [0,T]) 
is defined. Then Eq. (12) ϑ(x1, η) =

∑∞
i=0 ϑi(x1, η) is convergent series, if ϑ0 ∈ B is bounded and 

�ϑi+1� ≤ �ϑi�, ∀ϑi ∈ B , and for 0 < δ < 1.

Proof Taking the series {Fr} as a partial sum of Eq. (12), we obtain

Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
= −S[ϑ(x1, η)+ f (ϑ)− f (x1, η)].

(7)Q[θ] =
ϑ(0)

θ
+ ϑ ′(0)− θ2S[ϑ(x1, η)+ f (ϑ)− f (x1, η)].

ϑ(x1, η) = ϑ(0)+ ηϑ ′(0)− S
−1

[

θ2S

{

ϑ(x1, η)+ f (ϑ)− f (x1, η)
}]

.

(8)ϑ(x1, η) = ϑ(x1, 0)+ ηϑη(x1, 0)+ S
−1

[

θ2S

(

f (x1, η)
)]

− S
−1

[

θ2S

(

ϑ(x1, η)+ f (ϑ)
)]

,

(9)ϑ(η) =

∞
∑

i=0

piϑi(n) = ϑ0 + p1ϑ1 + p2ϑ2 + · · · ,

(10)f (ϑ) =

∞
∑

i=0

piHi(ϑ) = H0 + p1H1 + p2H2 + · · · .

(11)Hn(ϑ0 + ϑ1 + · · · + ϑn) =
1

n!

∂n

∂pn

(

f

(

∞
∑

i=0

piϑi

))

p=0

, n = 0, 1, 2, · · ·

p0 : ϑ0(x1, η) = G(x1, η),

p1 : ϑ1(x1, η) = −S
−1

[

θ2S

{

ϑ0(x1, η)+H0(ϑ)

}]

,

p2 : ϑ2(x1, η) = −S
−1

[

θ2S

{

ϑ1(x1, η)+H1(ϑ)

}]

,

p3 : ϑ3(x1, η) = −S
−1

[

θ2S

{

ϑ2(x1, η)+H2(ϑ)

}]

,

.

.

..

(12)ϑ(x1, η) = ϑ0 + ϑ1 + ϑ2 + · · · =

∞
∑

i=0

ϑi .
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Next, we establish that {Fr}∞r=0 is a Cauchy sequence in B in order to validate this theorem. Therefore,

Hence, for any pair r, n ∈ N , where r > n , we have

where β =
(1−δr−n)
(1−δ)

δn+1 . Since ϑ0(x1, η) is bounded, therefore �ϑ0(x1, η)� < ∞ . As n grows and n → ∞ leads 
to β → 0 for 0 < δ < 1 , so

Consequently, {Fr}∞r=0 in B is a Cauchy sequence. It follows that the series solution of Eq. (12) is convergent.  �

Theorem 4.2 If  
∑n

k=0 ϑk(x1, η) represents the approximate series solution of Eq. (4), then maximal absolute 
error can be determined by

in which δ is a digit which means 
�ϑi+1�

�ϑi�
≤ δ.

Proof Using Eq. (15) from Theorem (4.1), we obtain

Here, {Fr}∞r=0 → ϑ(x1, η) as r → ∞ and from Eq. (13), we get Fn =
∑n

k=0 ϑk(x1, η),

Now, (1− δr−n) < 1 , since 0 < δ < 1

  �

Hence, the proof.

Numerical applications
We provide some numerical tests for showing the precision and reliability of NIS. We can observe that, as com-
pared to other approaches, this method is substantially easier to apply in obtaining the convergence series. We 
illustrate the physical nature of the resulting plot distribution with graphical structures. Furthermore, a visual 
depiction of the error distribution demonstrated the near correspondence between the NIS outcomes and the 
precise results. We can compute the absolute error estimates by evaluating the exact solutions with the NIS values.

(13)

F0 = ϑ0(x1, η),

F1 = ϑ0(x1, η)+ ϑ1(x1, η),

F2 = ϑ0(x1, η)+ ϑ1(x1, η)+ ϑ2(x1, η),

.

.

.

Fr = ϑ0(x1, η)+ ϑ1(x1, η)+ ϑ2(x1, η)+ . . .+ ϑr(x1, η).

(14)

�Fr+1 − Fr� = �ϑr+1(x1, η)�,

≤ δ�ϑr(x1, η)�,

≤ δ2�ϑr−1(x1, η)�,

.

.

.

≤ δr+1�ϑ0(x1, η)�.

(15)

�Fr − Fn� = �(Fr − Fr−1)+ (Fr−1 − Fr−2)+ (Fr−2 − Fr−3)+ . . .+ (Fn+1 − Fn)�,

≤ �Fr − Fr−1� + �Fr−1 − Fr−2� + �Fr−2 − Fr−3� + . . .+ �Fn+1 − Fn�,

≤ δr�ϑ0(x1, η)� + δr−1�ϑ0(x1, η)� + . . .+ δn+1�ϑ0(x1, η)�,

≤ β�ϑ0(x1, η)�.

(16)
lim

n → ∞

r → ∞

�Fr − Fn� = 0.

(17)

∥

∥

∥

∥

∥

ϑ(x1, η)−

n
∑

k=0

ϑk(x1, η)

∥

∥

∥

∥

∥

≤
δn+1

1− δ
�ϑ0(x1, η)�,

(18)�Fr − Fn� ≤ β�ϑ0(x1, η)�, in which β =

(

1− δr−n
)

(1− δ)
δn+1.

(19)

∥

∥

∥

∥

∥

ϑ(x1, η)−

n
∑

k=0

ϑk(x1, η)

∥

∥

∥

∥

∥

≤ β�ϑ0(x1, η)�,

(20)

∥

∥

∥

∥

∥

ϑ(x1, η)−

n
∑

k=0

ϑk(x1, η)

∥

∥

∥

∥

∥

≤
δn+1

1− δ
�ϑ0(x1, η)�.
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Example 1
Consider the one dimensional wave equation

subjected to initial

and boundary conditions

Apply S T on Eq. (21), we get

Using the formula as defined in Eq. (3), it yields

Thus, Q(θ) reveals as

On inverse S T, we have

Thus HPS yields such as

By assessing comparable components of p, we arrive at

Likewise, we can consider the approximation series in such a way that

which can approaches to

Figure 1 shows periodic soliton waves in two diagrams: Fig. 1a 3D surface plot for analytical results of ϑ(x1, η) and 
Fig. 1b shows 3D surface plot for precise results of ϑ(x1, η) for one-dimensional wave equation at −10 ≤ x1 ≤ 10 
and 0 ≤ η ≤ 0.01 . The effective agreement among analytical and the precise results at 0 ≤ x1 ≤ 5 along η = 0.1 
is shown in Fig. 2, which further validates the strong agreement of NIS for example (5.1). We can precisely 
propagate any surface to reflect the pertinent natural physical processes, according to this technique. The error 

(21)
∂2ϑ

∂η2
=

∂2ϑ

∂x21
− 3ϑ ,

(22)ϑ(x1, 0) = 0, ϑη(x1, 0) = 2 cos(x1)

(23)ϑ(0, η) = sin(2η), ϑx1(π , η) = − sin(2η).

S

[∂2ϑ

∂η2

]

= S

[∂2ϑ

∂x21
− 3ϑ

]

,

Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
= S

[∂2ϑ

∂x21
− 3ϑ

]

.

(24)Q[θ] =
ϑ(0)

θ
+ ϑ ′(0)+ θ2S

[∂2ϑ

∂x21
− 3ϑ

]

.

ϑ(x1, η) = ϑ(x1, 0)+ ηϑη(x1, 0)+ S
−1

[

θ2S

{∂2ϑ

∂x21
− 3ϑ

}]

.

∞
∑

i=0

piϑi(x1, η) = 2η cos(x1)+ S
−1

[

θ2S

{

∞
∑

i=0

pi
∂2ϑi

∂x21
− 3

∞
∑

i=0

piϑ

}]

.

p0 : ϑ0(x1, η) = ϑ(x1, 0) = 2η cos(x1),

p1 : ϑ1(x1, η) = S
−1

[

θ2S

{

∂2ϑ0

∂x21
− 3ϑ0

}]

= −
(2η)3

3!
cos(x1),

p2 : ϑ2(x1, η) = S
−1

[

θ2S

{

∂2ϑ1

∂x21
− 3ϑ1

}]

=
(2η)5

5!
cos(x1),

p3 : ϑ3(x1, η) = S
−1

[

θ2S

{

∂2ϑ2

∂x21
− 3ϑ2

}]

= −
(2η)7

7!
cos(x1),

p4 : ϑ4(x1, η) = S
−1

[

θ2S

{

∂2ϑ3

∂x21
− 3ϑ3

}]

=
(2η)9

9!
cos(x1),

.

.

..

(25)

ϑ(x1, η) = ϑ0(x1, η)+ ϑ1(x1, η)+ ϑ2(x1, η)+ ϑ3(x1, η)+ ϑ4(x1, η)+ · · · ,

= cos(x1)

(

2η −
(2η)3

3!
+

(2η)5

5!
−

(2η)7

7!
+

(2η)9

9!

)

+ · · · .

(26)ϑ(x1, η) = cos(x1) sin(2η).
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Table 1.  Error distribution of ϑ(x1, η) along x1-space at different values.

x1 η Analytical results Precise results Error distribution

0.25

0.2 0.377312 0.377312 00000

0.4 0.695055 0.695055 00000

0.6 0.903064 0.903064 00000

0.8 0.968503 0.968499 4 ×10−6

1 0.881078 0.88103 0.000048

0.50

0.2 0.341747 0.341747 00000

0.4 0.629539 0.629539 00000

0.6 0.817941 0.817941 00000

0.8 0.877212 0.877208 4 ×10−6

1 0.798627 0.797984 0.000043

0.75

0.2 0.284933 0.284933 00000

0.4 0.524881 0.524881 00000

0.6 0.681963 0.681963 00000

0.8 0.73138 0.731377 3 ×10−6

1 0.665359 0.665323 0.000036

1

0.2 0.210404 0.210404 00000

0.4 0.387589 0.387589 00000

0.6 0.503583 0.503583 00000

0.8 0.540074 0.540072 2 ×10−6

1 0.491323 0.491295 0.000028

Figure 1.  Surface results for one-dimensional problem.

Figure 2.  Error between analytical and precise results.
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distribution among analytical and precise results for ϑ(x1, η) along x1-space at different values is shown in Table 1. 
This contraction demonstrates the effectiveness of proposed technique in finding the closed-form results for 
the wave problems.

Example 2
Consider the two-dimensional wave equation

subjected to initial

and boundary conditions

Apply S T on Eq. (27), we get

Using the formula as defined in Eq. (3), it yields

Thus, Q(θ) reveals as

On inverse S T, we have

Thus HPS yields such as

By assessing comparable components of p, we arrive at

Likewise, we can consider the approximation series in such a way that

(27)
∂2ϑ

∂η2
= 2

(

∂2ϑ

∂x21
+

∂2ϑ

∂y21

)

+ 6η + 2x1 + 4y1,

(28)ϑ(x1, y1, 0) = 0, ϑη(x1, y1, 0) = 2 sin(x1) sin(y1)

(29)
ϑ(0, y1, η) = η3 + 2η2y1, ϑx1(π , y1, η) = η3 + πη2 + 2η2y1,

ϑ(x1, 0, η) = η3 + η2x1, ϑx1(x1,π , η) = η3 + 2πη2 + η2x1.

S

[∂2ϑ

∂η2

]

= S

[

2

(∂2ϑ

∂x21
+

∂2ϑ

∂y21

)

+ 6η + 2x1 + 4y1

]

,

Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
= S

[

2

(∂2ϑ

∂x21
+

∂2ϑ

∂y21

)

+ 6η + 2x1 + 4y1

]

,

Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
= S

[

2

(∂2ϑ

∂x21
+

∂2ϑ

∂y21

)]

+ 6S

[

η

]

+ 2x1S
[

1

]

+ 4y1S
[

1

]

,

(30)Q[θ] = 6θ2 + 2x1θ + 4y1θ +
ϑ(0)

θ
+ ϑ ′(0)+ θ2S

[

2

(∂2ϑ

∂x21
+

∂2ϑ

∂y21

]

.

ϑ(x1, y1, η) = η3 + x1η
2 + 2y1η

2 + ϑ(x1, 0)+ ηϑη(x1, 0)+ S
−1

[

θ2S

{

2

(∂2ϑ

∂x21
+

∂2ϑ

∂y21

}]

.

∞
∑

i=0

piϑi(x1, y1, η) = η3 + x1η
2 + 2y1η

2 + 2η sin(x1) sin(y1)+ S
−1

[

θ2S

{

2

(

∞
∑

i=0

pi
∂2ϑi

∂x21
+

∞
∑

i=0

pi
∂2ϑi

∂y21

)}]

.

p0 : ϑ0(x1, y1, η) = ϑ(x1, 0) = η3 + x1η
2 + 2y1η

2 + 2η sin(x1) sin(y1),

p1 : ϑ1(x1, y1, η) = S
−1

[

θ2S

{

∂2ϑ0

∂x21
+

∂2ϑ0

∂y21

}]

= −
(2η)3

3!
sin(x1) sin(y1),

p2 : ϑ2(x1, y1, η) = S
−1

[

θ2S

{

∂2ϑ1

∂x21
+

∂2ϑ1

∂y21

}]

=
(2η)5

5!
sin(x1) sin(y1),

p3 : ϑ3(x1, y1, η) = S
−1

[

θ2S

{

∂2ϑ2

∂x21
+

∂2ϑ2

∂y21

}]

= −
(2η)7

7!
sin(x1) sin(y1),

p4 : ϑ4(x1, y1, η) = S
−1

[

θ2S

{

∂2ϑ3

∂x21
+

∂2ϑ3

∂y21

}]

=
(2η)9

9!
sin(x1) sin(y1),

.

.

..

(31)

ϑ(x1, y1, η) = ϑ0(x1, y1, η)+ ϑ1(x1, y1, η)+ ϑ2(x1, y1, η)+ ϑ3(x1, y1, η)+ ϑ4(x1, y1, η)+ · · · ,

= η3 + x1η
2 + 2y1η

2 + sin(x1) sin(y1)

(

2η −
(2η)3

3!
+

(2η)5

5!
−

(2η)7

7!
+

(2η)9

9!

)

+ · · · .
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which can approaches to

Figure 3 shows periodic soliton waves in two diagrams: Fig. 3a: 3D surface plot for analytical results and Fig. 3b: 
3D surface plot for precise results of ϑ(x1, y1, η) for two-dimensional wave equation at −5 ≤ x1 ≤ 5 , 0 ≤ η ≤ 0.01 
along y1 = 0.5 . The effective agreement among analytical and the precise results at 0 ≤ x1 ≤ 5 , y1 = 0.1 along 
η = 0.1 is shown in Fig. 4, which further validates the strong agreement of NIS for example (5.2). We can pre-
cisely propagate any surface to reflect the pertinent natural physical processes, according to this technique. The 
error distribution among analytical and precise results for ϑ(x1, y1, η) along x1-space at different values is shown 
in Table 2. This contraction demonstrates the effectiveness of proposed technique in finding the closed-form 
results for the wave problems.

(32)ϑ(x1, y1, η) = η3 + x1η
2 + 2y1η

2 + sin(x1) sin(y1) sin(2η).

Table 2.  Error distribution of ϑ(x1, y1, η) along x1-space and y1 = 0.5 at different values.

x1 η Analytical results Precise results Error distribution

0.50

1 0.964469 0.964469 000000

1.25 1.07034 1.07034 000000

1.50 1.15241 1.15241 000000

1.75 1.20946 1.20946 000000

2 1.24183 1.24183 000000

1

1 3.36685 3.66683 000002

1.25 3.66372 3.6637 000002

1.50 3.93487 3.93481 000002

1.75 4.17898 4.17896 000002

2 4.39642 4.3964 000002

1.5

1 7.93362 7.93193 0.00169

1.25 8.50361 8.50171 0.00190

1.50 9.06949 9.06749 0.00200

1.75 9.63105 9.62907 0.00198

2 10.1883 10.1865 0.00180

2

1 15.733 15.6947 0.03830

1.25 16.6989 16.6557 0.04320

1.50 17.6835 17.6381 0.04540

1.75 18.6878 18.643 0.04480

2 19.7115 19.6701 0.04140

Figure 3.  Surface results for two-dimensional problem.
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Example 3
Consider the three-dimensional wave equation

subjected to initial

and boundary conditions

Apply S T on Eq. (33), we get

Using the formula as defined in Eq. (3), it yields

Thus, Q(θ) reveals as

On inverse S T, we have

Thus HPS yields such as

By assessing comparable components of p, we arrive at

(33)
∂2ϑ

∂η2
=

x21
18

∂2ϑ

∂x21
+

y21
18

∂2ϑ

∂y21
+

z21
18

∂2ϑ

∂z21
− ϑ ,

(34)ϑ(x1, y1, z1, 0) = 0, ϑη(x1, y1, z1, 0) = x41y
4
1z

4
1 ,

(35)

ϑ(0, y1, z1, η) = 0, ϑ(1, y1, z1, η) = y41z
4
1 sinh(η),

ϑ(x1, 0, z1, η) = 0, ϑ(x1, 1, z1, η) = x41z
4
1 sinh(η),

ϑ(x1, y1, 0, η) = 0, ϑ(x1, y1, 1, η) = x41y
4
1 sinh(η),

S

[∂2ϑ

∂η2

]

= S

[ x21
18

∂2ϑ

∂x21
+

y21
18

∂2ϑ

∂y21
+

z21
18

∂2ϑ

∂z21
− ϑ

]

.

Q(θ)

θ2
−

ϑ(0)

θ3
−

ϑ ′(0)

θ2
= S

[ x21
18

∂2ϑ

∂x21
+

y21
18

∂2ϑ

∂y21
+

z21
18

∂2ϑ

∂z21
− ϑ

]

Q[θ] =
ϑ(0)

θ
+ ϑ ′(0)+ θ2S

[ x21
18

∂2ϑ

∂x21
+

y21
18

∂2ϑ

∂y21
+

z21
18

∂2ϑ

∂z21
− ϑ

]

.

(36)ϑ(x1, y1, z1, η) = ϑ(x1, 0)+ ηϑη(x1, 0)+ S
−1

[

θ2S

{ x21
18

∂2ϑ

∂x21
+

y21
18

∂2ϑ

∂y21
+

z21
18

∂2ϑ

∂z21
− ϑ

}]

.

∞
∑

i=0

piϑ(x1, y1, z1, η) = ηx41y
4
1z

4
1 + S

−1
[

θ2S

[

∞
∑

i=0

pi
x21
18

∂2ϑi

∂x21
+

∞
∑

i=0

pi
y21
18

∂2ϑi

∂y21
+

∞
∑

i=0

pi
z21
18

∂2ϑi

∂z21
−

∞
∑

i=0

piϑ
]

.

Figure 4.  Error between analytical and precise results.
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Likewise, we can consider the approximation series in such a way that

which can approaches to

Figure 5 shows two diagrams: Fig. 5a: 3D surface plot for analytical results and Fig. 5b: 3D surface plot for precise 
results of ϑ(x1, y1, z1, η) for two-dimensional wave equation at 5 ≤ x1 ≤ 10 and 0 ≤ η ≤ 0.01 with y1 = 0.5 and 
z1 = 0.5 . The effective agreement among analytical and the precise results at 0 ≤ x1 ≤ 10 , y1 = 0.5 , z1 = 0.5 
along η = 0.5 is shown in Fig. 6, which further validates the strong agreement of NIS for example (5.3). We can 
precisely propagate any surface to reflect the pertinent natural physical processes, according to this technique. 
The error distribution among analytical and precise results for ϑ(x1, y1, z1, η) along x1-space at different values is 
shown in Table 3. This contraction demonstrates the effectiveness of proposed technique in finding the closed-
form results for the wave problems.

p0 : ϑ0(x1, y1, z1, η) = ϑ(x1, y1, z1, 0) = ηx41y
4
1z

4
1 ,

p1 : ϑ1(x1, y1, z1, η) = S
−1

[

θS

{

x21
18

∂2ϑ0

∂x21
+

y21
18

∂2ϑ0

∂y21
+

z21
18

∂2ϑ0

∂z21
− ϑ0

}

}]

=
η3

3!
x41y

4
1z

4
1 ,

p2 : ϑ2(x1, y1, z1, η) = S
−1

[

θS

{

x21
18

∂2ϑ1

∂x21
+

y21
18

∂2ϑ1

∂y21
+

z21
18

∂2ϑ1

∂z21
− ϑ1

}

}]

=
η5

5!
x41y

4
1z

4
1 ,

p3 : ϑ3(x1, y1, z1, η) = S
−1

[

2θS

{

x21
18

∂2ϑ2

∂x21
+

y21
18

∂2ϑ2

∂y21
+

z21
18

∂2ϑ2

∂z21
− ϑ2

}

}]

=
η7

7!
x41y

4
1z

4
1 ,

p4 : ϑ4(x1, y1, z1, η) = S
−1

[

θS

{

x21
18

∂2ϑ3

∂x21
+

y21
18

∂2ϑ3

∂y21
+

z21
18

∂2ϑ3

∂z21
− ϑ3

}

}]

=
η9

9!
x41y

4
1z

4
1 ,

.

.

..

(37)

ϑ(x1, y1, z1, η) = ϑ0(x1, y1, z1, η)+ ϑ1(x1, y1, z1, η)+ ϑ2(x1, y1, z1, η)+ ϑ3(x1, y1, z1, η)+ ϑ4(x1, y1, z1, η)+ · · · ,

= x41y
4
1z

4
1

(

η +
η3

3!
+

η5

5!
+

η7

7!
+

η9

9!

)

+ · · · .

(38)ϑ(x1, y1, z1, η) = x41y
4
1z

4
1 sinh(η).

Table 3.  Error distribution of ϑ(x1, y1, z1, η) along x1 -space and y1 = z1 = 0.5 at different values.

x1 η Analytical results Precise results Error distribution

0.25

1 0.0000179321 0.0000179321 00000

1.25 0.0000244433 0.0000244433 00000

1.50 0.0000324902 0.0000324902 00000

1.75 0.0000425782 0.0000425783 1 ×10−10

2 0.0000553407 0.0000553415 8 ×10−10

0.50

1 0.000286914 0.000286914 00000

1.25 0.000391093 0.000391094 1 ×10−10

1.50 0.000519843 0.000519844 1 ×10−10

1.75 0.000681251 0.000681254 3 ×10−10

2 0.000885451 0.00088564 13 ×10−9

0.75

1 0.0014525 0.0014525 00000

1.25 0.00197991 0.00197991 00000

1.50 0.00263171 0.00263171 00000

1.75 0.00344883 0.00344885 2 ×10−18

2 0.0044826 0.00448266 1 ×10−7

1

1 0.00459063 0.00459063 00000

1.25 0.0062575 0.0062575 00000

1.50 0.00831749 0.0083175 3 ×10−7

1.75 0.0109 0.0109001 1 ×10−7

2 0.0141672 0.0141674 2 ×10−7
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Conclusion remarks and future work
In this article, we successfully applied the new iterative strategy for the approximate results of multi-dimensional 
wave problems. This technique uses the recurrence relation to produce the findings of the analysis. The findings 
obtained from numerical examples show that our technique is simple to implement and has a greater rate of con-
vergence than existing approaches. The Sawi integral transform has the ability to control the global error, which 
makes it a suitable method for solving problems with rapidly changing solutions. The method is relatively easy 
to implement, especially for problems with periodic solutions. The 3D figures in the illustrated problems show 
the periodic soliton waves in the deep well. The physical behavior of the problems is depicted by the 3D graphical 
representations, and the visual inaccuracy between the exact outcomes and the produced results is represented by 
the 2D plot distribution. This method requires accurate initial guesses for the solution, which can be challenging 
in some cases. In terms of its effectiveness and efficiency, the Sawi integral transform is a relatively new method 
and has not been widely studied or compared to other numerical methods for solving PDEs. However, in the cases 
where it has been applied, it has shown promising results, with relatively high accuracy and efficiency compared 
to other methods. This composition of Sawi transform and the homotopy perturbation strategy gives the solution 
of multi-dimensional problems which is very useful in wave propagation. This novel iterative technique can also 
be used to solve other physical chemistry, engineering, and medical research challenges, such as calculating the 
growth rate of tumors, calculating the total quantity of infecting cells, calculating the amount of viral particles 
in blood during HIV-1 diseases, analyzing the impact of humidity on skew plate vibration, and calculating the 
amount of chemicals involved in chemical chain reactions in the future.

Data availibility
This article includes all of the data from this study.

Received: 17 November 2023; Accepted: 6 March 2024

Figure 5.  Surface results for three-dimensional problem.

Figure 6.  Error between analytical and precise results.
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