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A rigorous theoretical 
and numerical analysis 
of a nonlinear reaction‑diffusion 
epidemic model pertaining 
dynamics of COVID‑19
Laiquan Wang 1, Arshad Alam Khan 2, Saif Ullah 2, Nadeem Haider 2, Salman A. AlQahtani 3 & 
Abdul Baseer Saqib 4*

The spatial movement of the human population from one region to another and the existence of 
super‑spreaders are the main factors that enhanced the disease incidence. Super‑spreaders refer to 
the individuals having transmitting ability to multiple pathogens. In this article, an epidemic model 
with spatial and temporal effects is formulated to analyze the impact of some preventing measures 
of COVID‑19. The model is developed using six nonlinear partial differential equations. The infectious 
individuals are sub‑divided into symptomatic, asymptomatic and super‑spreader classes. In this study, 
we focused on the rigorous qualitative analysis of the reaction‑diffusion model. The fundamental 
mathematical properties of the proposed COVID‑19 epidemic model such as boundedness, 
positivity, and invariant region of the problem solution are derived, which ensure the validity of the 
proposed model. The model equilibria and its stability analysis for both local and global cases have 
been presented. The normalized sensitivity analysis of the model is carried out in order to observe 
the crucial factors in the transmission of infection. Furthermore, an efficient numerical scheme is 
applied to solve the proposed model and detailed simulation are performed. Based on the graphical 
observation, diffusion in the context of confined public gatherings is observed to significantly inhibit 
the spread of infection when compared to the absence of diffusion. This is especially important in 
scenarios where super‑spreaders may play a major role in transmission. The impact of some non‑
pharmaceutical interventions are illustrated graphically with and without diffusion. We believe that 
the present investigation will be beneficial in understanding the complex dynamics and control of 
COVID‑19 under various non‑pharmaceutical interventions.

Keywords Spatial heterogeneity, Super-spreader events, Personal protection, Finite-difference operator-
splitting approach, Threshold dynamics, Simulation

COVID-19 caused by severe acute respiratory syndrome coronavirus was initially identified in China in 2019. 
It has been declared a pandemic by World Health Organization, as it spread very rapidly among the human 
population through different sources and reported million of confirmed cases accompanied by millions of deaths 
throughout the  world1. The transmission of this infectious disease is difficult to control due to the uncertain 
nature of the virus. Many countries implement social distancing policies and avoid public gatherings, isolating 
the infected individuals to control the disease incidence. It is still a major threat to public health, although several 
vaccines are available now. The major factors that rapid the infection transmission are the super-spreaders and 
spatial movement of populations, since the disease may be transmitted faster in one place than another because of 
social  contacts2. In earlier studies of disease epidemiology, it was assumed that susceptible hosts within a popula-
tion had equal chances to become  infected3. Further studies uncover the fact that heterogeneities in pathogen 
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transmission with some individuals have a higher ability to infect others. The super-spreading events were found 
in many infectious diseases in history, such as tuberculosis, ebola, measles, HIV, hepatitis, and also found in the 
SARS  pandemic3. Moreover, such events occur for a specific infectious disease when certain infected individu-
als produce more than the average number of secondary infected cases. Based on the analysis of the Centers for 
Disease Control and Prevention, an infected individual that produces more than 10 secondary infected cases 
is declared as a super-spreader4. Considering the above analysis, the super-spreaders have a significant role in 
infectious disease transmission.

The mathematical modeling approach is one of the important tools to analyze the impact of various aspects 
including super-spreading events on the dynamics of emerging and reemerging disease outbreaks. In this regard, 
various compartmental models have been presented and analyzed to uncover the epidemiological aspect of a 
 disease5. Such as a fractional epidemic model in Caputo sense was formulated by Zafar et al.6 for understand-
ing the dynamics of HIV/AIDS. The authors provide qualitative analysis of the proposed model and simulate it 
through a numerical scheme based on Newton’s polynomials. To analyze the dynamics of COVID-19 Baba et al.7 
take into account fractional order epidemic model. Ibrahim et al.8 formulate an epidemic model to investigate the 
omicron variant of COVID-19 for real data from Thailand. The model is fractional based on Caputo derivative.

Mkhatshwa and Mummert  in4 studied the impact of super-spreading events on the dynamics of the SARS 
infection. The reaction-diffusion epidemic models are considered helpful in analyzing the impact of spatio-
temporal dynamics of infectious diseases outbreaks. Many researchers studied spatio-temporal modeling of 
COVID-19 to analyze the pandemic dynamics from different perspectives. For instance, Wang et al.9 investigate 
the reaction-diffusion epidemic model for spatio-temporal dynamics of infectious disease. Majid et al.10 pre-
sented a compartmental PDE model to investigate the spatial dynamics of the COVID-19 epidemic, whereas 
Zafar et al.11 present nonlinear fractional mathematical model to analyze tuberculosis using different fractional 
operators. A new reaction-diffusion problem is developed  in12 to study the impact of infection transmission 
due to environmental load in a heterogeneous space. Fitzgibbon et al.13 presented a system of partial differential 
equations to investigate the dynamical study of the pandemic in a spatial inhomogeneous environment. Zheng 
et al.14 introduced a diffusive model to analyze the spatial spread of COVID-19 utilizing the incidence function 
of Beddington-DeAngelis type.

Kevrekidis et al.15 developed a new transmission epidemic model based on reaction-diffusion phenomena in 
order to explore the spatio-temporal transmission in two regions: the autonomous community of Andalusia in 
Spain and the mainland of Greece. To predict the long-time forecast of reaction-diffusion COVID-19 epidemic 
models, numerical treatment must be studied. Baba et al.16 proposed a fractional model to analyze COVID-19 
with different variants. The authors proposed a fractional Adams-Bashforth scheme to obtain numerical solution.

Ahmed et al.17 analyze the SEIR reaction-diffusion model of infectious disease numerically by using the opera-
tor splitting non-standard finite-difference schemes. Many researchers utilize the operator splitting numerical 
schemes due to their positivity persevering property since the negative values of subpopulations in epidemic 
models are meaningless. The details are found in Refs.18–21. Most recently, a similar study has been carried out 
 in22.  In22, the authors introduced a reaction-diffusion epidemic model for the novel pandemic and explored the 
impact of various intervention measures in the presence of diffusion. Ahmed et al.23 investigate a well-known 
numerical approach, the fractional Euler method for approximate solution of fractional model based on Caputo 
derivative. Other similar literature can be found  in24,25.

Motivated by the above literature, the present study develops a mathematical model that analyzes the role of 
super-spreaders on COVID-19 incidence and prevention with spatial and temporal impact. The present work 
is actually a spatial extension of the fractional order  model26. To achieve our goals, initially a compartmental-
based reaction-diffusion epidemic model is formulated. The qualitative analysis of the proposed model is carried 
out in detail and simulations are performed to figure out the influence of important parameters in the presence 
of diffusion. The article is organized the six main sections. In section “Description of the problem”, brief steps 
for the formulation of the model are presented. Basic qualitative analysis and stability of the model equilibria 
are discussed in section “Qualitative analysis of model”. In section “The model’s sensitivity analysis” sensitivity 
is explored. The numerical solution and detailed simulation of the model are discussed in section “Numerical 
treatment: solution and simulation”. Finally, section “Conclusion” accomplished the concluding remarks of the 
whole work.

Description of the problem
This section briefly presents the procedure of model formulation. The assumptions taken in the problem con-
struction are described. A reaction-diffusion mathematical model is presented to demonstrate the spatial and 
temporal dynamics of the disease. The present study is motivated by the fact that disease can spread more rapidly 
in certain regions compared to others, influenced by various factors such as public gatherings, weather condi-
tions, social contacts, and so forth. The entire population is shown by N(t̃, ỹ) where t̃ ≥ 0 is any time instant 
and ỹ ∈ � = [a, b] with a, b ∈ R is spatial point. To construct the model, N(t̃, ỹ) is divided into six sub-groups 
shown by S(t̃, ỹ),E(t̃, ỹ), I1(t̃, ỹ), I2(t̃, ỹ), I3(t̃, ỹ) and the recovered population R(t̃, ỹ) . The description of each 
sub-group is described in Table 1. Thus, we have

The transmissions among different classes are based on the following assumptions:

N(t) =

∫

�

{

S(t̃, ỹ)+ E(t̃, ỹ)+ I1(t̃, ỹ)+ I2(t̃, ỹ)+ I3(t̃, ỹ)+ R(t̃, ỹ)

}

dỹ.
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• Each newborn can get the infection. The susceptible class increased with newborns and reduced through 
infection and natural death.

• The susceptible get an infection after interacting with infected individuals and are moved to the exposed class 
which enhances it while reducing natural death and population completing their latency/incubation period.

• The fraction of the exposed population that has clinical symptoms is moved to the symptomatically infected 
class. This class is reduced with natural death, death due to infection, and recovery from infection.

• The fraction of the exposed population that has the ability to transfer multiple pathogens are super-spreaders 
and added to class super-spreaders. This class is also reduced with natural death, death due to infection, and 
recovery from infection.

• The fraction of the exposed population that has no clinical symptoms is moved to the asymptomatically 
infected class, which reduces with natural death and recovery from infection.

• The recovered class varies by moving individuals recovered from infection in any of the respective compart-
ments and natural death.

Considering the above listed assumptions the spatio-temporal compartmental model describing the dynamics 
of COVID-19 is described as follows:

where (t̃, ỹ) ∈ [0,Tmax] × [a, b] ; Tmax > 0 and

denote the force of infection, which represents the transmission potential when susceptible individuals interact 
with infectious individuals I1, I2 , and I3 . The detailed description of the parameters in model (1) is tabulated 
in Table 2, the coefficients of diffusivity are denoted by Di for i = 1, 2, . . . , 6 . Moreover, the following no-flux 
boundary conditions are considered for problem 1:

The symbol ξ denotes the state variables of the model (1), where in (2), ξỹ represent partial derivatives of each 
state variable of model (1) with respect to the spatial variable ỹ.

Initial conditions
To simulate model (1), the initial conditions (ICs) given by (3) and (4) are used. The ICs (4) are chosen based  on27:

(1)

∂S

∂ t̃
= D1

∂2S

∂ ỹ2
+�− �S − ζS,

∂E

∂ t̃
= D2

∂2E

∂ ỹ2
+ �S − (r + ζ )E,

∂I1

∂ t̃
= D3

∂2I1

∂ ỹ2
+ rk1E − (η1 + ζ + ζ1)I1,

∂I2

∂ t̃
= D4

∂2I2

∂ ỹ2
+ rk2E − (η2 + ζ + ζ2)I2,

∂I3

∂ t̃
= D5

∂2I3

∂ ỹ2
+ r(1− k1 − k2)E − (η3 + ζ )I3,

∂R

∂ t̃
= D6

∂2R

∂ ỹ2
+ η3I3 + η2I2 + η1I1 − ζR,























































































































�(t̃, ỹ) = β
I1(t̃, ỹ)+ ψI3(t̃, ỹ)

N
+ βP

I2(t̃, ỹ)

N
,

(2)
ξỹ(t̃,−2) = 0,

ξỹ(t̃, 2) = 0.

}

Table 1.  System (1) state variables.

State variables Meaning

S Susceptible population

E Exposed population

I1 Symptomatically Infected population

I2 Super-spreaders

I3 Asymptomatically Infected individuals

R Individuals being Recovered from infection
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where S0 = 34, 806, 871,E0 = 20, 000, I10 = 3.0, I20 = 110.0, I30 = 0.0 R0 = 0.0 , ỹ ∈ [a, b] and a, b ∈ R is the 
domain for the problem described in (1). The purpose of choosing the above set of ICs is to consider two types 
of population spatial distribution, i.e., homogeneous and heterogeneous environments to examine the role of 
diffusion in curtailing the infection in the aforementioned cases. The last two states, i.e., IA0 and R0 are assumed to 
be zero because an epidemic usually starts with a relatively small number of initially affected people. Frequently, 
by the time the pandemic is identified, these people might not have reached the asymptomatic or recovered stage.

The initial conditions profiles are presented in Figs. 1 and 2. The illustration in Fig. 1 depicts the ICs (3), 
showcasing a uniform distribution of population across the domain for each of the sub-populations under 
investigation in this study. The susceptible people class is considered to be larger than the rest of sub-classes, 
while the asymptomatic and recovered population are considered to be zero. Figure 2 indicates the ICs (4) with 
exposed, susceptible, symptomatic, and individuals in super-spreading class concentrated around the center of 
the interval [−2, 2] and decreases exponentially towards the center (or origin) on both sides. The concentration 
of susceptible individuals at the origin significantly exceeds the concentrations of individuals in the exposed, 
symptomatic, and super-spreader classes. In addition, the concentrations of asymptomatic and recovered indi-
viduals are assumed to be zero.

Qualitative analysis of model
This section presents qualitative analysis of the reaction-diffusion COVID-19 compartmental epidemic model 
(1). We proceed to prove the basic mathematical properties of the model solution as follows.

(3)

S(0, ỹ) = S0 ≥ 0,

E(0, ỹ) = E0 ≥ 0,

I1(0, ỹ) = I10 ≥ 0,

I2(0, ỹ) = I20 ≥ 0,

I3(0, ỹ) = I30 ≥ 0,

R(0, ỹ) = R0 ≥ 0.
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Table 2.  Biological details of the model parameters and respective numerical values. The values are taken 
 from26.

Parameter Description Value/day

� Birth rate dN(0)

ζ Natural mortality rate 1/(74.87× 365)

ψ Relative transmissibility due to I3 0.100

β Transmission rate 0.503

βP Transmission of infection of individuals in I2 0.724

r Incubation period 0.160

k1 The exposed people entering I1 0.472

k2 The exposed people entering I2 0.443

ζ1 Death rate in I_1(t) due to infection 0.012

ζ2 Death rate in I2 due to infection 0.010

η1 Rate of recovery I1 class 0.327

η2 Rate of removal/recovery in I2 group 0.503

η3 Rate of recovery I3 class 0.060
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Boundedness
One of the most important properties of an epidemic model is the solution boundedness. We take into consid-
eration the approach described  in28 in order to analyze the solution boundedness of the problem (1). The result 
is given in the following Theorem.

Theorem 3.1 The solution of the model (1) i.e., (S(., t̃),E(., t̃), I1(., t̃), I2(., t̃), I3(., t̃),R(., t̃)) is bounded ∀ t̃ ≥ 0.

Proof In order to prove the desired result, add all equations in the model (1)

Integrating over � , using the well known Divergence  theorem29 and make use of no flux boundary conditions, 
which yield to

It gives

Hence

∂

∂ t̃
S(t̃, ỹ)+

∂

∂ t̃
E(t̃, ỹ)+

∂

∂ t̃
I1(t̃, ỹ)+

∂

∂ t̃
I2(t̃, ỹ)+

∂

∂ t̃
I3(t̃, ỹ)+

∂

∂ t̃
R(t̃, ỹ),

= D1
∂2

∂ ỹ2
S(t̃, ỹ)+ D2

∂2

∂ ỹ2
E(ỹ, t)+ D3

∂2

∂ ỹ2
I1(t̃, ỹ)+ D4

∂2

∂ ỹ2
I2(t̃, ỹ)+ D5

∂2

∂ ỹ2
I3(t̃, ỹ)

+ D6
∂2

∂ ỹ2
R(t̃, ỹ)+�− ζ(S(t̃, ỹ)+ E(t̃, ỹ)+ I1(t̃, ỹ)+ I2(t̃, ỹ)+ I3(t̃, ỹ)+ R(t̃, ỹ))

− ξ1I1(t̃, ỹ)− ξ2I2(t̃, ỹ).

∫

�

{

∂

∂ t̃
S(t̃, ỹ)+

∂

∂ t̃
E(t̃, ỹ)+

∂

∂ t̃
I1(t̃, ỹ)+

∂

∂ t̃
I2(t̃, ỹ)+

∂

∂ t̃
I3(t̃, ỹ)+

∂

∂ t̃
R(t̃, ỹ)

}

dỹ,

= �|�| − d

∫

�

{

(S(t̃, ỹ)+ E(t̃, ỹ)+ I1(t̃, ỹ)+ I2(t̃, ỹ)+ I3(t̃, ỹ)+ R(t̃, ỹ))

}

dỹ

−

∫

�

{

ξ1I1(t̃, ỹ)+ ξ2I2(t̃, ỹ)

}

dỹ,

≤ �|�| − ζN(t̃).

d

dt̃
N(t̃) = �|�| − ζN(t̃).

0 ≤ N(t̃) ≤
�|�|

ζ
− exp(−ζ t̃)N(0), ∀ t̃ ≥ 0.

lim
t→+∞

N(t) ≤
�|�|

ζ
.
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Figure 1.  Graphical representation of uniform initial conditions (3).
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Figure 2.  Graphical representation of uniform initial conditions (4).
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  �

Invariant region
A positively invariant set for the system (1) is defined as follows:

Model equilibria and the basic reproductive number
For derivation of the threshold parameter known as the basic reproductive number, we used the well-known 
approached considered  in30. Model (1) possess two equilibria i.e. the disease-free equilibrium (DFE) and the 
endemic equilibrium (EE) represented by �0 and ŴEE respectively such that:

The EE is calculated as follows:

with the following analytical values

and

Moreover, the basic reproductive number R0 is computed as follows:
The infectious classes in the proposed model (1) are E, I1, I2 and I3 , Henceforth, the vectors below present the 

transmission of newborn infections and the transitions between various classes.

The Jacobian of above matrices are evaluated as:

and N =
�

ζ
 in case of disease-free equilibrium. Thus, the associated next generation matrix is,

� =

{

(S(t̃, ỹ),E(t̃, ỹ), I1(t̃, ỹ), I2(t̃, ỹ), I3(t̃, ỹ),R(t̃, ỹ)
T ∈ R

6
+ : N(t̃) ≤

�|�|

d

}

⊂ R
6
+.

Ŵ0 = (S0,E0, I10 , I20 , I30 ,R0) = (�/ζ , 0, 0, 0, 0, 0).

ŴEE = (S∗,E∗, I∗1 , I
∗
2 , I

∗
3 ,R

∗),
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�Ņ
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�(R0 − 1)

α1
�

Ņζ +R0 − 1
� ,
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�R01(R

0 − 1)

β
�

Ņζ +R0 − 1
� ,
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�R01(R

0 − 1)
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�

Ņζ +R0 − 1
� ,
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Ņζ +R0 − 1
� ,
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�

ζ

�
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+ η2
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βP
+ η3
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βψ

�
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�

Ņζ +R0 − 1
� ,

Ņ =
1

r + ζ
+

(

1+
η1

ζ

)

R01

β
+

(

1+
η2

ζ

)

R01

βP
+

(

1+
η3

ζ

)

R03

β
.

F =







β
(I1+ψI3)S

N + βP
I2S
N

0
0
0






, V =







(r + ζ )E
−rk1E + (η1 + ζ + ζ1)I1
−rk2E + (η2 + ζ + ζ2)I2

−r(1− k1 − k2)E + (η3 + ζ )I3






,

F =







0 β βP ψβ
0 0 0 0
0 0 0 0
0 0 0 0






,

V =







r + ζ 0 0 0
−rk1 η1 + ζ1 + ζ 0 0
−rk1 0 η2 + ζ2 + ζ 0

−r(1− k1 − k2) 0 0 η3 + ζ






,



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7902  | https://doi.org/10.1038/s41598-024-56469-5

www.nature.com/scientificreports/

The basic reproductive number which is the spectral radius of FV−1 and is given by:

where

Local stability

Theorem  3.2 The DFE Ŵ0 is stable locally asymptomatically in � if R0 < 1 , otherwise it is 
unstable.
Proof The Jacobian of (1) at the DFE point Ŵ0 is

and the characteristic polynomial associated to above matrix is given as follows:

where,

The values of c0, c1, c2 in (6) are claimed to be positive under the condition R0 < 1 . Further, c1c2 − c3 > 0 con-
firming the Routh-Hurwitz conditions. Hence, the DFE stable locally when R0 < 1 .   �

Local Stability of endemic equilibria
To discuss the local stability of endemic equilibria ŴEE , the model (1) is linearized at ŴEE = (S∗,E∗, I∗1 , I

∗
2 , I

∗
3 ,R

∗) . 
For this purpose assume that

S̄(t̃, ỹ), Ē(t̃, ỹ), Ī1(t̃, ỹ), Ī2(t̃, ỹ), Ī3(t̃, ỹ) and R̄(t̃, ỹ) are minimal perturbation. The linearized form of the problem 
(1) is given by (8),

FV
−1 =









rβψ(1−k1−k2)
(r+ζ )(η3+ζ )

+
rβk1

(r+ζ )(η1+ζ1+ζ )
+

rβPk2
(r+ζ )(η2+ζ2+ζ )

β
(η1+ζ1+ζ )

βP
(η2+ζ2+ζ )

βψ
(η3+ζ )

0 0 0 0
0 0 0 0
0 0 0 0









.

(5)R
0 = ρ

(

FV−1
)

= R01 +R02 +R03,

R01 =
rβk1

(r + ζ )(η1 + ζ + ζ1)
,R02 =

rβPk2

(r + ζ )(η2 + ζ + ζ2)
andR03 =

rβψ(1− k1 − k2)

(r + ζ )(η3 + ζ )
.

J(Ŵ0) =















−ζ 0 − β − βP − βψ 0
0 − r − ζ β βP βψ 0
0 rk1 − η1 − ζ − ζ1 0 0 0
0 rk2 0 − η2 − ζ − ζ2 0 0
0 r(1− k1 − k2) 0 0 − ζ − η3 0
0 0 η1 η2 η3 − ζ















,

(6)P(ϕ) = (ζ + ϕ)2(ϕ3 + c2ϕ
2 + c1ϕ + c0),

c2 = b1l2(1−R01)+ l1l3(1−R02)+ l1l4(1−R03)+ l2l3 + l2l4 + l3l4,

c1 = l1l2(l3 + l4)(1−R01)+ l1l3l4(1−R03 −R02)+ l1l4(l3 − l2)R03

− l1l2l3R02,

c0 = (r + ζ )(η3 + ζ )(η1 + ζ1 + ζ )(η2 + ζ2 + ζ )
(

1−R
0
)

> 0 forR0 < 1,

(7)

S(t̃, ỹ) = S̄(t̃, ỹ)+ S∗,

E(t̃, ỹ) = Ē(t̃, ỹ)+ E∗,

I1(t̃, ỹ) = Ī1(t̃, ỹ)+ I∗1 ,

I2(t̃, ỹ) = Ī2(t̃, ỹ)+ I∗2 ,

I3(t̃, ỹ) = Ī3(t̃, ỹ)+ I∗3 ,

R(t̃, ỹ) = R̄(t̃, ỹ)+ R∗.
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such that

Given that the linearized system (8) has a solution in Fourier series form, then

In above, k = nπ
2  , with n ∈ Z+ , indicates wave-number for the node n. Using (9) in (8) yield to,

(8)

∂ S̄

∂ t̃
= D1

∂2S̄

∂ ỹ2
+ g11S̄ + g12Ē + g13 Ī1 + g14 Ī2 + g15 Ī3 + g16R̄,

∂Ē

∂ t̃
= D2

∂2Ē

∂ ỹ2
+ g21S̄ + g22Ē + g23 Ī1 + g24 Ī2 + g25 Ī3 + g26R̄,

∂ Ī1

∂ t̃
= D3

∂2 Ī1

∂ ỹ2
+ g31S̄ + g32Ē + g33 Ī1 + g34 Ī2 + g35 Ī3 + g36R̄,

∂ Ī2

∂ t̃
= D4

∂2 Ī2

∂ ỹ2
+ g41S̄ + g42Ē + g43 Ī1 + g44 Ī2 + g45 Ī3 + g46R̄,

∂ Ī3

∂ t̃
= D5

∂2 Ī3

∂ ỹ2
+ g51S̄ + g52Ē + g53 Ī1 + g54 Ī2 + g55 Ī3 + g56R̄,

∂R̄

∂ t̃
= D6

∂2R̄

∂ ỹ2
+ g61S̄ + g62Ē + g63 Ī1 + g64 Ī2 + g65 Ī3 + g66R̄,































































































































g11 = −
β

N

(

I∗1 + ψI∗3
)

−
βP

N
I∗2 − ζ , g12 = 0, g13 = −

β

N
S∗, g14 = −

βP

N
S∗,

g15 = −
βψ1

N
S∗, g16 = 0, g21 =

β

N

(

I∗1 + ψI∗3
)

+
βP

N
I∗2 , g22 = −(r + ζ ),

g23 =
β

N
S∗, g24 =

βP

N
S∗, g25 =

βψ

N
S∗, g26 = 0, g31 = 0, g32 = rk1,

g33 = −(η1 + ζ + ζ1), g34 = 0, g35 = 0, g36 = 0, g41 = 0, g42 = rk2,
g43 = 0, g44 = −(η2 + ζ + ζ2), g45 = 0, g46 = 0, g51 = 0, g56 = 0,
g52 = r(1− k1 − k2), g53 = 0, g54 = 0, g55 = −(η3 + ζ ), g61 = 0,
g62 = 0, g55 = −(η3 + ζ ), g63 = η1, g64 = η2, g65 = η3, g66 = −ζ .

(9)

S̄(t̃, ỹ) =
�

k

e�tb1k cos(kỹ),

Ē(t̃, ỹ) =
�

k

e�tb2k cos(kỹ),

Ī1(t̃, ỹ) =
�

k

e�tb3k cos(kỹ),

Ī2(t̃, ỹ) =
�

k

e�tb4k cos(kỹ),

Ī3(t̃, ỹ) =
�

k

e�tb5k cos(kỹ),

R̄(t̃, ỹ) =
�

k

e�tb6k cos(kỹ).
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The matrix V representing the variational matrix of (8) is

where,

The subsequent polynomial is,

The relative coefficient values are;

(10)

�

k

(g11 − k2D1 − �)b1k +
�

k

g12b2k +
�

k

g13b3k +
�

k

g14b4k +
�

k

g15b5k +
�

k

g16b6k = 0,

�

k

g21b1k +
�

k

(g22 − k2D2 − �)b2k +
�

k

g23b3k +
�

k

g24b4k +
�

k

g25b5k +
�

k

g26b6k = 0,

�

k

g31b1k +
�

k

g32b2k +
�

k

(g33 − k2DI1 − �)b3k +
�

k

g34b4k +
�

k

g35b5k +
�

k

g36b6k = 0,

�

k

g41b1k +
�

k

g42b2k +
�

k

g43b3k +
�

k

(g44 − k2D4 − �)b4k +
�

k

g45b5k +
�

k

g46b6k = 0,

�

k

g51b1k +
�

k

g52b2k +
�

k

g53b3k +
�

k

g54b4k +
�

k

(g44 − k2D5 − �)b5k +
�

k

g56b6k = 0,

�

k

g61b1k +
�

k

g62b2k +
�

k

g63b3k +
�

k

g64b4k +
�

k

g65b5k +
�

k

(g66 − k2DR − �)b6k = 0.







































































































(11)V =















−c11 0 − g13 − g14 − g15 0
g21 − c22 g23 g24 g25 0
0 g23 − c33 0 0 0
0 g42 0 − c44 0 0
0 g52 0 0 − c55 0
0 0 g63 g64 g65 − c66















,

c11 = k2D1 + g11,

c22 = k2D2 + g22,

c33 = k2D3 + g33,

c44 = k2D4 + g44,

c55 = k2D5 + g55,

c66 = k2DR + g66.

(12)P(�) = (�+ c66)(�
5 +A4�

4 +A3�
3 +A2�

2 +A1�+A0).
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The values of bi , where i = 1, . . . , 5 are given below:

A4 = c11 + k2(D2 + D3 + D4 + D5 + D6)+ g11 + g22 + g33 + g44,

A3 = b1 + g22

(

g33

(

1−
R01

R0

)

+ g44

(

1−
R02

R0

)

+ g55

(

1−
R03

R0

))

,

A2 = b2 + b3 + c11g22

(

g33

(

1−
R01

R0

)

+ g44

(

1−
R02

R0

)

+ g55

(

1−
R03

R0

))

+ g22

× g33(D5 + D4)k
2

(

1−
R01

R0

)

+ g22g44(D5 + D3)k
2

(

1−
R02

R0

)

+ g22g55k
2

× (D3 + D4)

(

1−
R03

R0

)

+ g22g33g44

(

1−
R01

R0
−

R02

R0

)

+ g22g33g55

×

(

1−
R01

R0
−

R02

R0

)

+ g22g44g55

(

1−
R03

R0
−

R02

R0

)

+ g21g22g33
R01

R0
+ g21g22

× g55
R03

R0
+ g21g22g44

R02

R0
,

A1 = b4 + g22g33D5D4k
4

(

1−
R01

R0

)

+ c11

(

g22g33(D5 + D4)k
2

(

1−
R01

R0

))

+ g22g44D5D3k
4

(

1−
R02

R0

)

+ c11

(

g22g44(D5 + D3)k
2

(

1−
R02

R0

))

+ c11

×

(

g22g55(D4 + D3)k
2

(

1−
R03

R0

))

+ c11g22g33g44

(

1−
R01

R0
−

R02

R0

)

+ c11

× g22g55

(

g33

(

1−
R03

R0
−

R01

R0

)

+ g44

(

1−
R03

R0
−

R02

R0

))

+ g22g33g44D5k
2

×

(

1−
R01

R0
−

R02

R0

)

+ g22g55D4D3k
4

(

1−
R03

R0

)

+ g22g33g55D4k
2

×

(

1−
R03

R0
−

R01

R0

)

+ g22g44g55D3k
2

(

1−
R03

R0
−

R02

R0

)

+ g21(c44 + c55)g22

× g33
R01

R0
+ g21(c33 + c44)g22g55

R03

R0
+ g21(c33 + c55)g22g44

R02

R0
,

A0 = b5 + c11g22g44D5D3k
4

(

1−
R01

R0

)

+ c11g22g55D4D3k
4

(

1−
R03

R0

)

+ c11g22

× g33g44D5k
2

(

1−
R02

R0

)

+ c11g22g33g55D4k
2

(

1−
R03

R0

)

+ c11g22g44g55D3k
2

×

(

1−
R03

R0

)

+ c11g22g33g44g55

(

1−
R03

R0
−

R02

R0

)

− c11g22g33D5D4k
4R01

R0

− c11g22g33g44k
2

(

D4
R01

R0
+ D3

R02

R0

)

− c11c55g22g
2
44

R01

R0
.

b1 = c11(c22 + c33 + c44 + c55)+ g33
(

D2k
2 + c44 + c55

)

+ g44k
2(D2 + D3 + D5)

+ g55
(

(D2 + D3)k
2 + c44

)

+ k4
(

D5(D4 + DIE )+ (D5 + D4)(D3 + DIE )
)

+ g22k
2(D3 + D4 + D5),

b2 = c11
(

k4
(

D5(D4 + DIE )+ (D5 + D4)(D3 + DIE )
)

+ g44k
2(D2 + D5 + D3)

)

+ c11g22k
2(D3 + D4 + D5),

b3 = c11
(

g44((D2 + D3)k
2 + c44)+ g33(D2k

2 + c44 + c55)
)

+ (D4D5(D2 + D3))k
6

+ (D2D3(D5 + D4))k
6 + g22(D4D4 + D5(D4 + D3))k

2 + g33g44k
2(D2 + D5)

+ g33(D5D4 + DIE (D5 + D4))k
2 + g44k

4(D5D3 + DIE (D5 + D3))

+ g55k
4(D2D4 + D3(D2 + D4))+ g44g55k

2(D2 + D3)+ g33g55(D2k
2 + c44),

b4 = c11
(

D5D4(D2 + D3)+ D2D3(D5 + D4)k
6 +

(

(g22 + g55)D4D3

)

k4
)

+ c11
(

(D4 + D3)(g22D5 + g55D2)k
4 + g44

(

D5D3 + DIE (D5 + D3)
)

k4
)

+ c11
(

g44
(

D5D4 + DIE (D5 + D4)
)

k4 + g55(g33(D2 + D4)+ g44(D2 + D5))k
2
)

+ c11
(

g44g55 + 2(D2 + D3)k
2
)

+ g22D3D5D4k
6 + c33c44c55D2k

2,

b5 = g21c22c33c44c55 + c11
(

c33k
2(g22D5D5k

2)+ D2(c44 + c55)
)

.
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The coefficients Ai , i = 0, . . . , 4 , of P given by (13) are positive, if R0 > 1 . Further, it also satisfies the Routh-
Hurwitz stability conditions for a polynomial having degree five, i.e.,

Therefore, it is asserted that ŴEE is stable locally for R0 > 1.

Global stability of the model
In the subsequent section, we will investigate the stability of the problem (1) in global case at the steady state Ŵ0 
using a nonlinear Lyapunov stability approach.

Theorem 3.3 If R0 < 1 then the DFE Ŵ0 of the system (1) is globally stable in �.

Proof The Lyapunov-type function is define as

with

Differentiating V(t̃, ỹ) with the solution of (1) as follows:

As, S(t̃, ỹ) ≤ N(t̃, ỹ) for ỹ ∈ � and t̃ ≥ 0 , therefore,

Using, the criterions described in (2), we have

A4A3A2 −A
2
2 −A

2
4A1 > 0,

(A4A1 −A0)
(

A4A3A2 −A
2
2 −A

2
4A1

)

−A0(A4A3A2)
2 −A4A

2
0 > 0.

V(t̃) =

∫

�

{

E(t̃, ỹ)+ j1I1(t̃, ỹ)+ j2I2(t̃, ỹ)+ j3I3(t̃, ỹ)

}

dỹ,

j1 =
β

η1 + ζ + ζ1
, j2 =

β

η2 + ζ + ζ2
, and j3 =

ψβ

η1 + ζ
.

dV

dt̃
=

∫

�

{

D2
∂2E(t̃, ỹ)

∂ ỹ2
+ j1D3

∂2I1(t̃, ỹ)

∂ ỹ2
+ j2D4

∂2I2(t̃, ỹ)

∂ ỹ2
+ j3D5

∂2I2(t̃, ỹ)

∂ ỹ2

}

dx

+

∫

�

{

j1rk1 + j2rk2 + j3r(1− k1 − k2)− (r + ζ )

}

E(t̃, ỹ)dỹ

+

∫

�

{

β
I1(t̃, ỹ)S(t̃, ỹ)

N(t̃, ỹ)
+ βψ

I3(t̃, ỹ)S(t̃, ỹ)

N(t̃, ỹ)
+ βP

I2(t̃, ỹ)S(t̃, ỹ)

N(t̃, ỹ)

}

dỹ

−

∫

�

{

j1(η1 + ζ + ζ1)I1 + j2(η2 + ζ + ζ2)I2 + j3(η3 + ζ )I3

}

dỹ.

dV

dt̃
≤

∫

�

{

D2
∂2E(t̃, ỹ)

∂ ỹ2
+ D3

∂2I1(t̃, ỹ)

∂ ỹ2
+ D4

∂2I2(t̃, ỹ)

∂ ỹ2
+ D5

∂2I2(t̃, ỹ)

∂ ỹ2

}

dỹ

+

∫

�

{

j1rk1 + j2rk2 + j3r(1− k1 − k2)− (r + ζ )

}

E(t̃, ỹ)dỹ

+

∫

�

{

βI1(t̃, ỹ)+ βψI3(t̃, ỹ)+ βPI2(t̃, ỹ)

}

dỹ

−

∫

�

{

j1(η1 + ζ + ζ1)I1 + j2(η2 + ζ + ζ2)I2 + j3(η3 + ζ )I3

}

dỹ,

dV

dt̃
≤

∫

�

{

D2
∂2E(t̃, ỹ)

∂ ỹ2
+ D3

∂2I1(t̃, ỹ)

∂ ỹ2
+ D4

∂2I2(t̃, ỹ)

∂ ỹ2
+ D5

∂2I2(t̃, ỹ)

∂ ỹ2

}

dỹ

+

∫

�

{

j1rk1 + j2rk2 + j3r(1− k1 − k2)− (r + ζ )

}

E(t̃, ỹ)dỹ

+

∫

�

{

(β − j1(η1 + ζ + ζ1))I1(t̃, ỹ)+ (βψ − j2(η2 + ζ + ζ2))I3(t̃, ỹ)

}

dỹ

+

∫

�

{

(βP − j3(η3 + ζ ))I2(t̃, ỹ)

}

dỹ.

dV

dt̃
≤ (r + ζ )

∫

�

{

j1
rk1

(r + ζ )
+ j2

rk2

(r + ζ )
+ j3

r(1− k1 − k2)

(r + ζ )
− 1

}

E(t̃, ỹ)dỹ

≤ (r + ζ )(R0 − 1)

∫

�

E(t̃, ỹ)dỹ.
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It is obvious 
dV

dt̃
< 0 ∀ t̃ ≥ 0 and ỹ ∈ � ⇔ R0 < 1 . Further, 

dV

dt̃
= 0 if and only if E(t̃, ỹ) → 0 , then the model 

( 1 )  i m p l i e s  t h a t  I1(t̃, ỹ) → 0  ,  I2(t̃, ỹ) → 0  ,  I2(t̃, ỹ) → 0  ,  R(t, ỹ) → 0  a n d  S(t̃, ỹ) →
�

ζ
 

(S,E, I1, I2, I3,R) →

(

�

ζ
, 0, 0, 0, 0, 0

)

 . In a result we concluded that the largest compact invariant set within the 

region 
{

(S,E, I1, I2, I3,R) :
dV

dt̃
= 0

}

 is Ŵ0 . By employing the well-established LaSalle’s principle, Ŵ0 is globally 

asymptotically stable under the condition R0 < 1 .   �

The model’s sensitivity analysis
Sensitivity analysis of epidemiological systems plays a crucial role in understanding the impact of system embed-
ded parameters on disease incidence and prevalence. It helps to elucidate the significance of various parameters 
in shaping the dynamics of the epidemic. Due to the potential for errors in the collocation of data and uncertain-
ties in parameter values, such analysis becomes essential for assessing the robustness of the respective model 
predictions. The sensitivity analysis provides insights into the reliability and stability of the model under different 
scenarios. To identify certain parameters that play a critical role and exert a significant impact on R0 , computing 
their sensitivity indices proves to be effective. These parameters become prime targets for intervention strategies 
aimed at controlling the epidemic. The sensitivity index of R0 relative t to the system parameter � is defined as:

where � shows the system parameter involved in (1). Sensitivity indices of R0 analytically represents as:

Furthermore, to fulfill these analytical results, the sensitivity indices are evaluated numerically utilizing param-
eter values given in Table 1, and numerical indices are provided in Table 3. The above analysis indicates that 
the parameters β , r,βP , k1, k2 , and ψ exhibit positive sensitivity indices, indicating their role in enhancing R0 
for larger values. Conversely, parameters ζ , ζ1, ζ2, η1, η2 , and η3 display negative indices, suggesting an inverse 
relationship with R0 . Thus, an increase in these parameter values would decrease R0 . Given their larger indices, 
these parameters, β and βP are the most sensitive. Small increments in these parameter’s values could significantly 
elevate the value of R0 . In biological context, the average number of contacts per person within a certain time 
interval is represented by the contact rate β . Elevated β values signify an increased probability of transmission 
during physical interaction. On the other hand, the high sensitivity of the parameter represents the transmission 
due super-spreader suggesting that the contribution of individuals with a high capacity for transmission, has a 
significant influence on the overall dynamics of the epidemic.

(13)�R
0

� =
�

R0

∂R0

∂�
,

�R
0

β =
1

R0
[R0 −R02] > 0,

�R
0

r =
ζ

r + ζ
> 0,

�R
0

βP
=

R02

R0
> 0,

�R
0

ζ = −d

[

1+

(

r + ζ

η1 + ζ + ζ1

)

R01

R0
+

(

r + ζ

η2 + ζ + ζ2

)

R02

R0
+

(

r + ζ

η3 + ζ

)

R03

R0

]

< 0,

�R
0

k1
=

1

R0

[

R01 −
rβψk1

(η3 + ζ )(r + ζ )

]

> 0,

�R
0

k2
=

1

R0

[

R02 −
rβψk2

(η3 + ζ )(r + ζ )

]

> 0,

�R
0

ζ1
= −

ζ1

(η1 + ζ + ζ1)

[

R01

R0

]

< 0,

�R
0

ζ2
= −

ζ2

(η2 + ζ + ζ2)

[

R02

R0

]

< 0,

�R
0

η1
= −

η1

(η1 + ζ + ζ1)

[

R01

R0

]

< 0,

�R
0

η2
= −

η2

(η2 + ζ + ζ2)

[

R02

R0

]

< 0,

�R
0

η3
= −

η3

(η3 + ζ )

[

R03

R0

]

< 0,

�R
0

ψ =
R03

R0
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Numerical treatment: solution and simulation
The present part of the manuscript investigates the iterative solution of the system (1) using finite difference oper-
ator-splitting (FDOS) approximation technique presented  in17,18. According to the Von Neumann stability crite-
ria, the spatial and time step size for this purpose are considered as �ỹ = 0.06 , and �t̃ = 0.02 days. The diffusivity 
coefficients have been taken as D1 = 0.000050,D2 = 0.00050,D3 = 0.00010,D4 = 0.0010,D5 = 0.00010,D6 = 0 . 
The proposed scheme steps are presented as fallow:

Solution scheme
The operator splitting iterative scheme is one of the efficient numerical techniques in the field of numerical 
analysis. This method is successfully applied for the solution of nonlinear partial differential equations in order to 
handle the complexity and non-linearity. This scheme is generally based on the splitting approach of differential 
operators into sub-operators. It results in the splitting of of problem under consideration into sub-problems 
corresponding to a particular physical phenomenon. In this investigation, the mentioned scheme is applied to 
solve the reaction-diffusion compartmental epidemic model for the dynamics of COVID-19 described in (1). 
Different population groups interact with one another and diffuse spatially in uni-direction requiring differ-
ent temporal steps. Therefore, considering the operator-splitting approach  in17,18, splitting the time dependent 
operator is useful which shift model (1) in to two sub-systems. The nonlinear reaction problem utilized for the 
time-step t0 to 12dt is

Moreover, the diffusion problem in linear case utilized for time-step 12dt to tn is as follows

(14)

1

2

∂S

∂ t̃
= �− �S − dS,

1

2

∂E

∂ t̃
= �S − l1E,

1

2

∂I1

∂ t̃
= rk1E − l2I1,

1

2

∂I2

∂ t̃
= rk2E − l3I2,

1

2

∂I3

∂ t̃
= r(1− k1 − k2)E − l4I3,

1

2

∂R

∂ t̃
= η3I3 + η2I2 + η1I1 − ζR.















































































































Table 3.  Sensitivity indices of model parameters versus R0.

Parameters Index value

β + 0.5523

r + 0.0003

βP + 0.4476

ζ − 0.0004

k1 + 0.2184

k2 + 0.1821

ζ1 − 0.1833

ζ2 − 0.0087

η1 − 0.4828

η2 − 0.4389

η3 − 0.0510

ψ + 0.05106
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Now make use of finite-difference approximations, the time derivative with first order in (14) and (15) is approxi-
mated by as follows

while the spatial derivative with second-order in the above system (15) is approximated by second-order central 
finite-difference described as follows:

ξ stands for any of the variable S,E, I1, I2, I3 , R. The iterative scheme for sub-systems (14) and (15) can be 
described as follows:

and

(15)
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Simulation with discussions
This part presents simulation of the proposed spatio-temporal epidemic compartmental model (1) with the help 
of the numerical scheme discussed in (18) and (19) for the uniform and nonuniform initial conditions given 
by (3, 4). The impact of disease readmission rates β and βP has been depicted for different scenarios with and 
without diffusion. The time resulting simulation has been conducted for super-spreaders, exposed, symptomatic 
and asymptomatic individuals, under the initial conditions (3, 4) with as well as without diffusion at ỹ = 0.0 and 
ỹ = 1.0 . The choice of considering the spatial points ỹ = 0.0 and ỹ = 1.0 is according to the initial distribution 
of respective populations, which indicates the region having a high density of population. Moreover, the evolu-
tionary trajectories are obtained for 700 days. The objective is to forecast future scenarios based on confirmed 
infected cases and to assess the effects of the aforementioned control interventions on exposed, super-spreader, 
symptomatic and asymptomatic individuals without as well as with diffusion cases. Only the ICs (4) have been 
considered for the system with diffusion, as ICs (3) assumes a uniform population distribution. A visual dynam-
ics of the COVID transmission model (1) is presented to explore the effectiveness of diffusion in controlling 
the prevalence of COVID-19 infection utilizing the initial conditions (4). The dynamics of the infected human 
population without and with diffusion are presented in figure 3. It can be observed from these figures that curve 
peaks in all cases have a significant reduction in the presence of diffusion. Physically, it reveals that public gather-
ing restriction plays a significant impact in minimizing the infection incidence.

Simulation for the initial conditions (3) at ỹ = 0.0 and ỹ = 1.0

We provide a visual depiction of the exposed, super-spreading, symptomatic, and asymptomatic population, 
both without and with diffusion, using uniform ICs (3). Figure 4 demonstrate the trajectories for the model (1) 
for ỹ = 0 and ỹ = 1 , utilizing the values outlined in the Table 2. A similar dynamics is noticed in each case as 
the IC (3) implies a uniform spatial distribution of the population.

Simulation based on ICs (4) at ỹ = 0.0 with different personal protection rates
This section accomplishes the impact of diffusion coupled with some of the model parameters for uniform and 
nonuniform ICs. The dynamics of the proposed model (1) for initial criterion given in (4) and under differ-
ent interventions are illustrated in Figs. 5, 6, 7 and 8. These simulations are performed for both diffusive and 
non-diffusive scenarios at ỹ = 0.0 . Figures 5 and 6 depict the influence of β on the super-spreaders, exposed, 
symptomatic, and asymptomatic subgroups for both cases. Initially, the dynamics are examined for the tabulated 
value of β which is set at 0.5030. Variations in β correspond to changes in social contact intensity with increases 
and decreases representing relaxation and strengthening of social contacts, respectively. The impact of reducing 
β by 10% , 20% , and 30% is analyzed. It is observed that in the absence of diffusion, a 20% reduction in β results 
in a 53.01% decrease in infected individuals, while a 75.0% reduction is observed in the presence of diffusion. 
Furthermore, a 30.0% reduction in social contacts leads to a 75% decrease in infection without diffusion affect-
ing exposed, super-spreaders, symptomatic, and asymptomatic infected individuals. Conversely, in the case of 
diffusion, a 93.01% reduction is calculated with a 30.0% decline in social contacts. Further analysis are presented 
in Tables 4 and 5. Consequently, from this analysis, it is evident that implementing isolation strategies in the 
presence of diffusion proves to be more advantageous and considerably contributes to mitigating the incidence 
of infection.

Figures 7 and 8 present the impact of βP upon the population dynamics spatially at ỹ = 0.0 . Firstly, the 
visual dynamics are illustrated for the value of βP mentioned in Table 2 in diffusive as well as in non-diffusive 
models. The dynamics further analyzed for 10%, 20% and 30% reduction in βP . The simulation indicates that 
without diffusion case, the infected population in each compartment experiences reductions of 23% , 45% , and 
64% , respectively. However, in the presence of diffusion, reductions of 35% , 64% , and 85% are observed in the 
corresponding compartments. The projected numbers are summarized in Tables 4 and 5.
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Visual dynamics for initial condition (4) at ỹ = 1.0 with different personal protection rates
This part of the paper presents the dynamical aspects of individuals in the aforementioned population groups at 
ỹ = 1.0 for 700 days. These results are graphically depicted in Figs. 9, 10, 11 and 12. Figures 9 and 10 describe 
the behavior of individuals in exposed, super-spreaders symptomatic and asymptomatic classes which are pre-
sented initially for β = 0.5030 without and with diffusion. To further assess the role on the respective infected 
classes, reductions of 10%, 20% , and 30% are implemented. In the absence of diffusion, as depicted by the initial 
concentration profile in Fig. 2, at ỹ = 1.0 , the low population concentration in compartments E, I1, I2 , and I3 
results in a significant decline in the number of infected individuals with a 30% decrease in the effective trans-
mission rate β . Conversely, when the population undergoes diffusion, the super-spreader, exposed, symptomatic 
and asymptomatic infectious individuals observed an increase for β = 0.5030 . However, the number of people 
in these classes effectively declined with a 30% decrease in β . Therefore, it can be concluded that implementing 
moderate social distancing policies is beneficial in reducing the number of infections in either scenario. The 
projected numbers for this case are presented in Tables 6 and 7.

Figures 11 and 12 visualize the influence of the infection transmission rate βP upon the dynamics super-
spreaders, exposed, symptomatic, and asymptomatic infected individuals. The simulation are performed for 
varying βP , with a reduced by 10.0%, 20.0% , and 30.0% relative to the tabulated value. In case of no diffusion, the 
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Figure 3.  Simulation of individuals in (a) exposed, (b) symptomatic, (c) super-spreading, (d) asymptomatic 
sub-groups without and with diffusion.
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Figure 4.  Simulation describing impact of diffusion on exposed, symptomatic, super-spreaders and 
asymptomatic infected individuals using initial conditions (3) at ỹ = 0 and ỹ = 1.

Table 4.  Projected outcomes of individuals in the respective infected classes of model (1) in non-defeasive 
case.

Symbol     E    I1     I2     I3 % Change to the Baseline

β (Tabulated value) 1,055,100 234,260 145,570 221,930 –

10% reduction in β 759,570 168,810 104,840 163,020 28%

20% reduction in β 490,380 109,080 67,712 107,260 54%

30% reduction in β 261,390 58,180 36,103 58,129 75%

βP (baseline value) 1,055,100 234,260 145,570 221,930 –

10% reduction in βP 804,920 178,870 111,100 172,280 23%

20% reduction in βP 575,060 127,880 79,396 125,110 45%

30% reduction in βP 371,720 82,714 51,336 82,063 64%
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super-spreaders, exposed, symptomatic, and asymptomatic infected individuals experience a clear decrease due 
to the lower concentration level at ỹ = 1.0 , as depicted by the initial concentration profile in plot 2. Conversely, 
with the diffusion, the infectious individuals are increased at ỹ = 1.0 for βP = 0.7242 . With reductions in the 
aforementioned parameter, a decrease in infected individuals is observed in the respective compartments, with 
the lowest peak observed with a 30% decrease in βP.

Table 5.  Projected outcomes of individuals in the respective infected classes of model (1) in defeasive case.

Symbol     E     I3     I2     I1     % Variation to the Baseline

β (Table value) 548,700 73,651 116,770 121,490 –

10% decrease in β 314,610 42,150 67,899 69,675 42.1%

20% decrease in β 133,480 17,836 29,089 29,560 75.01%

30% decrease in β 36,359 4842 7948 8048 93.01%

βP (baseline value) 548,700 121,490 116,770 73,651 –

10% decrease in βP 353,500 47,373 76,126 78,285 35.1%

20% decrease in βP 192,400 25,727 41,804 42,607 64.01%

30% decrease in βP 79,245 10,567 17,303 17,545 85.00%
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Figure 5.  Simulation of exposed and symptomatic population under variation in β for diffusive and non 
diffusive case at ỹ = 0.
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Figures 13 and 14 show the mesh plots of the reaction-diffusion model (1). The corresponding plots indicate 
the spatio-temporal evolution of the proposed model over the domain [a, b] × [0,Tmax] , where a = −2 , b = 2 and 
Tmax = 700 days are taken for simulation purpose in order to investigate the long term behavior of the disease. 
The corresponding plots agreed with the theoretical results, i.e., the solution stays positive and converges to the 
steady states throughout the domain. Further, the proposed numerical schemes preserve the positivity property. 
Moreover, the susceptible concentration is high at ỹ = 0.0 , according to initial profiles as given in Fig. 3. There-
fore with baseline values of β and βP , the number of infected individuals in the respective compartments gets 
reduced with diffusion at ỹ = 0.0 and almost vanishes in the first 200 days. Thus diffusion will possibly curtail 
the infection in highly populated areas as it restricts public gatherings.

Conclusion
The proposed study is focused on the analysis of the dynamics of COVID-19 in a spatially heterogeneous case. 
The impact of some non-pharmaceutical interventions (such as personal protection, isolation, etc.) is observed 
with and without spatial effects. For this purpose, a spatio-temporal epidemic model is formulated, consisting of 
a system of partial differential equations describing the dynamics of populations with different disease statuses, 
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Figure 6.  Simulation of exposed and symptomatic infected individuals under variation in β for diffusive and 
non diffusive case at ỹ = 0.
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presented by (1). The model (1) is examined qualitatively and numerically. The main finding of the conducted 
study is listed as:

• The basic reproductive number R0 is derived and estimate its approximate numerical value 1.3 by using 
values of parameters provided in Table 2. Moreover, the stability of steady-states of the proposed model (1) 
is discussed. It has been proved that a disease-free state is locally asymptomatically stable if R0 < 1 and an 
endemic state is stable if R0 > 1

• Sensitivity analysis of the basic reproductive number R0 versus model parameters is carried out. The most 
sensitive parameters found are β (disease transmission due to symptomatically and asymptomatically 
infected) and βP (disease transmission due to super-spreaders). It is concluded that reducing these effective 
contacts by isolating the infected individuals will help in reducing the transmission of infection.

• The dynamics of infected individuals are obtained spatially at ỹ = 0 , and ỹ = 1 under different interventions 
scenarios. Furthermore, from the dynamics of respective classes, the effects of control measures β and βP 
are observed in both with and with diffusion cases. It is noticed that implementing these suggested control 
strategies with diffusion is more effective as compared without diffusion. i.e. the number of infected individu-
als reduces quickly in respective infected compartments. Thus it is concluded that diffusion of population 
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Figure 7.  Graphical dynamics of symptomatic and exposed individuals for variation in βP at ỹ = 0.
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Figure 8.  Dynamics of asymptomatic and super-spreader infected individuals under variation in βP for 
diffusive and non diffusive case at ỹ = 0.

Table 6.  Projected peaks of the respective population classes of the model (1) at ỹ = 1.0 and without 
diffusion.

Symbol     E    I1     I2     I3 % Variation to baseline value

β (tabulated value) 0.2975 0.0469 0.0253 0.0159 –

10.0% decrease 0.2977 0.0467 0.0253 0.0158  0.60 %

20.0% decrease 0.2975 0.0467 0.0252 0.0156 1.80 %

30.0% decrease 0.2974 0.0466 0.0251 0.0155  2.50 %

βP (tabulated value) 0.2976 0.0469 0.0253 0.0159  –

10% decrease 0.2977 0.0468 0.0253 0.0158  0.60 %

20% decrease 0.2975 0.0467 0.0252 0.0157 1.80 %

30% decrease 0.2974 0.0466 0.0252 0.0157 2.50 %
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Table 7.  Projected peaks of the respective population classes of the model (1) at ỹ = 1.0 with diffusion.

Symbol     E    I1     I2     I3 % variation to Baseline value

β (tabulated value) 160.392 38.211 35.998 52.902 –

10% decrease 73.558 17.538 16.633 24.734 54.0 %

20% decrease 23.563 5.622 5.366 8.064 85.0 %

30% decrease 4.131 0.987 0.9573 1.446 97.0 %

βP (tabulated value) 160.392 38.211 35.998 52.902 –

10% decrease 83.447 19.902 18.914 28.060 47.0 %

20% decrease 35.396 8.451 8.102 12.122 77.0 %

30% decrease 10.534 2.518 2.440 3.671  93.0 %
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Figure 9.  Impact of parameter β over the solutions of exposed and symptomatic population with and without 
diffusion and ỹ = 1.
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in parallel with social distancing policy plays an important role in controlling and eradicating COVID-19 
infection.

The present work can be extended to fractional diffusion problems using various operators for better understand-
ing and control of the pandemic.

0 100 200 300 400 500 600 700

Time (days)

0

0.005

0.01

0.015

0.02

0.025

0.03

S
u

p
e

r-
sp

re
a

d
e

rs
 I

n
d

iv
id

u
a

ls

Dynamics without diffusion at x = 1

=0.503
=0.4527
=0.4024
=0.3521

2.5 3 3.5 4 4.5 5
0.024

0.0245

0.025

0.0255

25 30 35 40
0

0.5

1

1.5

2

2.5
10-3

(a)

0 100 200 300 400 500 600 700

Time (days)

0

5

10

15

20

25

30

35

40

S
u
p
e
r-

s
p
re

a
d
e
rs

 I
n
d
iv

id
u
a
ls

Dynamics with diffusion at x = 1

=0.503
=0.4527
=0.4024
=0.3521

(b)

0 100 200 300 400 500 600 700

Time (days)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

A
sy

m
p
to

m
a
tic

a
lly

 I
n
fe

ct
e
d
 I
n
d
iv

id
u
a
ls

Dynamics without diffusion at x = 1

=0.503
=0.4527
=0.4024
=0.3521

5 10 15 20
0.013

0.014

0.015

0.016

75 80 85 90 95

2

4

6

8 10-4

(c)

0 100 200 300 400 500 600 700

Time (days)

0

10

20

30

40

50

60

A
s
y
m

p
to

m
a
ti
c
a
lly

 I
n
fe

c
te

d
 I
n
d
iv

id
u
a
ls

Dynamics with diffusion at x = 1

=0.503
=0.4527
=0.4024
=0.3521

(d)

Figure 10.  Role of β on asymptomatic and super-spreader individuals dynamics with and without diffusion at 
ỹ = 1.
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Figure 11.  Impact of parameter βP on the dynamical behavior of exposed and symptomatic population with 
and without diffusion at ỹ = 1.
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Figure 12.  Impact of parameter βP on the dynamical behavior of asymptomatic and super-spreading 
individuals without and with diffusion at ỹ = 1.
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Figure 13.  Mesh plots of susceptible, exposed, symptomatic and super-spreaders population in the presence of 
diffusion.

Figure 14.  Mesh plots of asymptomatically infected and recovered individuals with diffusion.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. Further, no experiments on humans and/or the use of human tissue samples involved in this study.
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