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Multi‑scale geometric network 
analysis identifies melanoma 
immunotherapy response gene 
modules
Kevin A. Murgas 1, Rena Elkin 2, Nadeem Riaz  3, Emil Saucan 4, Joseph O. Deasy 2* & 
Allen R. Tannenbaum 1,5

Melanoma response to immune-modulating therapy remains incompletely characterized at the 
molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale 
network approach to identify gene modules with coordinated gene expression in response to 
treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we 
modeled gene expression changes in a correlation network and measured a key network geometric 
property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal 
multi-scale treatment-response gene communities. Analysis identified six distinct gene modules 
corresponding to sets of genes interacting in response to immunotherapy. One module alone, 
overlapping with the nuclear factor kappa-B pathway (NFkB), was associated with improved patient 
survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness 
of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene 
modules in cancer.

Melanoma is an aggressive cancer which arises due to dysregulation of melanocytes, typically in the skin1. This 
dysregulation generally involves mutational, epigenetic and transcriptional changes that affect multiple proteins 
and molecular subsystems in the cancer cell, driving tumorigenesis and growth2–6. Although numerous studies 
have examined the expression profiles of melanoma, the mechanisms of therapeutic response and resistance are 
not thoroughly characterized7–9. In this study, we focus on transcriptomic responses to the immunotherapy drug 
nivolumab, a monoclonal antibody that functions via anti-PD1 immune checkpoint blockade10.

Given the complex interplay of molecular components involved in the therapeutic response to immuno-
therapy in cancer cells, network models offer a method to study cancer from a systems perspective. In a network 
model, individual genes and pairwise relationships between genes can be represented as vertices and edges, 
respectively. Previous studies have demonstrated that network geometric properties including network curvature 
and entropy can, for example, distinguish melanoma cells from normal cells, suggesting network geometry may 
be useful to classify cancer and non-cancer cells and investigate molecular changes that occur during tumori-
genesis or in response to treatment11–14.

By considering correlations among experimentally-measured gene expression data, one can construct a 
weighted network that can identify key modules of genes with correlated expression patterns that may be impli-
cated in cancer therapeutic response15,16. Such gene modules might indicate coordinated transcriptomic programs 
related to certain cellular responses, for example cancer signaling or metabolic pathways that may contribute to 
treatment success or failure. Commonly, gene correlation network analyses involve potentially arbitrary cutoffs 
of inter-gene correlation values or, alternatively, principal component analysis to identify such gene modules15,17. 
However, few methods incorporate distance information on the network in a natural way. One method that does 
this is Ollivier-Ricci curvature, a network geometric measure of the connectedness of neighborhoods, which has 
been shown to distinguish within-cluster (positive) and between-cluster (negative) connections, and thereby 
can be used to define interconnected gene modules in a robust way18–20. In fact, previous research utilized such 
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network geometric approach to study pediatric sarcoma and identify novel functional gene associations includ-
ing the EWSR1-FLI1-ETV6 interaction21.

In this study, we applied a multi-scale geometric network analysis approach to study the transcriptomic 
response of melanoma tumors treated with the immunotherapy drug nivolumab. We modeled changes in gene 
expression as a weighted correlation network and assessed network geometry at multiple diffused scales in order 
to determine which network edges (correlations) correspond to ‘critical’ connectivity bridges of the network. 
This allowed us to identify several distinct gene modules, which we subsequently assess in terms of differential 
regulation in response to treatment and clinical associations including mutational subtype and overall survival. 
Using this approach, we compared pathway analysis of the gene modules to known mechanisms and identified 
a potential key marker of melanoma immunotherapeutic response.

Results
Multi‑scale network analysis identifies gene modules in melanoma differential gene correla-
tion network
We focus this study on a publicly available melanoma transcriptomic dataset measuring gene expression (by 
RNA-seq) in melanoma patient tumors before and during treatment with the immunotherapy drug nivolumab, 
a PD-1 immune checkpoint inhibitor10. In 43 patients, gene expression was measured in both pre- and on-
treatment conditions, allowing analysis of the matched expression changes (on-treatment minus pre-treatment) 
in response to therapy for each patient. We considered only genes relevant to immunotherapy response by 
narrowing our focus to 912 genes, including 18 genes with known involvement in immunotherapy response to 
PD1 blockade and 894 genes sharing pairwise interactions with those 18 core genes in a known protein–protein 
interaction database (STRINGdb)22–25. To model co-expression relationships among these genes, we constructed 
a correlation network based on the Pearson correlation of each pair of genes that shared a protein–protein inter-
action, for a total of 50,518 edges.

We applied a multi-scale geometric assessment of the correlation network to identify, in an unsupervised 
manner, correlated gene modules of melanoma immunotherapeutic response. We first applied a diffusion pro-
cess to simulate diffusion of information across the network on increasing scales according to a pseudotime/
scale parameter τ (Fig. 1A). This diffusion allowed us to examine the network through a ‘lens’ of various scales 
to observe multi-scale properties of the network. We then measured Ollivier-Ricci curvature (ORC) κ , a key 
network geometric property that represents the closeness of two neighboring distributions of connected genes 
in the network. Larger values of κ indicate that information is more closely related between the neighborhoods 
around two genes of a given edge in the network. ORC is thus valuable to identify which gene correlations are 
likely within-cluster (defined as κ positive) and which are likely between-cluster (defined as κ negative).

Over the diffusion process, κ is initially zero for each edge, indicating the transport distance between deltas 
concentrated at incident vertices is equivalent to the direct edge distance between the vertices. As the diffusion 
process progresses to fully diffused stationary distributions, the distributions eventually become equal, so the 
transport distance approaches zero and κ approaches 1. It is in the middle of the diffusion process, however, that 
κ can become negative for certain edges and remain positive for others, thereby revealing critical network edges 
that point to overarching community structure within the graph.

Importantly, measuring the curvature of the correlation network at various information diffusion scales 
allowed us to determine a τcrit threshold where the upper 99th percentile of all κ exceeded a critical value 
( κ ≥ 0.75 ) at which edges demonstrate the greatest spread to most effectively differentiate the intra- and inter-
communal phases of the network diffusion and partition the network into correlated gene modules (Fig. 1A; 
Table 1). At τcrit = 1.58 , we extracted κcrit as the curvature of each edge at τcrit and additionally defined κcrit as an 
‘integral-smoothed’ estimate of curvature integrated over all diffusion steps up to τcrit (see methods for integral 
formula). The resulting κcrit incorporates the multi-scale behavior of the network over the range of diffusion 
scales up to the τcrit threshold.

We then applied a weighted Louvain clustering algorithm to partition the network by maximizing average 
κcrit (high shared information) within clusters while minimizing average κcrit (low shared information) between 
clusters, resulting in six distinct modules of correlated genes (Fig. 1B,C). With the defined clusters, we observed 
greater κcrit (Fig. 1D; unpaired t-test: p < 0.001) among within-cluster edges (n = 20,289 edges, mean κcrit=0.451) 
as compared to between-cluster edges (n = 4970 edges, mean κcrit=0.054), suggesting that ORC can effectively 
separate correlated gene modules based on network geometry.

Next, in order to highlight relevant biological pathways involving the genes of each module, we performed 
pathway analysis (Fig. 2A, Supp. Table 1). Gene Ontology (GO) enrichment analysis indicated that each module 
was associated with distinct pathways (Fig. 2B), which we summarize as follows: Module 1 (116 genes) enriched 
for endocytosis and vesicle transport. Module 2 (79 genes) enriched for leukocyte chemotaxis and migration. 
Module 3 (204 genes) enriched for histone modification and chromatin remodeling. Module 4 (342 genes) 
enriched for cell adhesion and leukocyte proliferation. Module 5 (113 genes) enriched for proteasomal catabolism 
and ubiquitination. Module 6 (58 genes) enriched for nuclear factor kappa-B (NFkB) signaling, transcription 
factor activity, and cytokine production and signaling. These gene modules thus represent distinct biological 
processes that may be fundamentally modulated by melanoma tumors in response to immunotherapy.

We next hypothesized that these gene modules, when differentially regulated in response to immunotherapy, 
may directly affect clinical outcomes. To assess the biological and clinical relevance of each module, we estimated 
the relative change in expression of each gene cluster in response to therapy by defining a ‘module score’ as the 
scaled expression difference (on-treatment minus pre-treatment) averaged over all genes within each module 
(Fig. 3A). We assessed the relationship between these scores and patient survival by multiple Cox regression, find-
ing that module 6 indicated a significant association with reduced risk and hence improved survival (Fig. 3B,C).
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Figure 1.   Identification of Correlated Gene Modules in Melanoma Immunotherapy Response with Multi-
scale Geometric Network Analysis. (A) Line plots of gene–gene edge curvature κ over diffusion for τ , including 
vertical line critical τcrit=1.58, a point of high discrimination, whereby lines are colored by κcrit . (B) Correlation 
heatmap of 6 gene modules identified with weighted Louvain clustering. (C) Graph network with edges colored 
by κcrit (with constant alpha transparency = 0.3) and layout partitioned by cluster. (D) Average κcrit of edges 
within or crossing between each pair of gene clusters, where color indicates average κcrit and area of each circle 
is proportional to number of edges.

Table 1.   Top five highest and lowest curvature edges at τcrit.

Gene A Gene B κcrit

FRK ARMC8 0.804

CDC27 CBX8 0.791

CD3D CD274 0.777

CUL1 PSMA4 0.768

CLTC1 SYNJ2 0.764

LDLR APOB  − 0.921

MAPK10 TP53  − 0.842

CDKN1A ABL1  − 0.826

LDLR APOA1  − 0.822

AP2S1 SH3GL3  − 0.796
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Additionally, we observed a borderline-significant association of module 6 scores with observed clinical 
response to therapy (response, stable disease, or progression), whereby the module 6 score exhibited greater 
change on average for patients with complete or partial response and lower on average for patients with pro-
gressive disease (average module 6 score: CR/PR = 0.267, SD = 0.195, PD = 0.019; Kruskal–Wallis test: p = 0.061; 
Fig. 4A). In order to explore if any of the genes in module 6 indicated an association with treatment response 
when considered individually, rather than as an aggregate measure, we further examined the average expres-
sion change of each gene with respect to clinical treatment response, observing differential patterns for each 
response group wherein genes with greatest change in CR/PR responders had relatively little change in PD non-
responders (Fig. 4B). Of the 58 genes in module 6, two genes exhibited significant differences (after multiple 
testing correction) in expression change between responders (CR/PR) and non-responders (PD); IL18R1 showed 
a positive change in responders (IL18R1 average expression change: CR/PR = 0.540, PD = − 0.160; FDR < 0.001) 
while IL1RAP showed a negative change (IL1RAP average expression change: CR/PR = − 0.781, PD = 0.259; 
FDR < 0.005). Together, these results suggest that at least one of the identified gene modules (module 6) can be 
associated with prognostic clinical outcomes including survival and treatment response.

Discussion
In this study, we applied a network analysis approach to study correlated changes in gene expression of melanoma 
tumors in response to immunotherapy treatment. Using this network analysis approach, we aimed to study the 
complex changes that arise in genes with shared biological interactions that are dynamically regulated upon 
treatment induction. We considered a multi-scale geometric aspect of the gene correlation network in order 
to identify modules of correlated genes18,21. Crucially, Ollivier-Ricci curvature (ORC), a measure that indicates 
how close two distributions in a network are, allowed us to distinguish within-cluster (positive curvature, more 
similarity) edges from between-cluster (negative curvature, less similarity) edges and accordingly classify six 
distinct gene modules.

The approach we applied here was similar to previous gene correlation network algorithms, including 
Weighted Gene Co-expression Network Analysis (WGCNA), but does not require any potentially arbitrary 
correlation threshold and instead directly utilizes geometric properties of the correlation network15. It is impor-
tant to note that the Wasserstein (earth-mover’s) distance computation, which was applied to compute ORC, 
is effective for studying small or medium gene networks (less than about 1,000 genes) but does exhibit increas-
ing computational time with network size. Larger gene networks on the order of several thousands or tens of 

Figure 2.   Correlated Gene Modules Enrich for Distinct Biological Functions. (A) Heatmap of scaled gene 
expression difference (on-treatment minus pre-treatment) for each patient, including annotation for clinical 
response and mutational subtype. (B) Enrichment dotplots of top 8 most significant pathways for each gene 
module. All pathways shown were significantly enriched (p < 0.001). Full pathway enrichment results are 
included in Supplemental Table 1.
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thousands genes (for example, the entire set of ~ 20,000 genes typically measured by RNA-seq) may become 
computationally burdensome or infeasible, but this might be circumvented with approximate solutions such 
as the entropy-regularized Sinkhorn algorithm26. In addition to computational efficiency, regularized optimal 
transport measures may provide additional robustness to stochasticity27,28.

In terms of melanoma biology, our approach identified six distinct gene modules that represented sets of genes 
with shared protein interactions and correlated expression changes in response to nivolumab immunotherapy. 
Pathway analysis highlighted biological processes represented by the genes of each module, where we found 
enrichment of diverse biological processes encompassing endocytosis, chemokine signaling, histone modifica-
tion, leukocyte proliferation, proteosomal catabolism, and nuclear factor kappa-B (NFkB) signaling.

We further hypothesized that these modules might be directly involved in melanoma response to immu-
notherapy, whereupon we identified one key module (module 6) in which a positive expression change was 
associated with improved patient survival and clinical treatment response. This relevant module was enriched 
for cytokine production and signaling but enriched even more for NFkB signaling, a pathway with known 
involvement in cancer immune signaling29. Biologically, NFkB is known as a complex of proteins which regulates 
inflammatory response and apoptosis in a complex manner, and thus has been implicated in cancer promoting 
tumorigenesis (when expressed within cancer cells) as well as anti-tumor immune response (when expressed 
within immune cells)30. Recent literature has furthermore indicated NFkB as a biomarker of clinical benefit 
to nivolumab in renal carcinoma31. Interestingly, the original study that produced the dataset considered in 
this study applied simple differential gene expression analysis among treatment response groups, finding that 
genes with expression changes associated with treatment response were enriched only for high-level categories 
including T cell activation and lymphocyte aggregation10. As such, the current study indicates novel results in 
identifying the association of NFkB module using the same dataset.

Notably, we considered the ‘module score’ as an aggregate measure of the expression changes across the 58 
genes in module 6. While such aggregate measures can increase sensitivity to small changes in multiple genes 
that may not be statistically detected individually, we sought to consider if any of the individual genes in the 
module indicated association with treatment response32. Two individual genes of module 6 were associated with 
treatment response, with IL18R1 being associated with good treatment response and IL1RAP being associated 

Figure 3.   Correlated Gene Modules Associate with Survival and Clinical Response. (A) Heatmap of module 
scores (as average scaled expression change of module genes) for each patient, including annotation for clinical 
response and mutational subtype. (B) Forest plot of multiple Cox regression of survival with each module score. 
(C) Kaplan–Meier survival curves with groups split by module 6 score median. P-value indicates log-rank test 
according to median high/low group.
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with poor response, in agreement with previous biological understanding of the IL18 and IL1 axes in cancer 
therapy33–35. The ability of our approach to identify collective gene modules and individual genes associated with 
biological outcomes highlights the advantage of network-based analysis.

Thus, these results may be considered confirmatory of biologically relevant markers of immunotherapy and 
might further suggest potentially understudied genes and mechanisms involved in melanoma immunotherapy 
response. In summary, we believe this study demonstrates the relevance of network curvature as a practical means 
of identifying gene modules in correlated biological gene expression data, and we expect this approach may be 
a valuable tool to study other types of cancers or other biological contexts.

Methods
Melanoma immunotherapy dataset
Publicly available gene expression data of 109 melanoma tumors in response to nivolumab treatment was accessed 
at NCBI GEO, accession code: GSE91061. Of the samples, 51 samples correspond to pre-treatment and 58 

Figure 4.   Module 6 Gene Expression Changes are Associated with Clinical Response. (A) Waterfall plot of 
module 6 scores colored by clinical therapy response (CR/PR = complete response/partial response, SD = stable 
disease, PD = progressive disease). (B) Heatmaps of expression change (on-treatment minus pre-treatment) of 
module 6 genes in each clinical response group, including left annotation for each response group of each gene’s 
average expression change within the group (Avg. Diff.).
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samples to on-treatment with nivolumab, with 65 patients total including 43 patients matched in both pre- and 
on-treatment conditions. RNA-seq data was provided both as raw gene read counts and data normalized by 
regularized-log normalization36. Entrez gene IDs were mapped to HGNC gene symbols with the org.Hs.eg.db 
annotation package37. Before downstream analysis, lowly expressed genes were removed if the gene had than 
less than 10 raw RNA counts in more than 90% of samples, and then rlog values of each sample were quantile-
normalized to make the distribution of expression values comparable between samples.

Additional patient metadata (including therapy response and overall survival) was downloaded from the 
Supplemental Information of the same study10. Therapy responses were reported in the metadata as RECIST 
v1.1 categories: CR (complete response), PR (partial response), SD (stable disease), PD (progressive disease), 
or NE (not evaluated)38.

Gene correlation network construction
We constructed a weighted network model beginning with the human protein–protein interaction (PPI) network 
topology that represents the system of known molecular interactions in human cells, encompassing signaling and 
metabolic pathways which may be modulated in various cancers. We accessed PPI topology data from STRINGdb 
(version 11), a database of known PPIs25. We incorporated a cutoff filter using the STRINGdb-provided confi-
dence scores and a sparsification procedure based on gene ontology labels of adjacent cellular compartments to 
remove likely false positive edges, as previously described13,39. To remove the influence of unreliable low-degree 
vertices, we excluded all genes with corresponding interaction degree initially less than 5. To focus our analysis, 
we additionally selected known immunotherapy-relevant genes involved in PD1 blockade therapies, according 
to the Molecular Signatures Database (MSigDB) C2 Curated Collection gene set: MsigDB C2: WP_CANCER_
IMMUNOTHERAPY_BY_PD_1_BLOCKADE22–24. This gene set contained 23 genes (which we refer to as ‘core’ 
immunotherapy genes), 20 of which were contained in the expression data and STRINGdb network. We then 
extended the core immunotherapy gene set by including all genes with neighboring PPI edges to the core genes, 
for a total of 928 neighbors. Finally, we took the largest maximally connected component of the network contain-
ing these selected genes, of which 18 belonged to the core immunotherapy gene set and the remainder were PPI 
neighbors. These criteria resulted in an undirected network topology with 912 vertices (genes) and 50,518 edges.

Using the difference of (rlog) normalized gene expression in on-treatment minus pre-treatment, a weighted 
correlation matrix C was computed representing the Pearson correlation of all patients’ expression change for 
each pair of genes, then shifted from the range [− 1,1] to the range [0,1] by a linear transformation ρshifted =

1+ρ
2

 , 
as a similarity metric such that negative correlations become close to zero and positive correlations remain close 
to 1. To define transport cost on the network (as utilized below in the Wasserstein computation), correlations 
were transformed into distance-like edge weights defined as the inverse of the shifted correlation if that edge was 
in the given PPI network topology. Then, a distance matrix d representing shortest path length between each 
pair of genes was computed using Djikstra’s algorithm40.

Dynamic network curvature analysis
Dynamic network curvature analysis was conducted by simulating diffusion over the weighted network and 
measuring geometric changes18,21. First, the graph Laplacian L was determined as

where I is the identity matrix, CN is the shifted correlation matrix of edges in the network and K is the weighted 
degree or row-sum of CN.

The graph Laplacian represents the divergence of weighted differences in a discrete graph and served as a 
crucial tool to efficiently simulate diffusion at multiple pseudotime/scale parameters τ . A diffusion distribution 
matrix D was computed using the matrix exponential of L:

Each row of D indicates a probability distribution corresponding to one diffusion process with an initial Dirac 
delta δi concentrated at a single vertex i then diffused over pseudotime τ to arrive at a diffused distribution. We 
applied this step for 101 values of τ ranging in the form log10(τ ) ∈ [− 2,2].

In each diffused graph, Ollivier-Ricci curvature (ORC) κ was computed for each edge in the graph by first 
computing the Wasserstein distance W1 between two probability distributions:

as the minimum total cost for all couplings γ that satisfy marginals pi and pj , which signify probability distribu-
tions of vertex weights initially concentrated at vertex i and j respectively diffused for the same pseudotime τ , 
with transport cost d specified by the shortest path length between each vertex. The Wasserstein distance ( W1 ) 
thus indicates optimal transport distance as a measure of closeness between the two diffused distributions. Then, 
ORC subsequently transforms this value by the following formula:

L = I − K−1CN ,

D = e−τL.

W1

(

pi , pj
)

= inf
γ

∫∫

d(i, j)d�,

κij = 1−
W1

(

pi , pj
)

dij
,
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where dij is the direct distance between the two vertices defined above. Curvature κ can indicate positive con-
vergence (clique-like) or negative divergence (tree-like) among diffused probability distributions in the graph, 
revealing the geometric structure of the graph (i.e. clusters, branching).

After measuring all edge curvature values over the diffusion evolution, we determined a threshold τcrit as the 
first pseudotime/scale when the upper 99th percentile of all edges exceeded κ ≥ 0.75. For each edge, we determine 
κcrit to be the value of κ at τcrit . We additionally define κcrit as the integral κcrit =

∫ τcrit
0

κ , to represent a smoothed 
estimate of curvature during diffusion up to τcrit.

Gene module clustering
At the critical threshold τcrit , all edge κcrit values were considered as modularity weights in a weighted Louvain 
clustering algorithm, such that the Louvain optimization iteratively maximized κcrit within clusters and mini-
mized κcrit between clusters41. This was accomplished using the networkx Python package implementation of 
nx.community.louvain_communities, with the default resolution parameter of 1, which ultimately assigned each 
gene an integer label corresponding to one of six gene modules42.

With each module, a module score was computed for each patient to assess how each module score related 
to clinical characteristics including overall survival and therapy response. Scaled gene expression difference 
was defined as the difference in normalized gene expression (on-treatment minus pre-treatment condition in 
each patient with matched data for both conditions), then scaling each gene by dividing by standard deviation 
across all patients (but not shifting the mean, as typical for z-score, so as to the preserve positive and negative 
sign of expression change). Gene module scores were then computed for each patient as the average scaled gene 
expression difference over all genes within each module. Given the biological context of the correlation network 
in melanoma immunotherapy response, we applied pathway analysis on each gene module to identify biological 
processes involved in each module. Gene ontology (GO) enrichment was computed using the clusterProfiler R 
package (considering “ALL” pathways of GO BP, CC, and MF subontologies) and the enrichplot R package was 
utilized for visualization of pathway analysis results43,44.

Statistical analysis
An unpaired t-test was used to compare curvature of within-cluster vs between-cluster edges. Pathway enrich-
ment analysis utilized a hypergeometric test for over-representation analysis, including multiple hypothesis 
correction, for which we select a cutoff of FDR > 0.0545,46. Multiple Cox proportional hazard test was applied 
to determine the association of all module scores with patient survival. Kaplan–Meier analysis of module 6 
score split into low/high groups by median was used for visualization. For statistical analysis related to therapy 
response, we removed 1 patient with NE and grouped CR (n = 3 patients) and PR (n = 6 patients) as a single 
group CR/PR. Kruskal–Wallis test was used as a non-parametric analysis of variance to assess module score 
association with therapy response. For each of 58 genes in module 6, a two-sample Wilcoxon test was applied 
to compare expression change in CR/PR vs PD groups, followed by a significance cutoff of FDR < 0.05 after 
Benjamini–Hochberg multiple-comparison adjustment46.

Code availability
All analysis code was written in Python and R and has been made publicly available in a GitHub repository at 
the following link: https://​github.​com/​MSK-​MOI/​melan​oma_​dynam​ic_​curva​ture.
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